PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

Multi-Agent SLAM Approaches for
Low-Cost Platforms

Anton Filatov, Kirill Krinkin
Saint-Petersburg Electrotechnical University “LETI”
St. Petersburg, Russia
ant.filatov@gmail.com, kirill krinkin @fruct.org

Abstract—Modern SLAM (Simultaneous Localization and
Mapping) algorithms launched on a moving agent are bounded
with its computation resources. The consistent way out is to
add more computing agents that might explore the environment
quicker than one and thus to decrease the load of each agent.
This paper presents the state of art in area of Multi-agent SLAM
algorithms and describes problems that are faced in front of a
developer of such approach. The outstanding problem of Multi-
agent SLAM - merging of maps built by separate agent during
algorithm is also considered in this paper. Moreover the algorithm
that extends laser 2D single hypothesis SLAM for multiple agents
is introduced with evaluation of its performance.

I. INTRODUCTION

When a mobile platform is placed in an unknown envi-
ronment and it should simultaneously build a map and find
its location, this problem is called SLAM problem. There are
many algorithms that are applicable to a mobile moving plat-
form, whether it is a robot vacuum cleaner, a reconnaissance
drone, or even a rover. However, the process of building a map
can be accelerated if several agents are used at once, where
each explores its part of an environment, and in the future, the
individual parts can be combined into one picture. The SLAM
problem that is being solved by several agents is called Multi-
agent SLAM problem below.

The first part of this paper continues the work [1] — presents
brief state of art description of existing Multi-agent SLAM
algorithms, describes most common approaches and extracts
their advantages and disadvantages. It describes the approaches
how to extend a single-agent SLAM algorithm to the Multi-
agent case and clarifies which of them can be extended easier
than other. It also demonstrates the approaches that were
initially based on a Multi-agent architecture. Thus the high
level description of state of the art approaches is presented in
this paper in opposite to a previous work where the focus was
to make a survey of several algorithms.

Secondly the question, that is commonly called map merg-
ing, about a combining results of several agents is discussed.
Each existing algorithm solves this problem in its own way
that is most commonly based on the architecture of current
approach. The paper presents the high level state of art vision
of this question and gives recommendation that are acceptable
for different Multi-agent SLAM approaches.

The third part is a naive extension of a laser 2D grid
based single-agent SLAM algorithm. The common idea of the
suggested algorithm is to fulfill two statements:

e cach agent should work individually, that means that
there should not be a server that might make the whole
system vulnerable to the lost of this agent;

e the algorithm should be successfully launched on the
low performance hardware without huge delays and
freezings.

To reach the first statement agents should contact to each
other without an intermediary, i.e. agents should be gathered in
for instance ad-hoc network. The second statement makes the
restriction that the algorithm should base on simple approaches
that leads to a trade off between the accuracy and the speed
of performance.

The paper is structured as follows: in Section II there is
the description of existing Multi-agent algorithms; Section III
provides a description of the developed algorithm; its perfor-
mance and testing on the real recorded datasets is presented
in Section IV.

II. STATE OF ART
A. Roles for multi agents

There are several ways to classify Multi-agent SLAM
algorithms (not considering the general division of SLAM
algorithm such as visual or grid based, or single/multi hypoth-
esis). In introduction it was said that there are two groups of
algorithms: approaches that extend the Single-agent algorithm
and those that are developed as Multi-agent initially. This
divisions follows from the architecture of agents in the system:
whether they all are independent and have equal rights, or
there are two (or more) different roles: communication server,
platform with sensors, computation unit etc.

In works [2], [3] the server-client architecture is presented.
All agents that explore unknown environment only transfers
data collected from sensors to server and do not perform any
computations by themselves. The server should know the prior
location of all agents to combine data from different agents in
one map. If it doesn’t have the prior knowledge than it should
have several hypotheses about their locations to avoid wrong
map merging.

The advantages of such system can be easily extracted:

e the system is resistant to the loss of client agents until
all clients lose a connection to a server.

e client agents might be very cheap because their only
purpose is to move, carry sensors and communicate to
a server, and they should not process collected data.

ISSN 2305-7254

PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

On the other hand the huge disadvantage that might overlap
all pluses is the failure of the whole system in case of problems
with server. If a server has problems with network connection
or if it is down for any reason, agent by themselves will not
be able to continue work or, even worse, they will work with
no reason. Thus, approaches with independent agents such
as [4], [5] or [6] become more popular despite they have their
own problems described below.

