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I. INTRODUCTION

The concept of Multiple input multiple output (MIMO)
communication has been introduced about two decades ago [1],
[2]. Nowadays, it is an integral part of many communication
standards. Transmitting and receiving data through multiple
antennas brings significant increase in channel capacity, system
throughput and enhances the efficiency of restricted frequency
resource utilization. However, these obvious benefits are ac-
companied by additional complications. The main drawback
is complexity increase, which is first of all, concerns the
receiver part. An ideal maximum likelihood (ML) MIMO
detector has exponential complexity with regard to the number
of transmitting antennas, which makes it hardly implementable
especially in case of 4x4 or 8x8 MIMO configurations. It
has been already notices, for instance, in LTE-A [3]. ML
MIMO Detector and its reduced complexity modifications, like
Spherical Decoder [4] or K-Best algorithm [5], [6] present
one class of detectors, which provides close to optimal per-
formance with the expense of high calculation complexity.
On the other hand, there is another class of Linear MIMO
Detectors: Zero Forcing, MMSE [7], OSIC [2], [8], [9]. Their
complexity grows polynomially with the number of antennas.
Hence, it is at least few times less than for ML designs. Of

degradation, which can achieve up to 5 dB and more in the
case of large-scale MIMO systems.

Iterative MIMO Detection and Decoding is another class
of MIMO detection algorithms, where MIMO detection and
channel decoding are combined in common iteration loop [10].
Fig. 1 illustrates a general scheme realizing iterative detection
and decoding. Such scheme is also named ”Turbo” due to
its similarity to Turbo code decoders. Different modules of
MIMO detection/decoding scheme are enriched with additional
(extrinsic) information about the signal to be detected. Such
approach demonstrates really outstanding performance in the
case of ML or Spherical MIMO Detector when it is combined
together with Channel Decoder [10], [11]. However, this
scheme looks even more bulky than pure ML and thus its
implementation (especially for mobile devices) is problematic.
There are iterative schemes which combine linear MMSE
detection and Channel decoding [12]-[15]. They demonstrate
improved performance at reasonable complexity and can be
considered as a good trade-off for MIMO Receiver imple-
mentation. However, there is still big gap between MMSE-
based iterative detection and ML-based one. In this study we
present a new modified Turbo scheme, which utilizes MMSE
detection kernel and original mechanism for obtaining extrinsic
data in iterative way. The new scheme demonstrates superior
performance compared with conventional iterative schemes
and its complexity is also reduced.

The rest of the paper is organized as follows. In Section II,
we describe few conventional schemes of iterative detection
and decoding using ML and MMSE kernels and discuss the
basic principles of Turbo approach. In Section III, we introduce
the new MIMO iterative detection scheme (we named it
Turbo MMSE Detection), which works without feedback from
Channel Decode. Nevertheless, it still demonstrates enhanced
performance. In Section IV, we expand our new Turbo ap-
proach to joint detection and decoding scheme with channel
decoder feedback and demonstrate it excellent performance. It
exceeds all previously known iteration algorithms with linear
detector kernels. The finals section is intended for conclusions.

course, complexity reduction is accompanied with performance

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



II. ITERATIVE DETECTION AND DECODING IN MIMO
RECEIVER

Iterative decoding is a well-known technique, which is first
of all utilized in decoding of concatenated code constructions,
such as Turbo codes [16], [17]. The main idea of iterative
decoding is to define bit probabilities of original bit sequence
transmitted through disturbing channel by set of serially con-
catenated decoders, where the output of last decoder is directed
to 1st decoder thus enclosing iteration loop. Each decoder
estimates bit probabilities based on its unique bit dependency
chain (or code construction) together with extrinsic informa-
tion (probability) about estimated bits, which is obtained from
other decoders and which is considered as prior probability.
For particular decoder extrinsic information can not contain
bit probabilities obtained in this decoder in previous iteration
cycles. Similar decoding procedure can be applied to signal
equalization process where the signal is equalized and decoded
in consequent modules within joint iteration loop [18]. This
allows to improve equalization accuracy, by utilizing extrinsic
information from Channel Decoder feedback. Same approach
can be applied to joint MIMO detection and decoding.

