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Abstract—Current information system approaches require a 
database to manage data in a complex manner, to monitor the 
evolution and manage changes during the whole time spectrum. 
Several data architectures have been proposed with an emphasis 
on the data granularity. This paper deals with the temporal data 
changes management in a hierarchical database, where the whole 
access path branch must be notified if any change occurs. Thanks 
to that, individual changes are very effective to be identified and 
located. Our proposed solution originates from the self-
relationship table and extends the principles with the opportunity 
to manage heterogeneous data streams with an opportunity to 
change the structure and references dynamically. In the first 
model, references are managed and notified using ROWIDs, the 
final solution uses object pointers based on the property of child 
object records covering the parents. Proposed solutions are 
implemented in intelligent transport system environment 
highlighting dynamics of electricity and hybrid vehicles and 
temporally changing environment.  

I. INTRODUCTION 
Information systems and almost every application need to 

store data in the database. Systems are data-oriented with 
emphasis on changes monitoring and evolution management. In 
the past, data were located directly in the application, which is 
currently completely insufficient not only from the abstraction 
point of view but mostly due to the effectivity and robustness. 
Later, data were separated into the files. Thus, at least three 
layers could be identified – data storage (file system), data 
manipulation and evaluation formed by application codes. The 
last layer is presentation. Nowadays, data are mostly located in 
the database, thus the first layer has been modified without no 
significant changes in the other layers, only data access 
provider has been changed. Current database systems have 
many streams, from semantical models, file systems up to 
relational principles and big data. These systems, however, can 
be distinguished and divided based on transaction management. 
Most often used database system is still based on relational 
principles and algebra. Managed data are covered by the 
transactions, which means, that each change must be approved 
by the transaction manager before becoming visible to other 
applications, users and sessions. A transaction is a process of 
transferring one consistent and valid database state to the new 
one by passing all requirements and constraints. It is formed by 
four requirement properties – ACID – atomicity (either the 
entire transaction is successfully executed or it is completely 
canceled), consistency (after the transaction execution, all 
constraints must be passed), isolation (transaction data are not 

provided to other transactions/sessions before commit 
operation) and durability (confirmed data are persistent. No 
data can be lost, even after database crash) [1], [10].  

Many times, data are formed into the hierarchy (car consists 
of individual components, the train consists of locomotive and 
wagons, individual wagons are formed by coupes, seats, etc. ). 
If any component property is changed, the whole structure up 
to the hierarchy root must be notified (e.g. if the locomotive for 
the train is upgraded, it means, that the train can go faster, the 
train can consist of more wagons, etc.). Thus, it is necessary to 
propose a robust solution for dealing with database hierarchy, 
composition, and aggregation. This paper is transaction 
oriented and provides techniques for query definition and data 
management in the hierarchical database approach. The 
motivation is based on intelligent transport systems and 
electrical vehicles management. Individual charging machines 
are connected to the electricity grid. In this sense, the whole 
infrastructure is interconnected. If any subelement is corrupted, 
the whole architecture is influenced. Particular electricity 
branch must be notified and react automatically to adjust its 
properties, accessibility and capacity .  

The aim of this research is to cover the complexity of the 
temporal database environment for dealing with hierarchy. 
Current relational databases can deal with such hierarchical 
data, but there is a lack of notification of all upper layers if the 
change occurs. Before proposing our solution, data change was 
only reflected as the update of a particular part of the object, 
but the whole structure image remained the same – the object 
validity itself was not changed. It was just only reflected on the 
individual component. It is, however, very important to store 
data change pointer in the object header, if the object 
composition is used. Thus, change on any level of the hierarchy 
must update the whole object definition, not just the sub-
element (component) itself. Thanks to that, identification of the 
change with emphasis on data monitoring can be done on only 
one layer - the root. Moreover, internal tree architecture does 
not influence our proposed solution, thus the structure 
can evolve over time with no data management change 
necessity.  