B. Relative position of agents

Considering the architecture without a server, the first faced
problem is a question about a relative orientation of agents. It
could be whether known or unknown [7]. An algorithm that is
not based on any assumption of agents initial position has more
benefits in application to real life problems. Commonly there
are three ways to calculate a relative orientation of agents:

e To make an assumption about exact initial agents
position, track it through whole algorithm and thus
have full information about positions of all agents
while communication.

e To calculate the relative positions using on-board
sensors such as video cameras. For example in [7]
authors present the solution where they mark a moving
platform with a red light that might be detected using
omnidirectional camera.

e To superimpose foreign observations on existing map
and calculate a position of other agents using, for
example, a built-in scan matcher.

The last two ways are more preferable for autonomous
agents but they add supervisor modules that should additionally
track positions of other agents. In fact the choice of way often
influences on the architecture of whole system.

C. Map merging

Another important problem for Multi-agent algorithms is
so-called map merging — it is an approach for combining
maps built by all agents in the system. The easiest solution
comes from server-client architecture where only one copy of
the map exists on server and clients update exactly this map.
If the agents are independent and they communicate one to
another then there might appear a conflict in maps built by
independent agents and of the resolving of these conflicts is
an open question. The conflict might appear if single SLAM
algorithm failed and this failure was not detected properly.
Commonly the solution of this problem differs from the type
of SLAM algorithm. The probability methods are the most
widespread and thus a naive method is to use average sum of
maps but it leads to the situation when a broken map of one
single agent breaks the map of all other agents.

Generally during map merging the following problems
should be solved:

e What information should be shared by agents. Should
it be the whole structure of a map (whatever it is) or
only part of it.

e What should the agent do if the foreign map differs
from its own.

90

e How much can the agent trust the parts in the foreign
map that are unknown in own map.

High-level scheme of map merging is presented in Fig. 1.

\f

Matching

ﬁsm

Transformed map;

Map; Map,

Observation; Observation,

Transformed map,

Fig. 1. Scheme of map merging

Some parts of this scheme might differ from one algorithm
to another. For example in the most works [2], [7],[8] the
return step between initial map and map with transform is
trivial — a previous map is replaced with updated one. But in
graph approaches the architecture allows to update a map, to
detect collisions and drop repetitions in a map. This advantage
decreases the performance speed and that is why in [4] instead
of fair map merging only the transformation between maps is
calculated.

Usually map merging process starts with calculation of
relative position of agents and then combining maps. In [9]
the openCV library was used for this purpose. Occupancy
grid map was considered as an image to have an opportunity
to extract ORB features and to find transformation between
maps. This approach depends on the quality of a rangefinder
and a map blur. The disadvantage of this approach appears
when two maps completely differ both because of a failure of
SLAM algorithm or the lack of common parts of maps.

Another problem of map merging is to find a consensus
when two or more maps or parts of them differ one from other
on separate agents. Consider an approach where the relative
position of agents is determined correctly but the parts of built
maps do not match. For graph based SLAM algorithm as it
was mentioned above there are preset modules that can fix
this mismatch, but for other approaches this question is more
complex. In this case it is required to decide if it is necessary
for Trans formed map; to be equal to T'rans formed maps
(see the Fig. 1). If they should, then some heuristics usually
are applied or the final map consists only of that parts that
coincide in both maps; if the final map differs on agents, then
the merging algorithm can take into account the priority of
maps, i.e. the own map may be considered as truthful and all
conflicting parts on other maps may be dropped or merged with
low probability. Also it is possible to calculate the correlation
of maps and to detect (at least) conflicting parts.

The last question to be discussed is the appropriate time
for connecting agents and transferring built maps. The most
common approach is to start this process when two agents are

PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

located in one place or close to each other. This condition
allows to think that both agents captures the same observation
and the map around meeting point is built identically. However
in [5] there is the idea to split the observing space in non-
crossing areas and to give each area to one agent. If an
agent riches the area that belongs to another agent, it can
communicate exactly to that agent and to get all the knowledge
about full area that has been observed so far.