The typical MIMO system is described by matrix equation:

Y = HX + η, (1)

where X = (x1, ..., xM )
T is the transmitted signal vector,

Y = (y1, ..., yN )
T is received signal vector, η = (η1, ..., ηN )

T

is additive noise vector, H is channel matrix of size N ×
M , all variables are complex. Equation (1) describes signal
transmission through flat MIMO channel, which is typical case
for most MIMO OFDM systems utilized in most broadband
wireless standards.
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Fig. 1. Iterative detection and decoding scheme with ML kernel

A. Iterative detection and decoding with ML or spherical
detector kernel

The typical scheme of joint iterative detection and decoding
is presented in Fig. 1. It definitely illustrates the process with
ML detector kernel [10], [19]. Bit error probability in ML
detector with Decoder feedback is defined as:

Bit error probability in ML detector with Decoder feedback
is defined as:

L(bm,k) =

= ln

⎛
⎜⎜⎜⎜⎜⎝

∑
X:f(bm,k=1)

N∏
n=1

e−βn,0
M∏
p=1

K∏
t=1,

t�=k,p=m

Pr(bp,t)

∑
X:f(bm,k=0)

N∏
n=1

e−βn,1
M∏
p=1

K∏
t=1,

t�=k,p=m

Pr(bp,t)

⎞
⎟⎟⎟⎟⎟⎠+

+ ln

(
Pr(bm,k) = 1

Pr(bm,k) = 0

)
,

(2)

where L(bm,k) is logarithm likelihood ratio (LLR), m =
1, ...,M , k = 1, 2, ...K, K- the number of bits in QAM
constellation s :f (b1, ...bK). Summing is performed through
all possible combinations of symbols, containing bit bm,k
equals 0 or 1, βn,j=0/1 is Euclidean distance for each receiving
antenna, defined by equation:

βn,j=0/1 =
1

2σ2η
||yn − hnXj ||2. (3)

In (3), yn is a component of received vector, hn - channel
matrix row, Xj - transmitted vector, containing QAM symbol
in layer m having bit bm,k = 0/1, σ

2

η - real (quadrature) noise
variance, it is assumed that noise power is the same for all
receiving antennas. Note, that second summation in (2) defines
the prior probability (logarithm ratio of prior probabilities).
This value is obtained from the output of Channel Decoder as
well as prior probabilities Pr(bp,t) for other bits composing
Xj .

Prior data should contain only extrinsic information, there-
fore LLR data from the input of Channel Decoder are sub-
tracted from LLRs on its output as it is show in the Fig. 1.
For the same reason the second summation in (2) is eliminated
from LLRs, before they are directed to Channel Decoder. The
number of symbols engaged in the calculation of L(bm,k) in
(2) is exponentially growing with regard to the number of
transmitting antennas 2M∗K . This makes such approach to be
hardly implementable.

Spherical Decoder reduces the number of symbols used in
LLR calculation. Only the branches with high probability ratio
are utilized in ultimate LLR calculation [10], [19]. This leads
to significant complexity reduction, but still such approach
has the complexity much larger than for the methods utilizing
liner MIMO Detectors. The complexity increase ratio varies
from few times up-to hundred times depending on MIMO
configuration and reliable radius of decoding sphere, which in
turn depends on the channel. That is why many investigations
were devoted to finding the proper iterative scheme using linear
MIMO Detector kernel, and particularly MMSE Detector as
it provides the most accurate estimation of transmitted signal
vector compared to other linear detectors.

B. Conventional scheme of iterative detection and decoding
with MMSE kernel

Before the actual algorithm description, it is necessary
to note that further on we are considering real-valued signal
transmission model. For this case, the equation (1) describing
MIMO system still is correct, but complex vectors and matrices
are transformed into real by means of unfolding procedure. It
means that complex vector Y of length N is transformed into
real-valued vector of length 2N . It has real components of
initial vector in its 1st half and image components in the 2nd
half:

Y = (�(y1), ...,�(yN ),�(y1), ...,�(yN ))T .
The same transformation is done for vectors η and X , which
length becomes 2M . Complex-valued matrix H of size N×M
becomes 2N × 2M matrix:[�(H) −�(H)