Section 2 deals with the conventional a temporal extension, 
summarizes existing principles and approaches reflecting the 
granularity. Section 3 deals with the hierarchy definition and 
current limitations. Section 4 offers a definition of our own 
proposed solution for dealing with hierarchical data. Afterward, 
properties, performance characteristics, and results analytics 
are proposed.  
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II. A CONVENTIONAL AND TEMPORAL APPROACH 
Conventional paradigm is based on storing only current 

valid data, thus if the transaction is committed, the original 
version is removed and replaced by a newer one. Commonly, 
historical images are accessible only in the time limited manner 
using transaction log files. The system consists of a defined 
number of transaction log files with a defined size, which are 
cyclically rewritten [7], [8]. The primary purpose of them is to 
ensure transaction management - consistency, isolation, and 
durability with availability to restore the database after the 
crash. They are also inevitable for creating snapshots of the 
object inside the local transactions – other transactions must 
access original object values, if the transaction modifying them 
has not been approved, yet. Thus, if the transaction modifies 
particular data, which are not, however, approved, yet, other 
sessions and transactions must access original data, which are 
produced from the logs. Unfortunately, it is not always 
possible. As already mentioned, log files are managed in a 
cyclical manner. It means, that if the log does not consist of the 
active transaction data, it can be replaced with newer data. In 
that case, original data versions necessary for the other 
transaction can be unavailable. Let have two transactions (T1 
and T2), the first (T1) updates the object (O). Particular 
versions for such object (O) are stored in the log file (original 
(UNDO version) and new (REDO version)). Before the 
transaction ends, a new transaction is produced (T2), which 
gets the original data before the transaction start. However, if 
the original transaction (T1) is confirmed, changes take place 
and become permanent, so the transaction log is freed and can 
be rewritten. At that point, however, transaction T2 may require 
original data (as they were at the beginning of the transaction). 
Unfortunately, such data cannot be provided. As a 
consequence, exception ORA-01555 Snapshot Too Old is 
raised. Database system tries to avoid such situation by using 
parameter Undo_retention, which influences time interval, 
during which historical images must be accessible without the 
possibility to rewrite them inside the logs. With the rising of its 
value, the accessibility time interval is also extended. On the 
other hand, the size of log files is significantly rising and 
transaction operations can be delayed, which have a significant 
impact on the system reliability [4], [5], [12]. Fig. 1 shows the 
principle of log management. Log files are cyclically rewritten 
if they do not store relevant data for existing (active) 
transactions. Historical data of the confirmed transactions are 
removed from the log files, therefore there is no possibility to 
lose data. Data themselves cannot be modified before storing 
undo (before image) and redo (after image) data in the log [7]. 
These log segments are operated by the Log Writer background 
processes. Another approach is based on archive log mode 
configuration – individual log files are copied and backed up in 
the file system before rewritten. With the cooperation and 
support of backups, historical images can be created and 
evolution can be monitored, although the process is 
complicated with high resource and time demands, whereas 
transaction logs do not store only data themselves, but also 
other support values, like SCN (system change number - 
database state order number), operations, images, etc.   

Fig. 2 shows the processing demands to create a consistent 
image of the data valid in the past, delimited by the time point 
or time interval. First of all, the closest full backup from the left 
(historical) site of the temporality is loaded. Then, incremental 

backups are applied (in Fig. 2, it is complexly expressed by 
backup management), if available, merged by the archive log 
files. The active log files are used at the end. All these data 
groups point relevant data to the result set (gray strong arrows 
of the Fig. 2). 

 
Fig. 1. Log file management 

 

 
Fig. 2. Getting data image delimited by historical time frame 

 

Temporal paradigm extends the existing conventional 
principles by storing all data images and changes inside the 
main database structure. Thanks to that, individual changes are 
a direct part of the solution. It, moreover, allows you to 
manipulate with future valid states and planning, thus the 
architecture is full time oriented. 