D. Typical extension of Single-agent SLAM algorithm

Below the tree types of laser grid based SLAM approaches
are considered: feature based [7], multi-hypotheses approach
as [8] and graph-based such as [4] and [5].

It is complicated to extend feature based SLAM to the
Multi agent case. If features depend one from each other as
in classic EKF SLAM, then the foreign covariation matrix
should be merged with own matrix simultaneously fast and
without both loss of data and duplication of features. This is
the O(n?m?) problem. If the features are independent as in
FastSLAM then the question of map merging strictly depend
on the knowledge of agents position. Authors of [7] suggest
their solution for dropping duplications in covariance matrix
after the agents calculate relative orientation using red bright
marks placed on moving platforms.

In [8] one can find the approach to extend multi-hypotheses
SLAM algorithm for multiple agents. In fact the main problem
of this approach is the process of map merging. Authors come
up with idea how to combine several hypotheses in one to send
them to other agents. Commonly an agent should transfer all
its hypotheses to allow its colleagues to choose the one that is
the most suitable for their maps and moreover to update agent’s
own list of hypotheses costs. Authors of that paper suggest to
send the average hypothesis to other agents and to calculate
covariance for choosing the most suitable hypothesis of the
foreign agent. Unfortunately the average approach often brings
more noise then expected thats why the question of transferring
multi hypothesis should be researched more accurate.

The easiest type of SLAM for extension on multi agents
is a graph based SLAM, because the process of combining
a foreign observation and an own map already exists in
an implementation of graph SLAM and called loop closure.
In Single-agent graph-based algorithm a new observation is
inserted in a graph structure whether in new node or in existing
one. This decision is based on a loop closure algorithm that
detects if there are recurring nodes in a graph. This behavior
fits the situation when it is necessary to insert a foreign
observation in a graph. Such approach is implemented in [4].
However for graph based algorithm the map merging process
becomes complex, because for example two maps of the same
environment may contain different nodes (because different
starting positions) and there is no obvious solution how to
merge the different graphs without full rebuild. Authors of [4]
have not implemented any map merging, they focused on
calculating the transformation between agents.

III. MONTE-CARLO MULTI-AGENT SLAM

This section provides the description of proposed algo-
rithm, its scheme and assumptions while quantitative results
are provided in the next section. The algorithm is an extension

91

of single-agent single-hypothesis grid based SLAM. This type
was chosen to launch the algorithm on the a low performance
hardware which might have not enough resources to handle
multi-hypotheses or graph based algorithm. VinySLAM algo-
rithm was selected as the core, being an accurate and fast
representative of considered SLAM type [10].

In short vinySLAM algorithm is based on the Monte-
Carlo scan matcher that calculates the current position with
the observation and the map using the random walk. When the
position is clarified it updates grid cells of map that represent
Transferable Belief Model(TBM [11]). Thus except probability
of being occupied a cell has the measure to be unknown or
to be in a state of conflict. This model allows the single-
hypothesis approach to be accurate enough to compete with
multi-hypotheses or graph based architecture.

The advantage of TBM follows from the fact that the cells
of grid map that are constructed according to this model have
not only the probability of being occupied, but they contain
quantified beliefs of these hypotheses: free, occupied, conflict,
unknown. Thus if a cell in a map is free and according to
a current observation this cell contains an obstacle, so the
belief of “conflict” hypothesis of the cell increases instead of
changing a probability of being occupied. The research [10]
describes this model in details and shows the benefits of
this approach according to SLAM problem and that is why
vinySLAM is selected as the core for the proposed algorithm.

The communication architecture of proposed approach is
presented in the Fig. 2.

Agent # 1 Agent # 2

If near

Map + observation

<<

Calculate relative
position with Monte-
Carlo scan matcher
and update the map

: :

Fig. 2. Scheme of communication in proposed algorithm

The architecture allows to include any amount of agents
in the system and all agents work independently and have
equal roles. If one of agents falls down, all other would not
recognize it and continue working. When an agent appears in
neighborhood of another one, they start transferring maps and
an observation. If they are located close one to another then it
can be considered that they have visited (or they are visiting
now) the same place and that means that the current foreign
observation can be matched on the own built map.

The full process of data exchanging is following:

PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

1) To detect a foreign agent that appears in the close-
ness of current position. This might be implemented
using blue-tooth sensors or radio waves. The level
of applicable closeness differs from environment and
there exist a separate task to calculate the distance
that would be a threshold. In this work an indoor
environment was considered and the agents become
close if the distance between them is less of equal
than 1 meter.