�(H) �(H)
]
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Basically, Iterative detection and decoding scheme using
MMSE Detector looks similar to the scheme from Fig. 1.
The main difference is in obtaining prior data from extrinsic
LLRs at Channel Decoder output. MMSE Detector estimates
transmitted signal vector X . Hence, it was proposed to form
its prior estimation based on extrinsic bit probabilities (or
LLRs) at Decoder output [12]-[15]. Therefore, it is assumed
that components of signal vector are independent random
variables and each component xm has Gaussian distribution,
characterized by its mean value x̄m and variance σ2xm . Prior
mean value x̄m and variance σ2xm are formed using non-linear
transformations:

x̄m = E(xm) =
∑
sq∈s

sq Pr(sq) =
∑
sq∈s

sq

K∏
t=1

Pr(bq,t),

E(x2m) =
∑
sq∈s

s2q Pr(sq) =
∑
sq∈s

s2q

K∏
t=1

Pr(bq,t),

σ2xm = cov(xm) = E(x2m)− (E(xm))2.

(4)

In (4), xm represent quadrature (real or imaginary) component
of QAM symbol, sq is real or imaginary part of constellation
point, Pr(sq) is probability of symbol sq , which is defined as a
product of bit probabilities Pr(bq,t). Each symbol sq identifies
few bits with indices t = 1, ...,K. The bits are assumed to
be independent. Thus, symbol probability is defined by their
product.

Utilization of prior data in MMSE detector is performed
in two steps. In the first step, soft interference cancellation
is done, where for each component xm the new observation
vector with subtracted interference from other components is
defined by

Ỹ = Y −HX̄−m, (5)

where X̄−m = (x̄1, ..., x̄m−1, 0, x̄m+1, ..., x̄2M )
T contains

prior estimations for all components except m. Setting x̄m = 0
is done for obtaining extrinsic information about symbol on
layer m after MMSE detection. MMSE estimation of x̂m with
prior estimation of X̄−m is defined by equation:

x̂m = GmY −GmHX̄−m + E(xm) =

= Gm(Y −HX̄−m),
(6)

where, as it was defined above E(xm) = x̄m = 0, Gm is
MMSE filter defined by equation:

Gm =

= (cov(X,X))Line mH
T (Hcov(X,X)HT + σ2ηI)

−1
(7)

In (7), σ2η is noise variance, (cov(X,X))Line m is line m of
signal covariance matrix, defined by equation:

cov(X,X) =

= diag(σ2x1 , ..., σ
2

xm−1 , σ
2

sm , σ
2

xm+1 , ..., σ
2

x2M ),
(8)

where σ2xj is prior variance defined in (4), σ2sm - signal variance
for layer m defined by signal power. For normalized power
(having identity power on each complex layer) σ2sm = 1/2.
Equation (7) can be transformed to:

Gm = σ2sm(H
T )Line m(Hcov(X,X)H

T + σ2ηI)
−1 (9)

because cov(X,X) is a diagonal matrix. It is seen from (9),
that MMSE filter is calculated for each real component of

transmitted symbol vector, which means it is necessary to
invert 2N×2N matrix 2M times in each iteration. Estimation
x̂m gives biased solution, which can be described by equation:

x̂m = μmxm + νm, (10)

where μm is gain of MMSE filter and νm is estimation noise,
caused by thermal noise η and by interference from other
layers. Again it is assumed that solution (10) produces noise
characterized by Gaussian distribution with zero mean and
variance σ2vm . Taking into account that vector Y is defined
by (1), x̂m is defined by (6), and Gm is defined by (9) it is
easy to obtain μm and σ2vm :

μm =

= σ2sm(Hcol m)
T (Hcov(X,X)HT + σ2ηI)

−1Hcol m,

σ2νm = σ2sm(1− μm),

(11)

where Hcol m is column of H with index m. From (11) we can
define probability density function for a symbol sq transmitted
on layer k:

p(x̂m|sq) = 1√
2πσ2νm

exp(− (x̂m − μmsq)
2

2σ2νm
). (12)

Using (12) it is possible to define LLR values for bits
composing symbol xm on the second step of MMSE detection.
One can observe that no prior information about estimated
component x̂m was used on the first step. However, this
information is available after Channel Decoder and it can
be utilized in de-mapping procedure. Similar to the approach
defined by equation (2), we note that prior probability of
symbol is defined by the product of its bit probabilities. Hence,
LLR can be defined by equation:

L(bm,k) =

= ln

⎛
⎜⎜⎜⎜⎝

∑
s0∈s(bm,k=1)

e
− (x̂m−μms0)2

2σ2νm

K∏
t=1,t �=k

Pr(bp, t)

∑
s1∈s(bm,k=1)

e
− (x̂m−μms1)2

2σ2νm

K∏
t=1,t �=k

Pr(bp, t)

⎞
⎟⎟⎟⎟⎠+

+ ln

(
Pr(bm,k) = 1

Pr(bm,k) = 0

)
(13)

In (13), Pr(bp,t) is prior bit probability for bits composing
symbol s, excluding sought bit. Summation is performed along
symbols containing estimated bit equal to 1 in the numerator
and to 0 in the denominator. Same as for ML kernel, the
last summation is removed from L(bm,k) for getting extrinsic
information to be directed to the Channel Decoder. Utilization
of prior bit probabilities becomes possible because of bit
interleaving. Thus, the bits composing one QAM symbol are
located far away from each other in encoded block. They can
be considered as independent after decoding procedure.

There are some modifications of iterative detecting and
decoding with MMSE kernel which utilize more sophisticated
algorithms. Particularly in [13], it was proposed to make hard
interference cancellation for the most reliable symbols and
soft interference cancellation for the others. It was shown that
such approach can bring additional gain, but the actual gain
was not high, while the complexity increased. In [13], it was
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proposed to use two groups of symbols, which are subtracted
in (5) for getting MMSE solution for a particular layer.
First group contains symbols from the layers which already
obtained MMSE estimation in current iteration cycle. Mean
value and variance are defined from them based on posterior bit
probabilities obtained after de-mapping. Second group contains
symbols from layers not processed yet. Their mean value and
variance are defined from prior bit probabilities obtained on
previous iteration. According to [13], this approach brings
additional gain, but at the same time it requires sorting of
layers and additional re-modulation. This leads to essential
complexity increase.

Summarizing this description, we can conclude, that de-
scribed iterative method with MMSE detector kernel (hereafter,
we will call this approach as conventional) brings additional
gain compared with non-iterative linear detection. However,
its performance shows serious degradation compared with
iterative detection based on ML kernel. The examples of
algorithm performance will be presented in following sections.

III. NEW ITERATIVE MIMO DETECTION SCHEME WITH

MMSE KERNEL

In this section we will present a new iteration scheme with
MMSE kernel, which does not utilize Channel Decoder in the
iteration loop. Before starting with algorithm description, we
will introduce a new procedure for getting extrinsic informa-
tion. Let’s assume that we estimate a parameter x, which has
Gaussian distribution and for which we have prior information
about its mean value x̄pr and variance σ2pr. Suppose, that
additionally we got a new measurements and defined a new
estimation of mean value x̄ms and variance σ2ms. Estimated
signal is defined by equation:

x̄ms = x+ η, (14)

where η is estimation error, which is supposed to have Gaus-
sian probability density function (PDF).

Based on these data we can get posterior PDF for x:

Ppos(x) = C1 exp

(
− (x− x̄pr)

2

2σ2pr
− (x− x̄ms)

2

2σ2ms

)
, (15)

where C1 is normalization constant. Transforming the expres-
sion inside the exponent we get:

Ppos(x) = C1 exp

⎛
⎜⎝−x2 − 2x x̄prσ

2

ms+x̄msσ
2

pr

σ2ms+σ
2
pr

2
σ2prσ

2
ms

σ2ms+σ
2
pr

⎞
⎟⎠×

× exp
(
− x̄2prσ

2

ms + x̄2msσ
2

pr

2σ2msσ
2
pr

)
.

(16)

It is easy to see that (16) is still Gaussian PDF, having
variance and mean value defined by (17):

σ2pos =
σ2prσ

2

ms

σ2pr + σ2ms
,

x̄pos = x̄pr
σ2ms

σ2pr + σ2ms
+ x̄ms

σ2pr
σ2pr + σ2ms

,

(17)

Ppos(x) =

= C1 exp

(
− (x− x̄pos)

2

2σ2pos

)
exp

(
− x̄2prσ

2

ms + x̄2msσ
2

pr

2σ2prσ
2
ms

)
×

× exp
(
(x̄prσ

2

ms + x̄msσ
2

pr)
2

2σ2prσ
2
ms(σ

2
pr + σ2ms)

)
= C3 exp

(
− (x− x̄pos)

2

2σ2pos

)
.

