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Abstract—In this paper, we present an analysis of 
information dispersal methods for using in distributed storage 
systems, processing, and transmission of data. We provide a 
comparative study of the methods most widely used in practice 
considering performance, reliability and cryptographic security. 
There are three main approaches to the information dispersal: 
Information Dispersal Algorithm by Rabin, Residue Number 
System (RNS) and Polynomial Residue Number System. We 
propose an efficient data recovery algorithm based on data 
representation in the RNS. Comprehensive experimental analysis 
shows that the most productive approach for bit length up to 256 
bits is the use of the RNS with our developed algorithm. We show 
that the use of the RNS for the design of distributed storage 
systems, data transmission, and data processing, can significantly 
reduce the time of information processing. 

I. INTRODUCTION 
The significant increase of the stored and processed 

information and the introduction of digital devices in all fields 
of human activity lead to problems we are all faced with [1]. 
Considering the tendency of increasing the use of smart edge 
devices (wearable devices, sensors, digital tags, etc.), many 
modern processing algorithms are designed as distributed.  

As an example, let us consider the actively used distributed 
file systems and storage networks, which allow getting access 
to a variety of physical media [2]. Many works are devoted to 
the creation of multi-cloud storage systems, which allow 
increasing the availability of data [3] and level of 
confidentiality [4], [5]. These characteristics are especially 
important in the case of storing sensitive data (medical data, 
user personal and corporative information, etc.). 

Besides, the development of the concepts of the Internet of 
Things, sensor networks, and 5G networks leads to the 
emergence of new challenges in the theory of networking [6] 
and storing. The number of devices, as well as the amount of 
transmitted data, are increasing. At the same time, devices for 
such networks are subjected to strict requirements for 
performance, energy consumption, size, etc. It affects user 
functions and wide distribution.  

It promotes the development of a new types of network 
(i.e., MANET [7]), in which the transfer is carried out from 
device to device not through the central node, which can be a 
bottleneck, but through adjacent available devices. To this end, 
it is necessary to solve a complex of problems associated with 
the probability of message delivery, integrity, and 
confidentiality of the transmitted data.  

The steady growth of the variety, volume, and speed of data 
transmission have led to the emergence of methods for 
distributed storage, processing and transmission of data.  

Depending on the problem being solved, different 
requirements are made for dispersal information. The most 
important ones include:  

 high performance, 
 low redundancy, which is critical for big data; 
 cryptographic security, which is important for public 

infrastructure.  

The most popular approach to distributed data 
representation is Rabin's Information Dispersal Algorithm 
(IDA) [8]. Based on the simple idea of matrix-vector 
multiplication in the Galois field, this method has gained 
popularity and has been used in a number of projects both for 
multi-cloud storage [5] and local distributed data storage 
systems [9], [10].  

The main idea of the Rabin’s scheme is the redundant 
presentation of information, with additional parts of each data 
chunk. Based on redundant parts and properties of a distributed 
system, information can be recovered in case of loss of some of 
its fragments. The structural similarity of the Rabin’s scheme 
with Reed-Solomon’s codes [11] extends the application areas. 
Some modifications allow not only to recover data in case of 
parts loss, but also to diagnose damaged pieces of data and, in 
some cases, to correct errors. 

An alternative to the Rabin’s scheme is the using of the 
Residue Number System (RNS), which is a universal 
instrument for solving several problems at once. The Residue 
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Number System is a modular non-positional number system 
[12]. Like the Rabin’s scheme, the RNS can be used for 
redundant distributed data representation. On the other hand, on 
the basis of RNS, it is possible to construct effective error 
correction codes [14]. An important feature of the RNS is the 
arithmetic coding of information, which can perform arithmetic 
operations with parts of the encoded data independently from 
each other. It leads to the possibility of using RNS for the 
implementation of homomorphic distributed information 
encryption [14], [15], which is important for distributed data 
processing, for example, in cloud computing systems. 