2) To ask the foreign agent to provide its current obser-
vation and the occupancy map. As a map contains
TBM cells and might be in resolution 1000x1000
cells, the amount of transferring data might be equal
to several megabytes that means that the process of
exchanging data might take up to 4-5 seconds.

3) To find the position of foreign agent using its obser-
vation. Basically the scan matching algorithm that is
included in SLAM algorithm might be used for this
purpose. As the foreign observation is located close
to current position most of scan matching algorithms
are applicable in this situation. In vinySLAM the
Monte-Carlo scan matcher is used that finds the best
position in a very close area to an initial position,
thats why the distance of 1 meter can not be handled
by this default scan matcher in appropriate time. In
current work another version of Monte-Carlo scan
matcher [12] was implemented.

4) When a relative position is calculated the map merg-
ing process begins. Basically the problem is to com-
bine two 2D arrays of cells. As both agents perform
the same vinySLAM algorithm the product maps
have the same structure and there are points that are
physically located in the same place. The combined
map consists of both points that exist in two maps
and unique points for each maps. If a point exists
in both maps than there appears the question which
occupancy would it have in the result map. If its
probability of being occupied is equal for both maps
(as it should be in perfect conditions) than the answer
is obvious. But there might be a situation when these
probabilities differ and the algorithm should combine,
for instance, completely occupied and completely
empty cell. In the proposed algorithm the TBM
conjunction rule is applied for this situation.

The described algorithm fits both requirements that were
presented in introduction: each agent might work individually
and due to the approach of the core algorithm might be exe-
cuted on a low performance hardware. The greatest restriction
of such hardware is that the algorithm might have not enough
time to finish accurate calculations and it should provide the
result quickly. Monte-Carlo scan matching approach perfectly
fits this statement because it can provide inaccurate result
immediately and update the accuracy after a while. As more
time it has as more precise result would be provided.

The disadvantage of the proposed algorithm is that the
result of scan matching of foreign observation might fail, but
there is no system that checks this. So if the relative position
is calculated not accurate it leads to the wrong map merging,
however in practice wrong map merging does not influence on
the trajectory too much if the provided odometry is accurate
enough.

92

IV. PERFORMANCE

All tests were performed on the recorded data sequences
from MIT [13] as they provide laser rangefinders observations
and more or less accurate odometry. The problem of explo-
ration of environment is not considered yet so testing on a
recorded data is enough to clarify the accuracy of algorithm.

A. Multi agent data sequence converter

The recorded MIT dataset does not support multi agent
interconnection, i.e. data files are structured in a way that does
not allow to distinguish messages from two simultaneously
played data sequences. Moreover all transmitted data pieces
have unique timestamps that is stored as Unix-time so two
different sequences have different Unix-time of start that
does not allow to correlate these sequences without extra
preparation.

To handle this problem the special tool was implemented.
It suits for any dataset that is stored in the same format as
MIT dataset (*.bag format [14]). The focus of this tool is to
fix the timestamps of all messages and change the format to
the relative time representation. In other words it sets up the
beginning of data sequence to absolute zero. This means that
the record time changes to 1970 year but it allows to take
messages from different sequences simultaneously. The tool
also is able to change names of topics that store messages to
resolve the name conflicts.

As this tool changes timestamps of messages, it can easily
change the order of messages. For example it can make the
data sequence to be played backwards or it can cut some
parts of data sequence that allows to run any algorithm on
a subsequence in both directions. This feature is helpful for
testing considering algorithm because using this tool the most
important parts of the real-world MIT data sequences can be
segregated.

B. Evaluation of Multi-agent SLAM algorithm

To estimate the quality of Multi-agent system it is neces-
sary to calculate how the existence of foreign agents effects
the quality of built map and output trajectory of agent. As
there are parts of the environment that are visited only by one
agent, this agent should provide its map to others accurately
and when they will visit this part of environment they will be
able to solve only localization problem.

