
Mobile Edge Service for Charging Control

Ivaylo Atanasov, Evelina Pencheva, Aleksandar Nametkov, Ventsislav Trifonov
Technical University of Sofia

Sofia, Bulgaria
{iia,enp}@tu-sofia.bg, aleksandar.nametkov@balkantel.net, vgt@tu-sofia.bg

Abstract—5G systems will provide a flexible charging
capabilities including policy control based on spending limits for
a subscription. Edge computing possesses the potential for
exposing policy control and charging capabilities to third party
applications close to the end users. In this paper, we propose a
new mobile edge service that provides open access to functions
related to monitoring the usage limits regardless the way of
measurement i.e. monetary, volume, duration, etc. Currently, this
function is a part of the core network functionality. Using the
proposed service interfaces, an intended application may track
the usage of network resource by a subscriber and to request
applying of enforcement action to user traffic such as quality of
service downgrade, traffic redirection or blocking close to the end
user. The description of the proposed mobile edge service is
provided in form of typical use cases, data model, interface
definition, and formally verified state models.

I. INTRODUCTION

Future fifth generation (5G) networks are coming with the
promise for improved network performance at competitive
costs and enhanced functionality in order to support innovative
services. 5G is expected to improve significantly the customer
quality of experience in the context of growing data traffic,
requirements of higher bandwidth, and low latency [1], [2], [3],
[4].

One of the key technologies for enhancing network
functional and architectural viability, including increased
autonomy and reduced capital expenditure, is Network
Function Virtualization (NFV) [5]. The NFV can address the
5G design challenges through virtualized network resources,
computing and storage functionality, and service abstraction
[6], [7].

The conceptual architectural framework of 5G includes
both traditional cloud deployments and edge deployments [8].
Multi-access Edge Computing (MEC) is an attempt to improve
modularity and scalability of the network by disaggregation of
cloud capabilities in the vicinity to end users. While NFV
provides flexibility by dynamic network function deployment,
MEC brings intelligence at the network edge [9],
[10], [11].

The mobile edge Radio Network Information Service
(RNIS) provides real-time information about radio network
conditions to applications [12]. Typical information that may
be provided includes up-to-date radio network information
regarding radio network conditions; measurement information
related to the user plane based on 3GPP specifications;
information and changes in information about user

equipments (UEs) connected to the radio node(s) associated
with the mobile edge host and related radio access bearers.

The mobile edge UE Identity Service may be used by
applications to register a tag, representing UE [13]. The
purpose of this service is to enable applying traffic rules for
specific UE.

As to MEC technical requirements the mobile edge system
shall allow the collection of charging-related information, log
it in a secure way and make it available for further processing
[14]. Charging-related information can include traffic usage,
application instantiation, access, usage duration, resource
usage etc.

In this paper, we propose a new mobile edge service
named Charging Control Service (CCS) which might enable
open access to charging related information. The proposed
service exposes functionality for track spending applicable to a
subscriber.

The rest of the paper is organized as follows. Next section
presents the research motivation, discussing the benefits of
distributing subscriber spending limits functionality at the
network edge. Section III describes the extended functionality.
Section IV presents the data model and data types which are
used by service interfaces, and Section V presents the resource
structure and methods supported by the resources. In section
VI, some implementation details are discussed, including
models representing the mobile edge application logic and the
resource states as seen by the networks. Models are formally
described and it is proved in a mathematical way that they
expose equivalent behavior.

II. RESEARCH MOTIVATION

Policy and Charging Control is an important component of
5G core networks that brings together and enhances
capabilities from previous generations to deliver dynamic
control of policy and charging on a per subscriber and per IP
flow basis [15]. It encompasses Flow Based Charging for
network usage, including charging control and online credit
control, for service data flows and application traffic and
Policy control for session management and service data flows
(e.g. gating control, quality of service (QoS) control, etc.).

