
Data Management in Hierarchical Database
 - Branches otification

Michal Kvet
University of Zilina

Zilina, Slovakia
Michal.Kvet@fri.uniza.sk

Karol Matiaško
University of Zilina

Zilina, Slovakia
Karol.Matiasko@fri.uniza.sk

Abstract—Current information system approaches require a
database to manage data in a complex manner, to monitor the
evolution and manage changes during the whole time spectrum.
Several data architectures have been proposed with an emphasis
on the data granularity. This paper deals with the temporal data
changes management in a hierarchical database, where the whole
access path branch must be notified if any change occurs. Thanks
to that, individual changes are very effective to be identified and
located. Our proposed solution originates from the self-
relationship table and extends the principles with the opportunity
to manage heterogeneous data streams with an opportunity to
change the structure and references dynamically. In the first
model, references are managed and notified using ROWIDs, the
final solution uses object pointers based on the property of child
object records covering the parents. Proposed solutions are
implemented in intelligent transport system environment
highlighting dynamics of electricity and hybrid vehicles and
temporally changing environment.

I. INTRODUCTION
Information systems and almost every application need to

store data in the database. Systems are data-oriented with
emphasis on changes monitoring and evolution management. In
the past, data were located directly in the application, which is
currently completely insufficient not only from the abstraction
point of view but mostly due to the effectivity and robustness.
Later, data were separated into the files. Thus, at least three
layers could be identified – data storage (file system), data
manipulation and evaluation formed by application codes. The
last layer is presentation. Nowadays, data are mostly located in
the database, thus the first layer has been modified without no
significant changes in the other layers, only data access
provider has been changed. Current database systems have
many streams, from semantical models, file systems up to
relational principles and big data. These systems, however, can
be distinguished and divided based on transaction management.
Most often used database system is still based on relational
principles and algebra. Managed data are covered by the
transactions, which means, that each change must be approved
by the transaction manager before becoming visible to other
applications, users and sessions. A transaction is a process of
transferring one consistent and valid database state to the new
one by passing all requirements and constraints. It is formed by
four requirement properties – ACID – atomicity (either the
entire transaction is successfully executed or it is completely
canceled), consistency (after the transaction execution, all
constraints must be passed), isolation (transaction data are not

provided to other transactions/sessions before commit
operation) and durability (confirmed data are persistent. No
data can be lost, even after database crash) [1], [10].

Many times, data are formed into the hierarchy (car consists
of individual components, the train consists of locomotive and
wagons, individual wagons are formed by coupes, seats, etc.).
If any component property is changed, the whole structure up
to the hierarchy root must be notified (e.g. if the locomotive for
the train is upgraded, it means, that the train can go faster, the
train can consist of more wagons, etc.). Thus, it is necessary to
propose a robust solution for dealing with database hierarchy,
composition, and aggregation. This paper is transaction
oriented and provides techniques for query definition and data
management in the hierarchical database approach. The
motivation is based on intelligent transport systems and
electrical vehicles management. Individual charging machines
are connected to the electricity grid. In this sense, the whole
infrastructure is interconnected. If any subelement is corrupted,
the whole architecture is influenced. Particular electricity
branch must be notified and react automatically to adjust its
properties, accessibility and capacity .

The aim of this research is to cover the complexity of the
temporal database environment for dealing with hierarchy.
Current relational databases can deal with such hierarchical
data, but there is a lack of notification of all upper layers if the
change occurs. Before proposing our solution, data change was
only reflected as the update of a particular part of the object,
but the whole structure image remained the same – the object
validity itself was not changed. It was just only reflected on the
individual component. It is, however, very important to store
data change pointer in the object header, if the object
composition is used. Thus, change on any level of the hierarchy
must update the whole object definition, not just the sub-
element (component) itself. Thanks to that, identification of the
change with emphasis on data monitoring can be done on only
one layer - the root. Moreover, internal tree architecture does
not influence our proposed solution, thus the structure
can evolve over time with no data management change
necessity.

Section 2 deals with the conventional a temporal extension,
summarizes existing principles and approaches reflecting the
granularity. Section 3 deals with the hierarchy definition and
current limitations. Section 4 offers a definition of our own
proposed solution for dealing with hierarchical data. Afterward,
properties, performance characteristics, and results analytics
are proposed.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