Therefore it is necessary to test proposed algorithm in the
situation when two maps that are built by different agent have
one common place and the rest of both maps differ. Another
important test case is a real-life test when two agents explore
environment independently and they exchange collected data
through algorithm always when one reach another. Thus two
situations for testing were considered:

e two different sequences are played simultaneously
that provides the situation when two agents explore
environment independently and when they meet, they
update some parts of their maps and add new cells in
their map as it is shown in the Fig. 3. To estimate the
quality of algorithm beside a map the output trajec-
tory for both agents is compared to the ground-truth.

PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

(a) Map built by first agent

(b) Map built by second agent

(c) Combined map

Fig. 3. Combining two different sequences

The root mean square error (RMSE) is calculated to
represent the difference between trajectories;

e two versions of one sequence are played simultane-
ously, one of copy is played forward and another
backward, and in the middle of the path agents
perform map merging. The second part of the path
each agent solves the localization problem and in
perfect conditions does not update its map. This
case represents the situation when two agents explore
different parts of environment and at the end they
combine captured results. Quantitative estimation is
also performed by comparison the output with ground-
truth. If a map merging process failed than the output
trajectory would differ from ground-truth and this
would be presented in RMSE. The example of this
situation is presented in the Fig. 4.

In both cases the trajectory of agents movement is the
part or full ground-truth trajectory and this means that it is
possible to calculate how much each agent deviated from the
real trajectory after map merging and therefore it is possible
to estimate how accurate the map merging was performed.
First case presents a regular situation when agents explore
the environment and accidentally reaches each other, when the
second case stresses the situation when an agent moves to the

93

unvisited environment but have a map that is built by another
agent.

Tests of accuracy were performed on computation unit
with following characteristics. Intel® Core™ i7-860 4x2.8GHz
with DDR3 8GB, Ubuntu Xenial x64. The results for several
sequences for case 1 from above are presented in the
Table 1. The results of second case are put in the Table II.

TABLE 1. RMSE VALUES FOR DIFFERENT SEQUENCES
The sequence Dist, m RMSE, m
2011-01-20-07-18-45 76 0.045 £ 0.005
2011-01-21-09-01-36 87 0.080 + 0.018
2011-01-24-06-18-27 87 0.096 £ 0.007
2011-01-25-06-29-26 109 0.094 £ 0.006
2011-01-28-06-37-23 145 0.361 £ 0.175
2011-01-27-07-49-54 94 0.170 £ 0.019

The results show the accuracy of proposed algorithm,
as the output error is always not greater than 0.5m that is
applicable for such indoor environment as MIT. To be honest
this result is mostly based on the accuracy of single-agent
version of vinySLAM algorithm. The greatest troubles might
appear if map merging brought a little error in rotation, because
despite in this case the output map would be consistent, the
output trajectory might noticeably differ. Though this problem
appears in any Multi-agent algorithm and even graph based

PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

(a) Map built by first agent

(b) Map built by second agent

(c) Combined map

Fig. 4. Combining two subsequences

TABLE II. RMSE VALUES FOR SPLIT SEQUENCES
The sequence Dist, m “forward” agent RMSE, m | ’backward’ agent RMSE, m
2011-01-20-07-18-45 38 +24 0.044 £+ 0.015 0.021 £ 0.005
2011-01-21-09-01-36 43 + 31 0.063 £ 0.011 0.068 + 0.012
2011-01-24-06-18-27 43 + 41 0.086 + 0.009 0.071 + 0.003
2011-01-25-06-29-26 33 + 61 0.033 4+ 0.013 0.097 + 0.016
2011-01-28-06-37-23 part 1 | 41 + 39 0.184 + 0.093 0.099 + 0.040
2011-01-28-06-37-23 part 2 | 41 + 39 0.311 £ 0.187 0.272 £+ 0.195
2011-01-27-07-49-54 31 + 62 0.142 £+ 0.019 0.161 £ 0.022

approach can fix it only in specific conditions, when agents
visit controversial part of environment several times.

After the quality of proposed algorithm is discussed it
is necessary to find out its performance. For this case the
algorithm was launched in Raspberry Pi model 3B. The mean
scan matching time for considered sequences was 102.1 ms, so
for performing this algorithm in real time it can take about 10
scans per second. The map merging process took 7.4 seconds
and that means that this algorithm requires agents to stay in one
place while exchanging data. This speed might be increased if
a map data would be compressed.