Temporal evolution has been created soon after the first 
releases of the relational database systems in 60ties of the 20th 
century. Complexity and usability were, however, covered just 
in 90ties of the 20th century by proposing object-oriented 
temporal architecture [7], [8], [14]. Fig. 3 shows the logical 
scheme. Identifier of the object (primary key) is extended by 
the time interval forming a uni-temporal model with validity 
aspect. Optionally, it can store also transaction validity – time, 
during a particular object was stored in the database and 
assumed to be correct. It can be modeled by the time interval or 
by just one attribute expressing the insertion date of the row 
(tuple). The first model of the Fig. 3 is conventional with no 
temporal support. The second model is uni-temporal, BD 
expresses begin timepoint of the referenced tuple validity, ED 
ends the validity. Several approaches for date interval modeling 
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have been proposed, the description can be found in [2], [3], 
[7], [8]. The third model is bi-temporal managing two-time 
spectra – validity BDval, EDval and transaction aspect modeled 
by BDtrans. 

The main disadvantage of the previously described model is 
object granularity if the data updates are not synchronized. Let 
have the object consisting of five temporal attributes. If the 
individual update statement does not change all of them, 
original values would be copied and stored in the system 
multiple times increasing storage demands (Fig. 4). Remind 
also static and conventional attributes, the evolution of which 
cannot be monitored. Gray color in the Fig. 4 expresses not-
changed values, which are copied to the new images. NULL 
values undefined reference pointers do not provide sufficient 
power in this case [2], [6].  

Fig. 3. Object level temporal model 

Fig. 4. Object level temporal data effectivity 

To solve the limitation, therefore, the attribute-oriented 
approach was defined in 2013 consisting of three layers (Fig. 5) 
[10], [11]. The core of the system is managed by the temporal 
manager and table storing all changes referencing the table of 
origin, row and changed the attribute. Thanks to architecture, 
no duplicate values are present. Moreover, such a solution can 
store also data, which do not change their values at all 
(e.g. code lists) or monitoring is not necessary, even forbidden 
(e.g. based on GDPR).  

The temporal table consists of these attributes [11]: 
ID_change – got using sequence and trigger – primary
key of the table.
ID_previous_change – references the last change of an
object identified by ID. This attribute can also have a
NULL value that means, the data have not been updated

yet, so the data were inserted for the first time in the 
past and are still actual.  
ID_tab – references the table, record of which has been
processed by DML statement (Insert, Delete, Update,
Restore).
ID_orig - carries the information about the identifier of
the row that has been changed.
ID_column – holds the information about the changed
attribute (each temporal attribute has defined value for
the referencing).
Data_type – defines the data type of the changed
attribute:
C = char / varchar, N = numeric values (real, integer,
…), D = date, T = timestamp, …
This model can be also extended by the definition of
other data types like binary objects.
ID_row – references to the old value of an attribute (if
the DML statement was Update). Only update
statement of temporal column sets not NULL value.
Operation – determines the provided operation:
I = insert, D = delete, U = update, R = restore
The principles and usage of proposed operations are
defined in the part of this paper.
BD – the begin date of the new state validity of an
object.

Fig. 5. The architecture of the attribute-oriented temporal system [11] 

Interlayer between the object and attribute-oriented 
approach is just the group granularity, which allows creating a 
synchronization group internally processed as one attribute. 
Thanks to that, only one row is inserted into the temporal layer, 
if the group is updated, regardless of the number of attributes 
inside it. In general, in the beginning, synchronization group is 
created from each attribute separately, afterward, based on the 
data update time, synchronization groups can be detected and 
merged either automatically using background processes 
(group detector and synchronizer) or manually [9]. The 
solution from the data model view is shown in the Fig. 6. It is 
protected by the ISA hierarchy (a group can be composed 
either from individual attributes or by using existing groups). 
Vice versa, if the group is to be dropped, it is split into 
individual attributes or into groups based on the hierarchy 
evolution. 
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Fig. 6. Group management data model 

III. HIERARCHY MODELING

Hierarchy modeling is just a problem to be faced in this 
paper. In existing temporal solutions, the emphasis is placed on 
just one table, over which the change is made. However, let 
have the object hierarchy (composition aggregation). It can be 
inevitable to notify all upper-level nodes about the update (if 
the property of the component is changed, the whole structure 
must be notified). Current temporal systems do not provide 
sufficient power to cover the hierarchical database models. In 
that case, it is necessary to message all layers manually 
sequentially. If the path length from the root up to the changed 
node is not the same for all attributes, the problem is even 
sharper forcing system to execute select and update statement 
dynamically in the cycle, which causes strict performance 
degradation. Moreover, there can be a problem with data row 
access using index [12], [15].  