However, complex operations of the transfer to the RNS 
and restoration of information from parts of the RNS, require 
comprehensive analysis. In this paper, we propose 
modifications of the algorithms for the conversion of data in 
the RNS and data recovery, optimized for software 
implementation based on processor systems with traditional 
architecture. Besides, we conduct a comparative analysis of the 
performance of data distribution and recovery algorithms. 

This paper is organized as follows. Section II reviews the 
data dispersal methods and their applications. Section III 
describes the features of the basic data dispersal methods, 
which include the Rabin scheme and schemes based on RNS. 
Section IV introduces an optimized data recovery algorithm 
from RNS, which improves the performance of such a 
representation. Section V presents the performance analysis of 
the methods specified in Sections III and IV. The conclusions 
and future work are discussed in the last Section VI. 

II. RELATED WORKS 

Data dispersal is an important algorithmic primitive which 
is the basis of many methods connected with ensuring 
reliability and security in various spheres of distributed 
technologies.  Secret sharing schemes, erasure codes, and error 
correction codes can be referred to such methods. The choice 
of method depends on the requirements for the system.  

An important place in the practice of reliable storage and 
transmission of information is the replication – parallel copies 
storage of data on various media or transmission through 
various channels. Replication is used in many distributed data 
storage and processing systems, for example, in the Google 
File System [16]. The main advantage of replication is that 
there is no necessity to process data before saving – replication 
only requires time to copy of data. It is obvious to have 
disadvantages of this approach which are concluded in high 
redundancy, unacceptable in the conditions of storing and 
processing large amounts of data [17], on the one hand, and the 
necessity to apply additional data protection methods on the 
other hand. 

Erasure codes [18] are a generalization of methods based on 
redundant coding intended to data recovery in case of their 
parts loss. The data must be encoded in such a way that it can 
be restored in case of several parts loss.  

Error correction codes are intended to recover corrupted 
data. These codes are more difficult in an organization, because 
unlike the case of data loss, it is necessary, along with  
recovery, to realize the determination and localization of data 

errors [13], [19]. This leads to greater redundancy compared to 
erasure codes, as it requires a certain structure of redundant 
parts. Besides, correction algorithms are often very complicated 
and slow down the system. Nevertheless, the use of such 
approaches makes it possible to give a distributed system high 
reliability and durability of storage. 

If it is necessary to ensure the confidentiality of data at the 
level of a distributed system, secret sharing schemes are used 
[20]. Threshold secret sharing schemes allow to dispersal data 
in such a way that they can only be recovered by combining a 
certain number of parts. Moreover, if the number of parts is less 
than a certain threshold, then, when the parts are combined, it 
should be impossible or difficult to restore the original data. 
There can be distinguished perfect secret sharing schemes [21], 
which differ by maximum security, which is achieved by 
increasing the redundancy of data representation. Such schemes 
are very important for distributed storage of small amounts of 
sensitive information (for example, encryption keys or 
information for authentication). However, in the case of storing 
large amounts of data, this approach is not effective. For 
confidential distributed storage of large amounts of data, 
computationally secure schemes are suitable [4], [22], in which 
cryptographic requirements are reduced, but the redundancy 
compared with perfect schemes is much lower. 

The Rabin’s scheme can serve as the basis for erasure codes 
[23], error correction codes [19], and computationally secure 
secret sharing schemes [22]. However, an important issue is the 
performance of this scheme. During the implementation, it is 
necessary to consider that the Rabin’s scheme leads to a 
matrix-vector product over the Galois field . Such an 
operation may be difficult for computers with traditional 
architecture. 

As an alternative to the Rabin’s scheme, a Residue Number 
System (RNS) can be used. RNS, being a number system, 
allows representing data in the form of non-positional numbers’ 
sets used as a set of the dispersed part. Thanks to this feature, 
RNS is a universal tool for distributed data presentation.  So 
Redundant RNS (RRNS) can be used as erasure codes. Error 
correction codes based on an RNS are widely used [13]. 
Besides, on the basis of the RNS, a number of both perfect 
[24], [25], [26] and computationally secure [4], [27] secret 
sharing schemes have been developed. The advantage of the 
RNS is the ability to perform operations with encoded data, 
which makes it a unique tool for designing homomorphic 
information distribution schemes [14], [15]. In addition, RNS is 
well used in various distributed systems, such as Multi-Cloud 
storage systems [4], [26], [28] and reliable storage for Internet 
of Things [29]. 