V. CONCLUSION

The paper presents the state of art for modern Multi-agent
SLAM algorithms and the scheme that describes most common
approaches. To sum up a graph based algorithms become
the most popular in multi-agent research area. This may be
explained by the fact that the algorithm of inserting foreign
observations into own map already exist in Single-agent graph
based algorithm and moreover such algorithm can completely
update the map if the foreign observations differ from built
map. On the other hand graph based algorithm can not be
launched in real time on low performance devices and thus it
is required to look for alternative approaches.

94

Moreover the problem of map merging is described in this
paper. Map merging approach strictly depends on the type
of core SLAM algorithm and on the architecture of Multi-
agent system. For graph based approaches the process of map
rebuilding using new observations is already built in single-
agent SLAM and it can be easily applied for map merging.
However for other types of Multi-agent SLAM algorithms
the problem of consensus is more complex and naive average
calculations may break an output result.

Finally the non-graph single hypothesis multi-agent SLAM
algorithm was proposed. The advantage of this algorithm is
that it can be launched on low performance devices and its
accuracy is well that was achieved using fast and accurate
core algorithm. The map merging process is implemented
using conjunction from Transferable belief model that allows
to detect conflicts between maps and updates a map using only
valid data.

Plans for the future work are to update the map merging
rule according a location of conflict cells. TBM structure of
cells allows to find clusters of conflict cells and this knowledge
may help to determine which areas should be explored more
careful. Also in the future it is required to increase the speed
of map merging so that it could be used in the real time. This
might be achieved after solving two problems: to increase the
performance of scan matcher that should correctly find another

agent in a distance of several meters, and to compress the
transferred map that consists of TBM cells which contain four
probabilities.

VI. ACKNOWLEDGMENT

Authors would like to thank JetBrains for provided support
and materials for working on this research.

REFERENCES

[11 K. Krinkin, A. Filatov, and A. Filatov, “Modern multi-agent slam
approaches survey,” in Proceedings of the XXth Conference of Open
Innovations Association FRUCT, vol. 776, pp. 617-623, Directory of
Open Access Journals, 2017.

[2] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative
monocular slam with multiple micro aerial vehicles,” in 2013 IEEE/RSJ
International Conference On Intelligent Robots And Systems (IROS),
no. EPFL-CONF-199731, pp. 3963-3970, 2013.

[3] D. A. Castro, C. F. Morales, and R. F. De la Rosa, “Multi-robot slam on
client-server architecture,” in Robotics Symposium and Latin American
Robotics Symposium (SBR-LARS), 2012 Brazilian, pp. 196-201, IEEE,
2012.

[4] M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos, and G. Grisetti,
“Multi-robot slam using condensed measurements,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pp. 1069-1076, IEEE, 2013.

[S] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient de-

95

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

centralized visual slam,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2466-2473, IEEE, 2018.
S. Urban and S. Hinz, “MultiCol-SLAM - a modular real-time multi-
camera slam system,” arXiv preprint arXiv:1610.07336, 2016.

X. S. Zhou and S. I. Roumeliotis, “Multi-robot slam with unknown
initial correspondence: The robot rendezvous case,” in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pp. 1785—
1792, 1IEEE, 2006.

N. E. Ozkucur and H. L. Akin, “Cooperative multi-robot map merging
using fast-slam,” in Robot Soccer World Cup, pp. 449-460, Springer,
2009.

L. Jian, Z. Chen, I. Qiang, W. Heng, and M. Manzhen, “Vision feature
extraction algorithm for occupancy grid maps merging,” in Proceedings
of the 2017 2nd International Conference on Communication and
Information Systems, pp. 290-293, ACM, 2017.

A. Huletski, D. Kartashov, and K. Krinkin, “Vinyslam: an indoor slam
method for low-cost platforms based on the transferable belief model,”
in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on, pp. 6770-6776, IEEE, 2017.

P. Smets and R. Kennes, “The transferable belief model,” Artificial
intelligence, vol. 66, no. 2, pp. 191-234, 1994.

D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo local-
ization: Efficient position estimation for mobile robots,” AAAI/IAAI
vol. 1999, no. 343-349, pp. 2-2, 1999.

M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The mit stata
center dataset,” The International Journal of Robotics Research, vol. 32,
no. 14, pp. 1695-1699, 2013.

“Ros bags.” http://wiki.ros.org/Bags.