Database systems allow you to define a hierarchical query. 
In that case, self-relationship is used (the foreign key is 
referencing the same table primary key – Fig. 7). Based on 
technical reasons, many times, the temporal environment 
removes the composite primary key by the transaction and 
introduces a new virtual. The original primary key set is 
delimited by the unique index constraint.  

Fig. 7. Self-relationship transformation 

Query getting current level data and parent requires to use 
the particular table twice in the From clause. Both tables must 
be delimited by the aliases.  

SELECT * 
 FROM TAB_new T1  
    JOIN TAB_new T2  

  ON (T1.id_row_change_parent  
  = T2.id_row_change_child); 

Query evaluation consists of scanning table using Table 
Access Full method – sequential scanning of all blocks under 
High Water Mark (HWM) sign (whereas the foreign key index 
is not defined), followed by Index Range Scan of the primary 

data. High Water Mark (HWM) sign points to the last block 
associated with the table. Individual blocks are linked. Fig. 8 
shows the execution plan (Autotrace) of such a solution.  

OPERATION OBJECT_NAME CARDINALITY COST LAST_CR_BUFER_GETS LAST_ELAPSED_TIME

SELECT STATEMENT 2

NESTED LOOPS 6 66

NESTED LOOPS 2 2 5 58

TABLE ACCESS (FULL) TAB 3 2 3 35

INDEX (RANGE SCAN) TAB_IND 3 0 2 22

Access Predicates

PK.PK=FK.FK

TABLE ACCESS (BY INDEX ROWID) TAB 1 0 1 6

Fig. 8. Execution plan of the self-relationship query 

It is, however, valid only for a two-layer architecture of the 
hierarchy. If three layers are identified, the individual table 
must be listed three times requiring using nested loops to reach 
the results (Fig. 9): 

SELECT * 
 FROM TAB_new T1  

 JOIN TAB_new T2 
   ON (T1.id_row_change_parent  

   = T2.id_row_change_child) 
 JOIN JOIN TAB_new T3  
   ON (T2.id_row_change_parent  

  = T3.id_row_change_child); 

In this case, the table is scanned three times and joined 
together using a nested loop operation. Fig. 9 shows the 
solution for three-level hierarchy based on self-relationship 
architecture.  

OPERATION OBJECT_NAME CARDINALITY COST LAST_CR_BUFER_GETS LAST_ELAPSED_TIME

SELECT STATEMENT 2

NESTED LOOPS 6 108
NESTED LOOPS 1 2 5 100

TABLE ACCESS (FULL) TAB 4 2 3 60

INDEX (RANGE SCAN) TAB_IND 4 0 2 29
Access Predicates

FK.FK=FKK.PK

TABLE ACCESS (BY INDEX ROWID) TAB 1 0 1 7

Fig. 9.Autotrace – three-level architecture  

As a result, it is extremely inefficient, individual steps and 
evaluation is highly dependent on the architecture and forces 
the user to compose the command dynamically, which does not 
only slowdowns the whole system, but also complicates the 
possibility of defining access methods and indexes, whereas the 
structure is constantly changing. Moreover, if a new layer is 
added, all queries must be rewritten  - the table must be 
referenced one more time.  

To solve the problem, the Oracle database system has 
proposed Connect by the prior clause. In that case, the 
hierarchy can be listed in one query regardless of the length 
from the root to the particular node. The table is referenced 
only once. The user does not need to determine and reconstruct 
query if new intermediate step (new level) is added. Thus, from 
the user point of view, the depth of the hierarchy is not 
important. Internally, the query is divided and executed 
gradually for each level applying the conditions of all lower 
layers. It consists of Connect by prior filtering followed by 
Index Unique Scan for primary key and Index Range Scan for 
foreign keys. Fig. 10 shows the execution plan.   
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OPERATION OBJECT_NAME CARDINALITY COST

SELECT STATEMENT 2 4

CONNECT BY (WITH FILTERING)