An important modification of the RNS is the Polynomial 
Residue Number System (PRNS), which is based on 
irreducible polynomials moduli over the Galois field  
[30], [31]. Such an approach presumes less redundancy 
compared to RNS over residue classes, but it is impossible to 
construct homomorphic schemes which will be based on it.  

For the practical implementation of the methods of 
dispersal data coding, they must be represented in the form of 
corresponding algorithms. To assess the performance, it is 
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necessary to analyze the time spending on forward and reverse 
data conversion operations for each method.  

In the next section, algorithms of dispersal data 
representation are considered. Rabin’s scheme considered the 
main of them. As an alternative, algorithms for encoding and 
decoding data in RNS and polynomial RNS are considered.   

III.  DISPERSAL CODING ALGORITHMS  
A. Information Dispersal Algorithm by Rabin 

Coding according to the Rabin’s scheme is a process of 
conversion of the input data represented as a vector of parts 

 in a new vector 
 which contains   

additional parts of data. According to the scheme, the 
conversion of vector  to vector  occurs by multiplication a 
matrix  size  by vector :  

 

The main condition for choosing a matrix  is the 
invisibility of all its square submatrices with dimensions . 
Vandermonde and Cauchy’s matrices possess a similar 
property [8], [23], which are most often used in IDA. For a 
more efficient implementation of erasure codes, we can use the 
matrix , in which the upper submatrix is an identity. The 
remaining rectangular submatrix is a Cauchy or 
Vandermonde’s matrix [32]. This approach can significantly 
improve the performance of encoding, but is not suitable for 
applications with high requirements for cryptographic security 
[33]. 

Decoding the data based on an existing subvector with n 
elements of vector  is multiplication the inverse matrix to the 
corresponding submatrix of matrix  by this subvector. Hence, 
both encoding and decoding in the Rabin’s scheme are 
performed by multiplying the constant matrix by a vector. 

It should be taken into account that the most efficient is the 
matrix-vector multiplication in the Galois field over 
polynomial with elements from . This follows from the 
fact that the addition in such fields is very simple and can be 
executed with binary encoding as bitwise "XOR" (exclusive 
or). Moreover, operations in a Galois field with a modulus, 
equal to an irreducible polynomial, do not lead to overflow. 

However, matrix-vector multiplication requires a large 
number of additions and multiplications modulo an irreducible 
polynomial. The following sections describe how to represent 
data in RNS, for the implementation of encoding and decoding 
which requires fewer operations. 

B. Redundant Residue Number System 

The Residue Number System is a non-positional number 
system, in which numbers are represented as reminders of 
division by pre-selected moduli from moduli set 

, which must be pairwise co-
prime numbers. This moduli set is divided into two parts: the 
first  moduli are dynamic and specify the number itself, in 

turn, the second remaining higher  moduli are control and 
produce the redundant part.  

Let the data block be represented as the number  in the 
interval , where  is a range of 
data representation in Redundant RNS. In RRNS, the number  
is represented as a set of residues 

, where  for all 
. 

Each of the digits  in RRNS independent from others. 
Such representation allows to perform addition and 
multiplication without carry propagation between digits, which 
makes it possible to perform calculations in parallel and as 
independently as possible. 

For the inverse conversion (decoding), it suffices to choose 
any n moduli, which underlies both the erase codes based on 
RRNS and the error correction codes (with the only difference 
is that, in the case of error correction,  moduli might be 
selected, which respective residues do not contain an error). 
The reverse conversion from RNS is based on the theory of 
solving systems of congruences and the Chinese Remainder 
Theorem (CRT). Hence, recovering the number  by  
arbitrary residues  (converting from RNS to 
weighed number system (WNS)) is calculated by the following 
equation: 

  (1)

where  is an RNS range corresponding 
to the obtained subset of residuals. ,  is 

the multiplicative inversion  by modulus . 