Subscriber spending limits is a function that enables policy
decisions based on the status of policy counters that are
maintained in the Online Charging System (OCS) [16]. Policy
counter is a mechanism to track spending applicable to a
subscriber. The policy counter status is a label whose values
are not standardized and that is associated with a policy
counter's value relative to the spending limit(s). The number of
possible policy counter status values for a policy counter is

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

one greater than the number of thresholds associated with that
policy counter, i.e. policy counter status values describe the
status around the thresholds. This is used to convey
information relating to subscriber spending from OCS [17].

We propose to relocate the subscriber spending limit
function from the core network to the network edge. This will
enable more timely reaction in case of reaching a threshold
defined for a policy counter, i.e. policy-based decisions may
be enforced close to the end user.

Some of the applications related to control on spending
limits are as follows.

The operator and the customer may negotiate spending
limits (e.g. volume, duration monetary) and after which the
customer traffic will be automatically cut-off. Upon
approaching the negotiated thresholds a warning message may
be sent to the customer. Similar use case enables an agreement
for higher data speeds for predefined period of time or data
volume after which the user traffic is shaped.

Another use case is when the customer has a prepaid data
service, which allows consumption of a specified data volume.
When this volume is reached, the HTTP traffic is redirected to
specific application server to enable recharging in order to
purchase a supplementary volume of data that may be
consumed.

Fig.1 shows the proposed architecture for deployment of
policy decisions based on subscriber spending limits.

Fig.1 Architecture of MEC system for policy decisions based on subscriber
spending limits

The MEC platform is located at the network edge between
the bases station / aggregation point / access point and the
Evolved Packet Core. It may be bundled in or located in
proximity of the radio node. The MEC platform provides
mobile edge services such as services for charging control and
user traffic handling. The MEC server hosts the mobile edge
applications and the MEC platform. The MEC platform
exposes the proposed CCS and Bandwidth Management
Service (BWMS). The BWMS allow different mobile edge
applications to request specific bandwidth requirements
(bandwidth size, bandwidth priority, or both). The BWMS
may aggregate all the requests and act in a manner that will
help to optimize the bandwidth usage [18]. The MEC server
may generate or manipulate user traffic. As some of the user
traffic may not pass through the core network, the MEC
gateway may perform charging and eventually lawful

interception. In addition to minimization of latency, it is
possible to steer the user traffic on a per session/packets bases.
The OCS provides real time charging related information. The
Policy Control Function provides policy rules to control plane
functions to enforce them.

An example use case for subscriber spending limits is
illustrated in Fig.2. The example shows a scenario where a
user starts watching a video on demand application. The
mobile edge application registers with the BWMS the video
bandwidth requirements for premium rate and the user enjoys
the high quality video experience. When the user reaches a
certain spending limit, the mobile edge application decides to
downgrade the rate for the video stream and it deregisters the
video application for premium bandwidth allocation.

Fig.2 Use case of policy based-decision on spending subscriber limits

Generally, the ability to monitor the subscriber spending
limits is the foundation of many mobile charging plans.
Distributing the policy-based functionality based on tracking
the subscription spending at the network edge provides more
flexibility in packet filter handling and application level
charging.

III. DESCRIPTION OF SERVICE FUNCTIONALITY

The proposed mobile edge Charging Control Service
(CCS) provides access to the status of policy counter(s) related
for a user through:

• Request for the policy counter(s) status of a subscriber;

 server

 pp

 platform

 gateway
Online Charging

System

Core network

S1

S11

SGi

 Internet

Ro

Policy Control
Function

Gx

Local
protocol

Charging Control

User Traffic
Handling

Mobile Edge Platform

Mobile edge
application

Credit management action

Spending limit report

CCS OCS

Charging session establishment

eNodeB

UE has an established connection

Change
of policy
counter

Spending limit report

Decision for
user traffic

shaping

Video
Server UE

Notification about
policy counter state

Notification about
policy counter state

UE continues watching the video with premium speed

UE continues watching the video with low speed

BWMS

UE starts watching video on demand

Registration for bandwidth
allocation

Unregistering bandwidth
allocation

Pre-condition: The application has active
subscription for policy counter status

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 18 --

• Notification upon change in policy counter(s) status.

The communication between the mobile edge services and
applications follows the Representational State Transfer
(REST) style.