Access Predicates

TAB.FK=PRIOR TAB.PK

TABLE ACCESS (BY INDEX ROWID) TAB 1 1

INDEX (UNIQUE SCAN) SYS_C0016830 1 1

Access Predicates

PK=1

NESTED LOOPS 1 1

CONNECT BY PUMP

TABLE ACCESS (BY INDEX ROWID) TAB 1 0

INDEX (RANGE SCAN) TAB_IND 1 0

Access Predicates

connect$_by$_pump

Fig. 10. Execution plan based on using Connect by level clause 

Performance limitation is just the index created on the foreign 
key attributes in this case. If not available – not created or even 
unusable [12], solution significantly degrades, Table Access 
Full method must be used, instead (Fig. 11). Unusable index 
means, that particular references to the data have been changed, 
thus index cannot be used and is not maintained any more [12]. 
Data references are provided by the value ROWID, which 
points to the physical data in the database.  ROWID consists of 
the identifier of the data file, block, and position of the block, 
where the particular object row resist.  
OPERATION OBJECT_NAME CARDINALITY COST

SELECT STATEMENT 3 3

CONNECT BY (NO FILTERING WITH START)

Access Predicates

TAB.FK=PRIOR TAB.PK

Filter Predicates

PK=1

TABLE ACCESS (FULL) TAB 3 2

Fig. 11. Performance limitation 

IV. OWN HIERARCHY MANAGEMENT SOLUTION 

Previously mentioned solutions described in chapter 3 are 
robust, only if the structure of individual layers is the same, 
whereas all the data are stored in one table. If not, models are 
not optimal suffering from all the negatives of the non-
normalized data relation and the whole model – a potential loss 
of operations, the necessity to change multiple records, when 
changing only one value, etc. However, the main limitation is 
just the performance expressed by the time consumption of the 
processing, as well as size demands. It is necessary to evaluate 
the type of the layer and then, access to relevant attributes. So, 
one attribute definition type is added. Afterward, individual 
attributes are accessed, mostly by using additional query.  

Reliability of the solution is strictly limited by the 
correctness of the object type, which must be secured and 
authorized by the trigger before each destructive DML 
operation, which also slowdowns execution plan [16], [17].  

Our proposed solution originates from the standard non-
hierarchical query. If the structure is steady, path using 
referential integrity without self-relationship can be used. The 
proposed solution is, moreover, resistant against the structure 
of individual layer modification. They can be changed anytime 
dynamically, however, the architecture and number of layers 
must remain original. Fig. 12 shows the solution.  

Fig. 12. The proposed solution data model 

Regarding the necessity to add a new layer, indexes and all 
queries must be rebuilt, thus, if there is a chance to modify and 
cover architecture evolution, the solution is not usable.  

Therefore, we propose another solution using the fact, that the 
best and quickest access to the data is the pointer. ROWID has 
the following structure (up to Oracle 8i – 8bytes; From Oracle 
8i – 10 bytes):  

The data object number (1 - 32 bits),
Data file in which the row resides (the first file is 1; file
number is relative to tablespace) (33 - 44 bits),
Data block in the data file in which the row resides (45
- 64 bits),
The position of the row in the data block (the first row
is 0) (65 - 80 bits).

ROWID is used in the leaf layer of the index structure. 
Particular data are located in the index and accessed by the 
Rowid Scan. In our case, however, index access is absent, 
whereas it would require B+tree traversing consuming time 
(Fig. 13). Our solution stores the ROWID locators directly in 
the table structure. Thanks to that, the specific index can be 
omitted and does not need to be defined, at all.  