The total number of operations in RNS is less than in 
Rabin’s scheme. However, most operations here are modular, 
which is much more complicated than additions and 
multiplications in the Galois field. Also, RNS over congruence 
classes leads to greater redundancy compared to the Rabin’s 
scheme due to the difference in the values of the moduli. In 
practice, however, the overhead equal to a few bits can be 
neglected.  

C. Polynomial Residue Number System 
The difference of polynomial RNS is that it uses 

polynomial Galois fields over various irreducible polynomials 
over the  instead of congruence classes to represent 
digits (residues). The data chunk represented as a certain 
number  can be interpreted as a polynomial  over the 
Galois field modulo 2. Each binary digit of  is a coefficient in 
the polynomial  at  to a degree equal to the binary digit 
number. Let several different irreducible polynomials 

 are selected. 
Then polynomial  is represented as a set 

, where 
.  

Such representation has the same advantages as traditional 
RNS. On the basis of a polynomial RNS, erasure codes, error  
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correction codes, and secret sharing schemes are built by 
introducing redundant coding. To recover the data, you can 
collect any  residues and use the polynomial analogue of 
equation (1) for the reverse conversion.  

Polynomial RNS requires the organization of calculations 
in the Galois field, but the redundancy of this approach is less 
than the redundancy of the traditional RNS and corresponds to 
the redundancy of the Rabin’s scheme.  

IV. EFFICIENT ALGORITHMS FOR IMPLEMENTATION OF
REVERSE CONVERSION FROM RNS 

The major problematic and complex operation in RNS is 
reverse conversion, which is difficult to do in parallel in 
computers with traditional architecture. The algorithm 
described by equation (1) is not efficient as it requires the 
calculation of the remainder of the division by a large integer 

. It is important to modify the algorithm described by this 
equation (called CRT algorithm), in which the calculation of 
the remainder of dividing by  is replaced by simpler 
operations modulo . 

The main goal of most researches of the reverse conversion 
is to simplify this operation as much as possible, reducing the 
computations along a large modulus  to simpler operations. 
One of the most efficient approaches is the modification of the 
CRT (1) proposed in [34]. This algorithm consists in the 
approximation of the relative position of numbers on the 
number line. The idea of the algorithm consists in the 
modification of equation (1) in such a way that it can be used to 
estimate the position of a number on a number line, while 
getting rid of complex arithmetic operations. 

Let a number  is given in some RNS with 
moduli . To simplify the calculations, it was 
proposed in [34] to estimate the relative value  based 
on (1), which allows to restore the value  by multiplying  by 

. For this modification, all constants  must be 
divided by . Then calculations need to be made not by 
modulus ,  but using the operation of discarding the integer 
part, which is much simpler. To simplify this algorithm, we use 
an approach that transforms the computations into an integer 
arithmetic with a fixed numbers size  by multiplying both 
parts of the equation by .  

For a given , we calculate the following constants: 

 

Using the constants , e find the relative estimate of the 
value of  as follows: 

(2)

The sum in formula (2) requires only  multiplications and 
 addition. At the same time, taking into account that 

operations are performed modulo , carry propagation to 
binary digits with numbers higher than  are ignored. 
According to [34] for exact recovering of value S it is 
necessary to choose  defined by the expression: 

 

where . Further, to calculate the 
final value of  it is necessary to multiply the approximate 
value of   by the value of . In this case, the result of the 
algorithm is the high-order bits starting at bit number . 
Hence 

(3)

In the last expression, the division operation in software 
implementation is equivalent to shifting by  bits to the right. 
Thus, the algorithm of conversion the numbers from RNS to 
WNS, based on the equations (2) and (3) avoids the operation 
of calculating the remainder of the division into a large 
modulus by replacing by the multiplication, which is simpler in 
software implementation. Note, that in this conversion 
increases the size of the constants, which, however, does not 
significantly affect performance due to changes in the structure 
of calculations. 