Fig.3 shows the message flow for application requesting
policy counter information. For a mobile edge application to
determine the status of policy counter, it sends a GET request
to the CCS providing subscriber’s and policy counter’s
identification. The MEC platform opens a dialogue with the
OCS to retrieve information about the policy counter
requested. The CCS receives a response with the status of the
policy counter requested.

Fig.3 Flow of application requesting policy counter information

To receive notification about policy counter change, the
mobile edge application creates a subscription to the related
event that is available at CCS. Fig.4 shows a scenario where a
mobile edge application sends POST request to the CCS to
create a subscription for notifications about policy counter
change. The request body contains PolicyCounterData data
structure to the resource, representing the subscription. The
application includes in PolicyCounterData structure the address
where it wishes to receive notifications. The CCS returns a
response with message body containing PolicyCounterData data
structure. The data structure contains the address of the
resource creates and the subscribed event type.

Fig.4 Flow of subscribing to the policy counter change information

CCS may define an expiry time for the subscription to
policy counter events. In case expiry time is used, the time is
included in the PolicyCounterData structure in the response
message to the subscription request. On subscription expiry,
CCS sends a POST request with a notification to the callback
address provided by the application that owns the subscription,
as shown in Fig.5.

Fig.5 Flow of CCS sending notification on subscription expiry

In case of subscription expiry, the mobile edge application
needs to update the subscription for policy counter status
events. It sends a PUT request to the resource representing the
subscription, as shown in Fig.6. The message body of the
response contains the accepted data structure specific to that
subscription.

Fig.6 Flow of subscription modification

Following the same message pattern the mobile edge
application may terminate the subscription to policy counter
status events. It sends a DELETE request to the resource
representing the respective subscription.

A mobile edge application can be notified of the status of
policy counter in case of status change. Fig.7 shows the
message flow for notification about policy counter status
change.

When the OCS detects a status change of the policy
counter of interest it reports the change to the mobile edge
platform. The CCS sends a POST request with message body
containing the PolicyCounterData data structure to the callback
address provide by the application.

Fig.7 Flow of notification about policy counter’s status change

CCS
Mobile edge
application

201 Created (SubscriptionData)

POST…/subscriptions/(SubscriptionData)

The application wants to
receive notifications about

policy counter change

CCS Mobile edge
application

200 OK (PolicyCounterInfo)

GET …/queries/policyCounter_Info

OCS

Spending-
Limit-Request

Spending-
Limit-Answer

POST…/callback_ref/
(PolicyCounterNotification)

204 No Content

Detection of policy
counter’s status change

Pre-condition: mobile edge platform and mobile edge application have
active subscriptions for events related to policy counter status change.

Mobile edge
application CCS OCS

Spending-Status-
Notification-Request

Spending-Status-
Notification-Answer

CCS Mobile edge
application

200 OK (SubscriptionData)

PUT…/subscriptions/ {subscriptionID}
(SubscriptionData)

The application
needs to update the

subscription for
policy counter status

CCS Mobile edge
application

204 No Content

POST…/ callback(SubscriptionExpiry)

The subscription is
expired and a

notification is sent

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 19 --

IV. DATA MODEL

This section describes the data model of resources
representing the access to subscriber spending limits
functionality.

The PolicyCounterInfo data type represents information
about the status of policy counters that are associated with a
specific mobile edge application instance. The attributes of
PCStatus are as follows:

• timeStamp identifies when the policy counter status
change occurred;

• appInsId uniquely identifies the mobile edge application
instance;

• requestId uniquely identifies the request for the policy
counter status information. It is allocated by the
application;

• userID uniquely identifies the subscription of interest;

• policyCounterList is a structure of one or more
policyCounter and indicates the list of policy counter
identifiers to be subscribed to;

• policyCounter represents information about the policy
counter status. It is a structure of policyCounterID,
policyCounterStatus, and pendingPolicyCounterInfo;

• policyCounterID uniquely identifies a policy counter of
interest;

• policyCounterStatus identifies the policy counter status
applicable for the subscriber. The actual values are not
specified, but an example values are provided in the next
section;

• pendingPolicyCounterInfo contains the pending counter
status and the active time. It is a structure of
policyCounterStatus, and pendingPolicyCounterChange-
Time;

• pendingPolicyCounterChangeTime indicates the expected
time at which the pending policy counter status becomes
the current status of the policy counter.