Fig.13. Table access using the index and Rowid Scan 

In this case, the Index Scan can be omitted, whereas a 
particular data pointer is already stored in the database in the 
upper layer. Thus, to access defined row, only Table Access By 
Index ROWID method is used (Fig.14): 

OPERATION OBJECT_NAME CARDINALITY COST

SELECT STATEMENT 1 1

TABLE ACCESS (BY USER ROWID) TAB 1 1

Fig.14.Execution plan of our proposed solution 
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In the first phase, we assumed, that index itself does not 
need to be defined, at all. Later, based on complex case studies, 
we came to the conclusion, that solution must have an index, 
due to the security and reliability aspect. First of all, ROWID is 
not a stable element. If there is an update of the row, it can 
happen, that new tuple does not fit the original data block and 
must be located in another. In that case, migrated row is created 
and originally stored ROWID is not valid, however, the system 
cannot determine it automatically (references are only one 
dimensional). If the index is not defined, particular migrated 
row pointer is not stored directly in the database and system 
would access inappropriate data block consequencing in 
scanning all the blocks under the High Water Mark (HWM) 
sequentially. The property of the B+tree index, as the default 
index type in the database, is just the effectivity and robustness 
of the data locators [12], [13], [15]. If the ROWID is changed, a 
particular pointer to another block is created automatically and 
reference stored in the original block (Fig. 15). Our proposed 
solution uses that fact, thus some index must be defined. 
However, it does not need to be created for the foreign key, in 
comparison with other mentioned techniques. Each table has a 
primary key pointing to the data, so the index is created 
automatically [7]. Moreover, it always uses ROWID locators, 
whereas the table generally consists also of non-key 
attributes.  

The problem of the migrated row is shown in Fig. 15. The 
particular data block is accessed using the ROWID stored in the 
leaf layer of the index. Afterward, the referenced data block is 
loaded into memory buffer cache (arrow from the table block 3 
to buffer cache structure, which reflects the repository for the 
data in the memory, Fig. 15), however, required the data are not 
there, thus, migrated row pointer is used and another block is 
loaded table block n must be loaded into the memory, Fig. 15). 
If the access path is wide consisting of several migrations, 
inappropriate blocks are loaded and the execution process 
becomes more complicated and time and resource demanding.  

Fig. 15. Rowid access protection – security and reliability aspect 

Problems can arise, if the ROWID values are changed in 
specific other situations, like using flashback technology 
(operation of getting a historical image of the table), moving 
data to other disks, tablespaces or files. These activities change 

all the ROWID values for the table. It is not, however, the 
problem in our solution, respectively it is easy to detect and 
evaluate such situation, whereas if the data positions are 
changed, the particular index is automatically listed as 
UNUSABLE [1], [12], [13]. By using triggers, the whole 
structure is notified and ROWID values are recalculated. Such a 
situation, however, occurs very rarely. During the recalculation 
process, Table Access Full Method (TAF) is used – all data 
blocks are sequentially scanned to locate to the row.  

Proposed solution with ROWID management provides a 
relevant solution and fills the gap of data management in the 
hierarchical architecture of the database approach. Based on the 
time processing of the query, it provides benefits in the 
performance sphere. On the other hand, again, it is not possible 
to effectively change the structure and depth of the hierarchy.  

The last proposed solution is universal and independent. It 
can deal with any number of levels in the architecture and 
automatically reacts to the structural evolution and any change 
of the architecture. The principle is based on the object 
references inside the relational structure. Solution model is 
shown in the Fig. 16. Individual changes are stored in the 
temporal table with self-relationship. References to the updated 
values are not a direct part of the table itself (like in attribute 
oriented temporal system), but the universal reference to the 
object is used. For the solution, individual objects are defined 
as child records (descendants) of the core object. Whereas each 
child record can be used as a replacement of the parent, the data 
structure can evolve anytime. It is just necessary to create a 
new child object and register it in the temporal layer of the 
solution. All other activities are maintained automatically by 
background processes.  

Fig. 16 shows the solution architecture. It consists of three 
components. Individual changes and hierarchy are stored in the 
self-relationship table. It can be referenced to the temporal 
ecosystem based on defined granularity (third component of the 
solution). Data themselves are not, however, stored directly in 
the hierarchy, but the references using objects are used. The 
reference type is tObjBase as the root of the object types, all 
others are under that as extensions. Thanks to that, any object 
type can be referenced (as the child of the tObjBase type). 
Objects and references are managed in the second component 
of the solution. The last part is created from the temporal 
registration, where acknowledges, notifications and storage 
principles for temporal data are defined and maintained.  