Algorithm 1 reflects the features of the software 
implementation of the algorithm reflected in formulas (2) and 
(3). The temporary variable  accumulates the results of 
multiplying the residues of  by the constants , truncated by 

 bit (can be implemented by limiting the computation to fixed 
only with  bits). Note, that in some cases (i.e. calculations 
with numbers with arbitrary length), it is more advantageous to 
perform truncation immediately after loop in line 1, rather than 
at each iteration. Next, in line 2 of the algorithm multiplication 
the number  truncated to  lower bits by  performs. the 
result is placed in the variable . At the end, the value  is 
calculated as a shift  bits to the right of the value 

. 

Algorithm 1 Efficient algorithm for conversion numbers 
from RNS to WNS 
input data: number in RNS , pre-calculated 
constants ,  and  
0: set  
1: for  from  to  do:  
2:  
3:  
result:  

The proposed algorithm requires only addition, 
multiplication and shift operations and can be effectively used 
to recover the data represented in RNS. The performance of 
this algorithm in comparison with the algorithm implementing 
equation (1) according to the corollary of the Chinese 
Remainder Theorem (CRT) is presented in Fig. 1. Note, the 
significantly better performance of algorithm 1. 
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Fig. 1. Performance evaluation of RNS reverse conversion algorithms by 
Chines Reminder Theorem (1) and by Algorithm 1 (1 000 000 
iterations each)

Considering the polynomial RNS, we note that the 
algorithm for reverse conversion, similar to the equations (2) 
and (3), can be obtained in the same way, taking into account 
the peculiarities of operations in polynomial arithmetic over 

.  

Note that any number  in binary arithmetic is equivalent to 
a polynomial  over a , whose coefficients at degrees 
from 0 to the highest are binary digits of a number . For 
example, . The main 
difference lies in the execution of the addition operation with 
polynomials, since the coefficients of the resulting polynomial 
are grouped by the degrees of the indeterminates, where 
addition modulo 2 is performed. Thus, the addition of two 
polynomials is equivalent to a bitwise exclusive or of their 
binary equivalents, which is much simpler than positional 
addition. Multiplication can also be done in the same way as 
for regular binary numbers, given only the way the addition is 
performed on polynomials. 

Modular calculations on polynomials require the operation 
of calculating the remainder of division by some polynomial 

. By analogy with the binary division, it can be 
implemented using a series of subtractions, which are 
equivalent to the addition of polynomials over .  

During selection of the moduli set for a polynomial RNS, it 
is necessary to take into account that the polynomials contain a 
small number of low-degree non-zero coefficients and one 
highest-degree non-zero coefficients are most effective for 
implementation. For example   for 
representation of 128-bit numbers. We know in advance that 
there are zeros in the digits with numbers from 8 to 127, which 
allows us to significantly speed up the calculations [35]. 

V. PERFORMANCE EVALUATION 

To provide sufficient cryptographic security, it is necessary 
that the dispersed parts have a sufficiently large size. Therefore, 
different sizes of dispersed parts are considered for this study. 
For cases when cryptographic properties are not crucial for the 
developed system, the dispersal by 32 and 64 bit was 

considered. More sensitive data must be dispersed into parts 
with a large size, so the bit sizes from 96 to 1024 bits were 
analyzed. 

Calculations in RNS and in Galois fields with arbitrary 
precision numbers are used for simulations, with number-
theoretic algorithms NTL by Victor Shoup [36], which 
effectively implements a number of specific operations, 
including operations in Galois fields, modular arithmetic, 
matrix calculus. An important advantage when running 
algorithms on Unix-like systems is the ability to combine NTL 
with the built-in library GMP for multi-digit calculations, 
which allows achieving higher performance. 