The SubscriptionData type represents a subscription to
policy counter status change notifications from CCS. The
attributes of PCSsubscription type are as follows:

• callbackReference is a URI (Uniform Resource Identifier)
provided by the application, showing the place she wants
to receive notifications;

• filterCriteria represents a list of filtering criteria for the
subscription for policy counter status related events,
which are also included in the response. It is a structure
of appInsId, userID, and policyCounterList as defined
earlier;

• expiryDeadline indicates when the subscription for policy
counter status changes expires.

The PolicyCounterNotification type represents a notification
about policy counter status change. It is a list of policyCounter-
Status.

The proposed data model enables interoperability as it
provides uniform access to the same data structure by different
applications.

V. INTERFACE DEFINITION

The structure of resources, supported by the CCS, is shown
in Fig.8. Each resource has a unique URI. All CCS resources
have the following root:

{apiRoot}/ccs/{apiVersion}/

Following the RESTful architectural style, all resources are
manipulated using four operations implemented by HTTP
requests: POST, GET, PUT and DELETE. Table I represents
the resources and the supported methods.

Fig.8 Structure of resources supported by CCS

TABLE I. CCS RESOURCES AND SUPPORTED HTTP METHODS

Resource
name

Resource URI HTTP
method

Description

All queries
about policy
counter status

/queries GET Retrieves the list of all
queries about policy
counter state.

Policy
counter status
information

/queries/
policyCounterInfo

GET Retrieves information
about policy counter
status.

All
subscriptions
for subscriber

/subscriptions GET

POST

Retrieves a list with all
subscriptions related to
policy counter status
change.

Creates a new
subscription for policy
counter status change

Existing
subscription

/subscriptions/
subscriptionID

GET

POST

DELETE

Retrieves information
about existing
subscription for policy
counter status change.

Modifies existing
subscription.

Deletes existing
subscription.

Notification
callback

Callback
reference
provided by the
application

POST Sends a notification

VI. STATE MODELS

Implementation of the mobile edge CCS and a mobile edge
application that make used of CCS API requires development
of models, representing the resource state. The models

//{apiRoot}/ccs/v1

/subscriptions

/{PCSubscriptionID}

/policyCounterInfo

/queries

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 20 --

representing the states related to subscriber spending limits
supported by the CCS and by the application need to be
synchronized.

Fig.9 shows a simplified model of the application view on
the policy counter status.

A simple 4 level model related to policy counter state
might be defined as: valid, pending_invalid, invalid, and
pending_valid. In valid state, the subscriber has not reached the
agreed spending limit. In pending_invalid state, the subscriber
approaches the agreed spending limit threshold and the
expected time, after which this threshold is expected to be
reached, is t. For example, the subscriber is allowed to use
higher data speeds in less busy periods and such a period is
about to expire. In invalid state, the subscriber has reached the
agreed threshould for the spending limit. In pending_valid
state, the subscriber has reached the threshold related to the
spending limit, but the expected time for the policy counter
status to become valid is t. In pending_invalid state, the
subscriber may recharge his account and the policy counter
status becomes valid. For example, the busy period during
which the subscriber is not allowed to use higher data speeds
is about to expire. The transitions from valid to invalid directly
or vice versa are possible due to administrative actions. In
unknown state, the application does not have information about
policy counter status. In valid and invalid states, the application
may subscribe for notifications about policy counter status
change, as well as to terminate the subscription.

Fig.9. Model of policy counter state as seen by the mobile edge application

Fig.10 shows the model representing the tracking of
spending limits for given subscriber, supported by the CCS.

In Idle state, the tracking of subscriber spending limits is
not activated. In Idle state, the CCS may be asked about policy
counter status. The mobile edge platform initiates a session
with OCS (not shown in the figure), and retrieves the status of
the policy counter requested. When the application subscribes
for notifications related with changes in the policy counter
state, it waits for changes in WaitForPolicyCounterChange state.