(18)

Correspondingly, in the case when we are solving backward
task of getting extrinsic information from the posterior PDF,
we obtain:

σ2ms =
σ2prσ

2

pos

σ2pr − σ2pos
,

x̄ms = −x̄pr
σ2pos

σ2pr − σ2pos
+ x̄pos

σ2pr
σ2pr − σ2pos

.

(19)

Knowing (19), one can proceed with the iterative detection.
The block diagram of corresponding scheme is shown in
Fig. 2.

MMSE detector estimates mean value X̂MMSE and vari-
ance σ2MMSE based on prior data obtained on the previous
iteration, where prior data are also mean value X̄pr and
variance σ2pr. MMSE detector produces new estimation in
accordance with equations:

X̂MMSE = X̄pr +GMMSE Pr(Y −HX̄pr),

GMMSE Pr = VprH
′(HVprH

′ + σ2ηI)
−1,

Vpr = diag(σ2pr),

σ2MMSE = diag(VMMSE) =

= diag(Vpr −GMMSE PrHVpr).

(20)

Note, that in (20) σ2MMSE and σ2pr are vectors, Vpr is

a diagonal matrix containing variances σ2pr for each layer

of estimated vector X , correspondingly σ2MMSE is a vector
of variances obtained from diagonal of the matrix VMMSE .
Considering MMSE estimation as posterior PDF, which is
assumed to be Gaussian, and recalling conclusions of (19), we
can extract extrinsic data (external data or new observation),
which will be used on the next processing step. Thus, following
(19) we can define for each component m of vectors X̄ex,, σ

2

ex:

x̄ex,m = − σ2MMSE,m
σ2pr,m − σ2MMSE,m

x̄pr,m+

+
σ2pr,m

σ2pr,m − σ2MMSE,m
x̂MMSE,m,

σ2ex,m =
σ2pr,mσ

2

MMSE,m

σ2pr,m − σ2MMSE,m
.

(21)

In the derivation of (21) it was assumed, that the components
of vectors are independent. Therefore, each component can
be corrected separately. The last statement is not exactly true,
but we can consider it as correct with a reasonable degree of
accuracy.
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Soft QAM Demapper produces LLR estimations based on
obtained X̄ex, σ2ex:

L(bm,k) =

= ln

⎛
⎜⎜⎜⎜⎝

∑
s0∈s(bm,k=1)

e
− (x̄ex,m−μms0)2

2σ2ex,m

K∏
t=1,t �=k

Pr(bp, t)

∑
s1∈s(bm,k=1)

e
− (x̄ex,m−μms1)2

2σ2ex,m

K∏
t=1,t �=k

Pr(bp, t)

⎞
⎟⎟⎟⎟⎠+

+ ln

(
Pr(bm,k) = 1

Pr(bm,k) = 0

)
.

(22)
These data are directed to the output when the iteration loop
ends, or to the next processing module fore re-modulation (or
re-mapping). Re-modulator produces non-linear synthesizing
of symbol vector mean X̄ps and its variance σ2ps:

x̄ps,m =
∑
S

s(bm,1,..., bm,K)

K∏
t=1

Pr(bm,t),

σ2ps,m =

=
∑
S

|s(bm,1,..., bm,K)|2
K∏
t=1

Pr(bm,t)− |x̄ps,m|2,

(23)

where summation in (23) is done among all constellation points
(all bit combinations) of layer m. Considering X̄ps and σ2ps as

posterior PDF with external data Xex1, σ2ex1 we can extract
extrinsic (prior) data applying (19):

x̄pr,m = − σ2ps,m
σ2ex,m − σ2ps,m

x̄ex,m+

+
σ2ex,m

σ2ex,m − σ2ps,m
x̄ps,m,

σ2pr,m =
σ2psσ

2

ex,m

σ2ex,m − σ2ps,m
.

(24)

Obtained data are used in MMSE detection in next the iteration
cycle. In the first iteration, it is assumed that σ2pr,m = σ2sm ,
x̄pr,m = 0, so MMSE filter works same as in conventional
MMSE detector.