All experiments are performed on a computer with Intel 
Xeon CPU E5-2690 v4 with 2.60 GHz and Linux Ubuntu 
Server 18.04.1 in a sequential mode. The virtual machine for 
experiments is allocated in the Data Center of the North 
Caucasus Federal University. The programs are implemented 
using the NTL 11.3.2 library and GMP with GNU compiler 
version 7.3. 

Three cases are evaluated dispersing data into 4, 6 and 8 
parts. For the Rabin scheme, in order to evaluate the procedure 
of data dispensation, we simulate the operation of matrix 
multiplication by a vector in the Galois field over an irreducible 
polynomial. The length corresponds to the size of the parts that 
should be dispersed. Hence, it corresponds to the sizes of the 
constant matrix and the input data vector elements. The 
multiplication is implemented in the NTL library. 

For RNS, moduli sets of 4, 6, and 8 co-prime numbers were 
selected where each modulus was larger than the size of the 
part of the dispersed data. In such a case, a sufficient range is 
guaranteed to present the source data. In turn, for PRNS, we 
choose 4, 6, and 8 irreducible polynomials, which are used as 
the corresponding moduli sets.  

The degree of each polynomial is determined by the size of 
the part be dispersed. 

It should be noted that minimal irreducible polynomials for 
a specific degree are used for simulations. It means that the 
binary representation of such polynomials contains the 
minimum number of units located in the least bits, not counting 
the element with the highest degree. For such polynomials, 
there are optimized algorithms for calculating the remainder of 
division and optimized approaches to performing arithmetic 
operations. 

Fig. 2 shows the results of modeling serial versions of data 
dispersal and recovery algorithms based on the approaches 
described above. Each operation for averaging the results was 
performed 1,000,000 times. The best performance among all 
considered operations for sizes until to 256 bits is achieved by 
the using of developed Algorithm 1 for reverse converting 
numbers from RNS to the weighted number system. Other 
operations, namely the forward conversion to RNS, the matrix-
vector product for Rabin conversions and the reverse 
conversion from PRNS, using the proposed algorithm, are 
performed approximately equal time.  
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a b c

Fig. 2. Comparison of the performance of different algorithms for coding and decoding for dispersal of data: a – into 4 parts, b – into 6 parts, c – into 8 parts  

Note that in practice the application of each type of 
conversions occurs in pairs (forward and reverse) depending on 
the chosen data representation method. A visual comparison of 
the total time of the forward and reverse data conversions is 
illustrated in Fig. 3. The graphs demonstrate the performance 
(the sum of the time of the forward and reverse conversions) 
depending on the chosen method of data presentation for 
dispersing them into 8 parts.  

Fig. 3 shows that the forward and reverse conversion of 
data to RNS requires less CPU time compared to IDA and 
PRNS. 

Fig. 3. Performance evaluation of both forward and reverse conversions of 
the different approaches to the data dispersal

In the graphs at Fig. 2 and Fig. 3, there are noticeable 
differences in the speed of operations for algorithms based on 
the polynomial data representation (the Rabin’s scheme and 
PRNS). These algorithms are very sensitive to the choice of 
irreducible polynomials.  

For example, minimal irreducible polynomials which are 
chosen as PRNS moduli sets for 4 moduli with 96-bit length 
are: 

, 

, 

, 

.  

On the other hand, for 160-bit size, the moduli set are 
selected as follows: 

, 

, 

, 

.  

From the polynomial record, we see that the selected 
polynomials of degree 160 require less significant digits 
(except for the last one). Experiments have shown that this fact 
significantly affects the performance of the algorithms used. 
Conversion in PRNS with 160-bit moduli is faster than 
conversion with 96-bit moduli (Fig. 2). Such an effect can be 
seen in detail in Fig. 4. It shows the results of modeling 
separately by the operations of calculating the remainder of 
division by polynomials (the smallest and largest for each of 
the digits), the regular reminder of division by a number, and 
the multiplication of a vector by a vector.   