Both models are simplified; they represent only successful
execution of the relevant procedures in the network and do not
take into account abnormal conditions associated with
unsuccessful procedures.

In order to prove in a mathematical manner that both
models expose equivalent behavior we formalize the models’
description. The notion of Labeled Transition System (LTS) is
used to describe each model.

Fig.10. Model, representing the spending limits tracking of given subscriber,
supported by the CCS

A Labeled Transition System is represented as quadruple
of a set of states, a set of actions, a set of transitions and a set
of initial states.

By TApp= (SApp, ActApp, →App, s0
App) it is denoted an LTS,

representing the model of policy counter state as seen by the
application, where:

- SApp = {Unknown [As1], Valid [As2], Pending_Invalid [As3],

Invalid [As4], Pending_Valid [As5]};

- ActApp = {policyCounterStatus(valid)[At1],

policyCounterStatus(pending_invalid) [At2],

policyCounterStatus(invalid) [At3],

policyCounterStatus(pending_invalid) [At4],

terminateSubscription [At5], t [At6]};

- →App = {(As1
At1

As2), (As1
At2

As3), (As1
At3

As4), (As1
At4

As5),

(As2
At2

As3), (As3
At1

As2), (As3
At6

As4), (As2
At3

As4),

Idle

Wait for policy
counter change

query about policy
counter status/

spending-limit-request

Wait For Policy
Counter Status

spending-limit-answer/
valid or invalid, or pending_valid(t),
or pending_invalid t)

spending-status-notification-request
spending-status-notification-answer
valid or invalid, or pending_valid(t),
or pending_invalid t)

Idle

subscription termination

subscribe for policy
counter status change

invalid

valid

t

pending_valid pending_invalid

policy counter status
(pending_valid)/ set(t)

policy counter
status (valid)

policy counter
status (invalid)

policy counter status
(valid)/reset(t)

t

unknown

policy counter status
(valid)/

subscribe for policy
counter status change

unknown

policy counter status
(pending_invalid)/ set(t)

policy counter status
(pending_valid)/ set(t),

subscribe for policy
counter status change

policy counter status (invalid)/
subscribe for policy counter
status change

policy counter status
(pending_invalid)/ set(t),

subscribe for policy
counter status change

terminate subscription/
subscription termination

terminate subscription/
subscription termination

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 21 --

(As4
At1

As2), (As4
At4

As5), (As5
At6

As2), (As2
At5

As1),

(As4
At5

As1)};

s0
App = { As1 }.

Short notations for states and actions are given in brackets.

By P = (SP, ctP →P, s0
P) it is denoted an LTS,

representing the model for spending limits tracking of given
subscriber, supported by the CCS, where:

- SP = {Idle [Ps1], WaitForPolicyCounterStatus [Ps2],

WaitForPolicyCounterChange [Ps3]};

- ActP = { queryPolicyCounterStatus [Pt1],

spendingLimitAnswer [Pt2],

subscribeForPolicyCounterChange [Pt3],

spendingStatusNorificationRequest [Pt4],

subscriptionTermination [Pt5]};

- →P = {(Ps1
Pt1

Ps2), (Ps2
Pt2

Ps1), (Ps1
Pt3

Ps3), (Ps3
Pt4

Ps3),

(Ps3
Pt5

Ps1)};

s0
P = { Ps1 }.

The synchronized behavior of both models is formally
proved by using the concept of weak bisimilarity.

Intuitively, in terms of observed behavior, two LTSs are
equivalent, i.e. they are bisimilar, if one LTS displays a final
result and the other LTS displays the same result [19]. In
practice, strong bisimilarity puts strong conditions for
equivalence which are not always necessary. In weak
bisimilarity, internal transitions can be ignored.

Proposition: App, and P are weakly bisimilar.

Proof: As to definition of weak bisimulation, it is
necessary to identify a relation between the states of both
LTSs, such as for any transition from a state in one LTS there
are respective transitions from states in the other LTS.