To avoid negative variances in (24), it is necessary to check
the condition σ2ps,m < σ2ex,m. If it is not true, that means that
the iteration for that particular layer does not bring accuracy
improvement. Hence, this result should be discharged, i.e. in
the next iteration prior data for the layer m are the same as in
the iteration before. Proposed method that we called “Turbo
MMSE” requires just two iterations. Further iterations do not
bring noticeable performance improvement.

Fig. 3 and Fig. 4 demonstrate the performance of proposed
algorithm. Simulations were performed for LTE-A system for
MIMO configurations 8x8 and 4x4, and different modulations
and code rates. For comparison we provide also results of
two reference algorithms: MMSE and ML, which work in
conventional non-iterative scheme. It can be seen that proposed
iterative procedure demonstrates significant gain regarding
pure MMSE but still there is the gap to ML. However, because,
as it was mentioned before, ML complexity is much higher
than MMSE, proposed iterative algorithm looks to be attractive

low complexity alternative, providing reasonable performance-
complexity trade-off.

Soft QAM 
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Remodulator Extrinsic data 
Extractor 

MMSE 
Detector

Extrinsic data 
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X

2
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X
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pr

pr

X
prL

psL2, ,Y H
2
MMSE

MMSE

X

Fig. 2. Iterative Detection using MMSE kernel (no Decoder in feedback
loop)

Fig. 3. Block Error Rate for 3 algorithms: MMSE, ML and Turbo MMSE
(marked as TP). LTE-A system parameters: 8x8 SU-MIMO. Modulation
(MCS15): QAM 16, code rate: 3/4; Channel: EPA-5, 1000 random realizations,
perfect channel estimation

IV. NEW ITERATIVE MIMO DETECTION AND DECODING

SCHEME WITH MMSE KERNEL

Iterative detecting demonstrates much better performance
in case Channel Decoder is included in joint detection and
decoding iteration loop. Fig. 5 presents modification of Turbo-
MMSE scheme with included Channel Decoder in joint itera-
tion detecting and decoding loop.

It can be seen that Decoder input is connected to the output
of soft QAM Demapper in a way similar to the conventional
scheme with ML kernel from Fig. 1. Whereas, its 1st output
is interleaved and re-connected to Demapper through feedback
line. The input LLRs are subtracted from LLRs output from
Decoder for getting extrinsic data LEXTR been used in next
iteration cycle. 2nd output from Decoder is interleaved and
connected to non-linear Remapper, producing estimations of
X̄ps and σ2ps, defined by (23). One can observe, that proposed
scheme contains two feedback lines: 1st local feedback line
connects Decoder output and Demaper, while 2nd global
feedback line closes main loop, where the data are passed
through Remapper, then through Module, extracting extrinsic
data, and finally are directed to MMSE detector. Note, that
data processing procedure in global feedback line is the same
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Fig. 4. Block Error Rate for 3 algorithms: MMSE, ML and Turbo-
MMSE (marked as TP). LTE system parameters: 4x4 SU-MIMO. Modulation
(MCS17): QAM 64, code rate: 1/2, Channel: EPA-5, 1000 random realizations,
perfect channel estimation

as in Turbo MMSE, while data processing procedure for local
feedback line looks close (but not exactly the same) to the
procedure used in conventional iterative scheme with MMSE
Kernel.

Y, H, 
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Lout
Remodulator Extrinsic data 

Extractor 
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2
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Fig. 5. New Iterative Detection and Decoding scheme using MMSE kernel

Fo rthe sake of clarity we recall that LLRs after de-mapping
are defined by equation (13), where 2nd summand is removed
from the output before directing to Decoder. Bit probabilities
Pr(bp,t) are obtained from extrinsic data obtained in Decoder.
For that input to Decoder LLRs are subtracted from its output
and interleaved LLRs. Also, same as in Turbo-MMSE case,
if after current iteration for some particular layer there is no
accuracy improvement, i.e. σ2ps,m ≥ σ2ex,m, the new prior
data is discarded, i.e. prior data for next iteration are same
as iteration before.