Fig. 4 also shows the potential for parallelization of forward 
conversion algorithms using various algorithms for the 
considered bit lengths. In Rabin's scheme, the matrix-vector 
multiplication operation can be divided into several parallel 
scalar multiplications of vectors. On the other hand, the 
conversion to RNS and to PRNS can be implemented in 
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parallel for each modulus. However, a parallel organization 
of calculations for these algorithms requires further 
study. 

Fig. 4. Performance evaluation of single operations of vectors multiplication, 
residue calculation (mod) and polynomial residue calculations (mod poly for 
minimal and maximal polynomials used for PRNS moduli sets). 

Fig. 5. Performance evaluation of dispersal into 8 parts for high bit lengths 
of parts

Besides, for numbers with a larger bit length, the proposed 
methods show lower performance. This is primarily due to the 
fact that for the input numbers with the large size the value N 
required for an estimation of the number of digits in the 
calculations by equations (2) and (3) for RNS and PRNS 
increases significantly. This fact is demonstrated in 
Fig. 5.  

On the other hand, forward conversion to PRNS slows 
down slightly, showing better performance for very large bit 
sizes relative to other methods. 

TABLE I.  PROPERTIES OF EVALUATED METHODS  
(FOR THE PART SIZES BELOW 256 BIT) 

Method Algorithms Performance Redundancy 

RNS 
forward/encoding medium 

medium 
reverse/decoding height 

PRNS 
forward/encoding low 

low 
reverse/decoding medium 

Rabin’s 
IDA 

forward/encoding medium 
low 

reverse/decoding medium 

The comparison of the properties of the analyzed 
information dispersal methods is presented in Table I. We 
noted that RNS has medium redundancy since using this 
method leads to a small redundancy required to represent data 
as residues from dividing by numbers not equal to . The 
other two methods considered is devoid of this disadvantage. 

The simulation showed that the performance of the Rabin’s 
method and the conversion to PRNS depend significantly on 
the choice of irreducible polynomials on the basis of which the 
calculations are made. Fig. 2-5 present simulation results that 
support this conclusion. On the other hand, it can be noted that 
the methods of forward and reverse conversion to RNS for 
numbers up to 256 bits are devoid of such a disadvantage. 
Hence, they are faster, without depending on the number of 
parts into which the data are dispersed. 

VI. CONCLUSION AND FUTHER WORK

Information dispersal methods are an important instrument 
for organizing modern distributed systems. Such methods 
underlie reliable and secure data storage, transmission and 
processing. However, in the face of increasing data volumes, an 
important issue is the performance of information distribution 
and reconstruction algorithms.  

In this paper, we analyze and conduct a comprehensive 
performance evaluation study of information distribution 
algorithms based on three methods: Rabin scheme, RNS, and 
polynomial RNS. Rabin’s IDA is the main approach used in 
practice. We demonstrate that Rabin’s IDA performance 
strongly depends on the selection of an irreducible polynomial 
for the Galois field.  

Our experimental analysis shows that despite the effective 
implementation of the reverse conversion from PRNS, this 
representation is inefficient due to the low performance of the 
forward conversion algorithms to PRNS. 

On the other hand, we demonstrate that RNS has several 
important advantages, including the possibility to perform 
parallel arithmetic operations with encoded data. The scientific 
novelty of the conducted research consists in the proposed 
algorithm of reverse conversion from RNS to the weighted 
number system. Using the proposed algorithm, we achieve a 
high data recovery rate.  

We detect main drawbacks of the reverse conversion of 
numbers from RNS with the high bit length of the operands. 
The length is much higher than the bit length of the data to be 
dispersed.  

However, further study is required to assess their actual 
efficiency, effectiveness, and scalability on a different 
distributed infrastructures. This will be subject of future work 
requiring a better understanding of recovery algorithms based 
on the RNS coding with higher processing speed, which would 
be suitable for the dispersal of data into parts of greater bit 
lengths. 

Besides, an important issue to be addressed is the parallel 
processing for each of the modules. It allows developing 
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approaches for implementing complex distributed systems that 
effectively use their available resources. 
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