By UAppP it is denoted a relation between the states of TApp,

and P, where UAppPe= {(As1 , Ps1), (As2 , Ps3), (As4 , Ps3),

(As2 , Ps1), (As3 , Ps1), (As4 , Ps1), (As5 , Ps1)}. Then the following

transitions for the states in UAppPe are identified:

1. The mobile edge application makes a query about policy
counter status and subscribes for changes in the policy
counter state. The policy counter status is valid. For

(As1
At1

As2) ∃ (Ps1
Pt1

Ps2), (Ps2
Pt2

Ps1), (Ps1
Pt3

Ps3).

2. The mobile edge application makes a query about policy
counter status and subscribes for changes in the policy
counter state. The policy counter status is pending_invalid

and becomes valid. For (As1
At2

As3), (As3
At1

As2) ∃

(Ps1
Pt1

Ps2), (Ps2
Pt2

Ps1), (Ps1
Pt3

Ps3), (Ps3
Pt4

Ps3).

3. The mobile edge application makes a query about policy
counter status and subscribes for changes in the policy
counter state. The policy counter status is pending_invalid

and becomes invalid. For (As1
At2

As3), (As3
At6

As4) ∃

(Ps1
Pt1

Ps2), (Ps2
Pt2

Ps1), (Ps1
Pt3

Ps3).

4. The mobile edge application makes a query about policy
counter status and subscribes for changes in the policy
counter state. The policy counter status is invalid. For

(As1
At3

As4) ∃(Ps1
Pt1

Ps2), (Ps2
Pt2

Ps1), (Ps1
Pt3

Ps3).

5. The mobile edge application makes a query about policy
counter status and subscribes for changes in the policy
counter state. The policy counter status is pending_valid

and becomes valid. For (As1
At4

As5), (As5
At6

As2) ∃

Ps1
Pt1

Ps2), (Ps2
Pt2

Ps1), (Ps1
Pt3

Ps3).

6. The policy counter status is valid and changes to

pending_invalid and then to invalid: For (As2
At2

As3),

(As3
At6

As4) ∃ (Ps3
Pt4

Ps3).

7. The policy counter status is valid and changes to

pending_invalid and then back to valid: For (As2
At2

As3),

(As3
At1

As2)∃ (Ps3
Pt4

Ps3).

8. The policy counter status is valid and changes to invalid:

For (As2
At3

As4) ∃ (Ps3
Pt4

Ps3).

9. The policy counter status is invalid and changes to valid:

For (As4
At1

As2) ∃ (Ps3
Pt4

Ps3).

10. The policy counter status is invalid and changes to

pending_valid, and then to valid: For (As4
At4

As5),

(As5
At6

As2) ∃ (Ps3
Pt4

Ps3).

11. The application terminates the subscription for policy
counter status changes while the policy counter status is

valid. For (As2
At5

As1)∃ (Ps3
Pt5

Ps1).

12. The application terminates the subscription for policy
counter status changes while the policy counter status is

invalid. For (As4
At5

As1)∃ (Ps3
Pt5

Ps1).

Therefore TApp, and P are weakly bisimilar, i.e. they
expose equivalent behavior.

VII. CONCLUSION

Advanced charging capabilities in 5G system enable
monitoring the usage limit (e.g. monetary, volume, duration)
that a subscriber is allowed to consume. When the subscriber
spending limit has reached a pre-set limit, the system is able to

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 22 --

trigger a QoS downgrade and/or restrict access to one, several
or all IP services based on operator pre-defined thresholds.
When the subscriber spending limit has been increased, the
system is able to modify resources (e.g. QoS, bandwidth,
access) to services accordingly.

In this paper we propose a new mobile edge service that
provides open access to monitoring the subscriber spending
limits. Using the service API a mobile edge application may
apply policy based decision for user traffic. The service is
described by typical use cases, which illustrate its
functionality, by data model representing the resource
structure and the respective API definition. Some
implementation aspects are discussed concerning modeling the
behavior of the mobile edge platform and the generic logic of
mobile applications using the service API.

Moving the policy-based control based on subscriber
spending at the network edge provides more flexible charging
capabilities close to the end user.