The proposed scheme with two feedback lines demon-
strates excellent performance, which was proven by multiple
simulations performed for different communication standards.
Fig. 6 shows performance of proposed method for MIMO 4x4
for LTE. For comparison, two more algorithms are presented:
ML and MMSE used without iterative feedback. In all cases
the total number of Turbo Decoder loops is 6. In new iterative
detection scheme with MMSE kernel, two detection loops were
fulfilled, while inside one (external) detection loop Turbo-
Decoder fulfilled 3 internal (decoding) iterations, so the total
number of Decoder iterations was the same. The simulation
was done without automatic repeat request (ARQ) mode.

Fig. 7 shows the advantage of proposed method for new
broadcasting standard DVB-NGH. For comparison, we also

Fig. 6. Bit Error Rate for 3 algorithms: MMSE, ML and Iterative MIMO
Detection and Decoding (marked as TPFBnew). LTE system parameters: 4x4
MIMO. Modulation: QAM 16, code rate: 1/2, Channel: EPA-5

Fig. 7. Block Error Rate for 4 algorithms: MMSE, ML (without iterative
decoding), conventional Iterative MIMO Detection and Decoding with MMSE
kernel and feedback without decoder (marked as TP FB w/o dec.), new
Iterative MIMO Detection and Decoding with MMSE kernel and feedback
with decoder (marked TP FB with dec). The figures in parentheses mean
number of Decoder internal loops in each external Detector loop. Simulation
of DVB-NGH system: code rate 8/15, MIMO 2x2, modulation 16QAM x
16QAM, Outdoor Channel Model

show the performance of few reference algorithms: ML and
MMSE, which works without iterative feedback, and also
conventional iterative detection and decoding with MMSE
kernel, described in Section II. New iterative detection and
decoding scheme with MMSE Kernel was tested for two
modes. In mode 1 there was 2 (external) detecting cycles, while
LDPC Decoder made 11 internal loops in first iteration and 29
internal loops in second iteration. In second mode there was 4
detection loops, while Decoder made 10 internal loops in each
external iteration. Note, that total number of Decoder iterations
was 40 (upper limit) for all tested algorithms.

One may observe that even with two iterations proposed
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method demonstrates performance similar to ML. Its per-
formance exceeds the performance of conventional iterative
detecting and decoding with MMSE kernel, while its com-
plexity is lower. Indeed, as it was mentioned in Section
II.B, each external iteration requires 2M real 2NN matrix
inversions, while the new algorithm requires just one. This sig-
nificant complexity reduction accompanied with performance
improvement makes proposed new scheme to be very attractive
especially in applications, which do not require ARQ.

V. CONCLUSION

In the paper we presented new Iterative Detection and
Decoding approach based on utilization of MMSE MIMO
detection. We showed that such algorithm can be applied to
pure MIMO detection as well as to joint MIMO Detection
and Decoding utilizing Channel Decoder in detection/decoding
loop. We confirmed that proposed method has better perfor-
mance than already existing iterative detection and decoding
algorithms with MMSE kernel, whereas its complexity is much
lower.

Proposed scheme is obviously attractive for broadcasting
MIMO receivers [20],[21], which does not use ARQ. ARQ
assumes additional re-transmissions, where the bits belonging
to the same encoded block are transmitted once again (it may
be the same bits or bits, which were punctured in previous
transmission). In the case of iterative Detection and Decoding,
ARQ re-transmission leads to complexity increase, because it
is necessary to utilize additional sub-carriers in joint detection
and decoding. Of course, developed approach is also suitable
for MIMO systems with ARQ. We just mention potential im-
plications because one should be careful in choosing the most
efficient detecting/decoding scheme. For instance, proposed
iterative detection and decoding has really low complexity
compared to ML or Spherical Decoder. We also have all
reasons to expect that it can be beneficial even in the case of
increased design complexity due to re-transmission. Till now,
we have not studied profoundly this approach for systems with
ARQ, but we believe that it should be done in future in order
to find the best trade-off between dozens of available MIMO
detecting/decoding schemes.

Returning to broadcasting MIMO receivers, we would
like to mention that iterative detection and decoding scheme
has been already recommended for DVB-NGH in work [21].
There, such implementation resulted in superior performance.
Therefore, our newly proposed low complexity algorithm is
an attractive candidate for DVB-NGH systems. Its advantages
become even more obvious in the cases when the number of
antennas in MIMO system increases.
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