Fig. 16. Solution architecture using object pointers 
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V. PERFORMANCE ANALYSIS 
Experiment results were provided using Oracle Database 

11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production; 
PL/SQL Release 11.2.0.1.0 – Production. Parameters of the 
used computer are: 

Processor: Intel Xeon E5620; 2,4GHz (8 cores),
Operation memory: 16GB,
HDD: 500GB.

Performance is the whole solution in comparison with 
existing approaches is also covered in this paper. Let assume, 
that only 1 000 records are stored in the hierarchical database. 
In that case, if the number of levels is two (master and child 
record), notification and Select statement requires 6 values of 
the costs and lasts 187ms (existing solution described in section 
3, performance shown in fig. 8).  

If the system, however, consists of three levels, performance 
degrades – it requires 6 costs but elapsed 304ms (existing 
solution performance is shown in section 3, Fig. 9). A general 
solution is not usable, whereas the processing demands are 
rising very deeply.  

Using Connect by prior clause solves the problem only 
partially, although it is level independent. Although the costs 
are only characterized by the value 5 (improvement using 
16,7%), if the index is not defined, performance does not 
provide sufficient power. A more significant limitation is just 
the necessity to define the same structure for each level, which 
is not easy to ensure in a real environment. Moreover, this 
clause is defined for the DBS Oracle and other systems do not 
provide it. Therefore, we propose our own solution for dealing 
with hierarchy. It has been tested using DBS Oracle, but the 
solution is not dependent and can be implemented on any 
system type. Costs are lowered to the value 2 (reference 
Fig. 14), whereas direct access to the data using ROWID can be 
used.  

To be critical, there are also limitations of our proposed 
solution. The most significant is based on de-duplication. There 
is no support for limiting the same component definition, to 
point the same data to several objects with the reflection of the 
change. If the component is linked to the several objects and is 
altered later, the particular change would be present in all the 
objects to which it belongs, which does not need to be correct 
in general. Therefore, in the future, we want to focus on the 
decomposition of the component after the change. 

VI. CONCLUSIONS

Current relational systems do not provide complex 
management of hierarchy in the database. They highlight only 
architectures with the same data structure on each level. 
Temporal evolution requires storing the whole evolution during 
the object lifecycle. If the temporal aspect degree is added to 
the system, performance significantly degrades, whereas the 
architecture of the solution is not proper. Therefore, in this 
paper, we summarize technologies for dealing with hierarchical 
oriented data management in the temporal environment. We 
target the availability of storing heterogeneous data with the 
evolving structure inside the layer, as well as the whole 
architecture of the levels. Thanks to that, any change can be 
directly reflected and data structure and model can be changed 

dynamically with availability to get a historical image in the 
original structure.  

This paper extends the existing approaches by proposing two 
solutions. The first solution is based on storing ROWID of the 
lower layer directly in the database as the data pointer. The 
specific index does not need to be defined, it aims only as the 
notifier if the data position is changed. In that case, the index is 
marked as UNUSABLE and all ROWID values are not relevant 
and must be recalculated. The second proposed solution is such 
a problem immune. It is characterized by the object-oriented 
data tuples, instead of standard relational theory. Thanks to 
that, pointers to the data are based on references to the objects. 
Access to the data in the Select queries is direct without the 
necessity of using any specific access method. If there is a 
necessity to change data, a function-based index using object 
reference is used. However, notice, that in temporal databases, 
most data changes are expressed by the Insert statements, 
corrections can be done only in bi-temporal architecture using 
physical data.  

The proposed architecture is now implemented on the 
intelligent transport systems consisting of an expanding 
network of charging stations for electric vehicles and their 
management, where any component failure or change 
influences the whole system. The infrastructure and conditions 
evolve over the time dynamically.  

Proposed solution is architecture and approach general and 
can be implemented in any field, like railway transport, 
individual networks or industry as well. Based on the 
performance analysis - not only experiments described in this 
paper, solution is robust and does not degrade performance 
with the data number increase.  

In the future, we will extend the solution by the notification 
layer – if there is a change, the system will automatically notify 
ll the upper layers sequentially, up to the root of the hierarchy. 
Our preference will highlight the de-duplication techniques for 
modeling many-to-many relationship cardinality of the 
hierarchy, as well. 
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