ACKNOWLEDGMENT

The research is conducted under the grant of project
DH07/10-2016, funded by Bulgarian National Science Fund,
Ministry of Education and Science.

REFERENCES
[1] E. Kapassa, M. Touloupou, A. Mavrogiorgou and D. Kyriazis, "5G &

SLAs: Automated proposition and management of agreements
towards QoS enforcement," 2018 21st Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), Paris, 2018,
pp. 1-5.

[2] F. Z. Yousaf et al., "Network slicing with flexible mobility and
QoS/QoE support for 5G Networks," 2017 IEEE International
Conference on Communications Workshops (ICC Workshops), Paris,
2017, pp. 1195-1201.

[3] E. Pencheva, I. Atanasov, "Usage Monitoring Control in Radio
Access Network," 23rd Conference of Open Innovations Association
FRUCT, Bologna, Italy, 2018, pp.306-314.

[4] S. Guergov. Acupressure in magneto therapy environment, Series on
Biomechanics, Bulgarian Academy of Science, vol.32, no.1, 2018, p.
16-19.

[5] S. Abdelwahab, B. Hamdaoui, M. Guizani and T. Znati, "Network
function virtualization in 5G," IEEE Communications Magazine, vol.
54, no. 4, pp. 84-91, April 2016.

[6] F. Z. Yousaf, M. Bredel, S. Schaller and F. Schneider, "NFV and
SDN - Key Technology Enablers for 5G Networks," IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2468 - 2478,
Nov. 2017

[7] D. Sinh, L. V. Le, L.P. Tung, B.S. P. Lin, "The Challenges of
Applying SDN/NFV for 5G & IoT," IEEE Vehicular Technology
Society Asia Pacific Wireless Communications Symposium,
APWCS’2017, Incheon, South Korea, pp.1-6.

[8] Y. Lin, "Keynote topic: Network cloudification: SDN-NFV and 5G-
MEC with edge and fog computing," 27th International
Telecommunication Networks and Applications Conference (ITNAC),
Melbourne, VIC, 2017, pp. 1-8.

[9] V. Sciancalepore, F. Giust, K. Samdanis, Z. Yousaf, "A double-tier
MEC-NFV architecture: Design and optimization," 2016 IEEE
Conference on Standards for Communications and Networking
CSCN, Berlin, 2016, pp. 1-6.

[10] Y. Nam, S. Song, J. Chung, "Clustered NFV Service Chaining
Optimization in Mobile Edge Clouds," IEEE Communications
Letters, vol. 21, no. 2, pp. 350-353, Feb. 2017.

[11] S. Song, J. Chung, "Sliced NFV service chaining in mobile edge
clouds," 19th Asia-Pacific Network Operations and Management
Symposium, APNOMS, Seoul, 2017, pp. 292-294.

[12] ETSI GS MEC 012, Mobile Edge Computing (MEC); Radio Network
Information API, v1.1.1, 2017.

[13] ETSI GS MEC 014. Mobile Edge Computing (MEC); UE Identity
API, v1.1.1, 2017.

[14] ETSI GS MEC 002. Mobile Edge Computing (MEC); Technical
Requirements, v1.1.1, 2016.

[15] 3GPP TS 23.203 Technical Specification Group Services and System
Aspects; Policy and Charging Control architecture, 2018, Release 15,
v15.3.0.

[16] 3GPP TS 29.219 Technical Specification Group Services and System
Aspects; Service aspects; Charging and billing, Release 16, v16.1.0,
2018.

[17] 3GPP TS 29.219 Technical Specification Group Services and System
Aspects; Policy and Charging Control: Spending Limit Reporting
over Sy reference point, 2018, Release 15, v15.1.0.

[18] ETSI GS MEC 015. Mobile Edge Computing (MEC); Bandwidth
Management API, v1.1.1, 2017

[19] X. J. Chen, R. De Nicola, "Algebraic characteristics of trace and
decorated trace equivalences over tree-like structures," Theoretical
Computer Science, 254, Elsevier, 2001, pp.337-361.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 23 --