II. A CONVENTIONAL AND TEMPORAL APPROACH
Conventional paradigm is based on storing only current

valid data, thus if the transaction is committed, the original
version is removed and replaced by a newer one. Commonly,
historical images are accessible only in the time limited manner
using transaction log files. The system consists of a defined
number of transaction log files with a defined size, which are
cyclically rewritten [7], [8]. The primary purpose of them is to
ensure transaction management - consistency, isolation, and
durability with availability to restore the database after the
crash. They are also inevitable for creating snapshots of the
object inside the local transactions – other transactions must
access original object values, if the transaction modifying them
has not been approved, yet. Thus, if the transaction modifies
particular data, which are not, however, approved, yet, other
sessions and transactions must access original data, which are
produced from the logs. Unfortunately, it is not always
possible. As already mentioned, log files are managed in a
cyclical manner. It means, that if the log does not consist of the
active transaction data, it can be replaced with newer data. In
that case, original data versions necessary for the other
transaction can be unavailable. Let have two transactions (T1
and T2), the first (T1) updates the object (O). Particular
versions for such object (O) are stored in the log file (original
(UNDO version) and new (REDO version)). Before the
transaction ends, a new transaction is produced (T2), which
gets the original data before the transaction start. However, if
the original transaction (T1) is confirmed, changes take place
and become permanent, so the transaction log is freed and can
be rewritten. At that point, however, transaction T2 may require
original data (as they were at the beginning of the transaction).
Unfortunately, such data cannot be provided. As a
consequence, exception ORA-01555 Snapshot Too Old is
raised. Database system tries to avoid such situation by using
parameter Undo_retention, which influences time interval,
during which historical images must be accessible without the
possibility to rewrite them inside the logs. With the rising of its
value, the accessibility time interval is also extended. On the
other hand, the size of log files is significantly rising and
transaction operations can be delayed, which have a significant
impact on the system reliability [4], [5], [12]. Fig. 1 shows the
principle of log management. Log files are cyclically rewritten
if they do not store relevant data for existing (active)
transactions. Historical data of the confirmed transactions are
removed from the log files, therefore there is no possibility to
lose data. Data themselves cannot be modified before storing
undo (before image) and redo (after image) data in the log [7].
These log segments are operated by the Log Writer background
processes. Another approach is based on archive log mode
configuration – individual log files are copied and backed up in
the file system before rewritten. With the cooperation and
support of backups, historical images can be created and
evolution can be monitored, although the process is
complicated with high resource and time demands, whereas
transaction logs do not store only data themselves, but also
other support values, like SCN (system change number -
database state order number), operations, images, etc.

Fig. 2 shows the processing demands to create a consistent
image of the data valid in the past, delimited by the time point
or time interval. First of all, the closest full backup from the left
(historical) site of the temporality is loaded. Then, incremental

backups are applied (in Fig. 2, it is complexly expressed by
backup management), if available, merged by the archive log
files. The active log files are used at the end. All these data
groups point relevant data to the result set (gray strong arrows
of the Fig. 2).

Fig. 1. Log file management

Fig. 2. Getting data image delimited by historical time frame

Temporal paradigm extends the existing conventional
principles by storing all data images and changes inside the
main database structure. Thanks to that, individual changes are
a direct part of the solution. It, moreover, allows you to
manipulate with future valid states and planning, thus the
architecture is full time oriented.

Temporal evolution has been created soon after the first
releases of the relational database systems in 60ties of the 20th
century. Complexity and usability were, however, covered just
in 90ties of the 20th century by proposing object-oriented
temporal architecture [7], [8], [14]. Fig. 3 shows the logical
scheme. Identifier of the object (primary key) is extended by
the time interval forming a uni-temporal model with validity
aspect. Optionally, it can store also transaction validity – time,
during a particular object was stored in the database and
assumed to be correct. It can be modeled by the time interval or
by just one attribute expressing the insertion date of the row
(tuple). The first model of the Fig. 3 is conventional with no
temporal support. The second model is uni-temporal, BD
expresses begin timepoint of the referenced tuple validity, ED
ends the validity. Several approaches for date interval modeling

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 207 --

have been proposed, the description can be found in [2], [3],
[7], [8]. The third model is bi-temporal managing two-time
spectra – validity BDval, EDval and transaction aspect modeled
by BDtrans.

The main disadvantage of the previously described model is
object granularity if the data updates are not synchronized. Let
have the object consisting of five temporal attributes. If the
individual update statement does not change all of them,
original values would be copied and stored in the system
multiple times increasing storage demands (Fig. 4). Remind
also static and conventional attributes, the evolution of which
cannot be monitored. Gray color in the Fig. 4 expresses not-
changed values, which are copied to the new images. NULL
values undefined reference pointers do not provide sufficient
power in this case [2], [6].

Fig. 3. Object level temporal model

Fig. 4. Object level temporal data effectivity

To solve the limitation, therefore, the attribute-oriented
approach was defined in 2013 consisting of three layers (Fig. 5)
[10], [11]. The core of the system is managed by the temporal
manager and table storing all changes referencing the table of
origin, row and changed the attribute. Thanks to architecture,
no duplicate values are present. Moreover, such a solution can
store also data, which do not change their values at all
(e.g. code lists) or monitoring is not necessary, even forbidden
(e.g. based on GDPR).

The temporal table consists of these attributes [11]:
ID_change – got using sequence and trigger – primary
key of the table.
ID_previous_change – references the last change of an
object identified by ID. This attribute can also have a
NULL value that means, the data have not been updated

yet, so the data were inserted for the first time in the
past and are still actual.
ID_tab – references the table, record of which has been
processed by DML statement (Insert, Delete, Update,
Restore).
ID_orig - carries the information about the identifier of
the row that has been changed.
ID_column – holds the information about the changed
attribute (each temporal attribute has defined value for
the referencing).
Data_type – defines the data type of the changed
attribute:
C = char / varchar, N = numeric values (real, integer,
…), D = date, T = timestamp, …
This model can be also extended by the definition of
other data types like binary objects.
ID_row – references to the old value of an attribute (if
the DML statement was Update). Only update
statement of temporal column sets not NULL value.
Operation – determines the provided operation:
I = insert, D = delete, U = update, R = restore
The principles and usage of proposed operations are
defined in the part of this paper.
BD – the begin date of the new state validity of an
object.

Fig. 5. The architecture of the attribute-oriented temporal system [11]

Interlayer between the object and attribute-oriented
approach is just the group granularity, which allows creating a
synchronization group internally processed as one attribute.
Thanks to that, only one row is inserted into the temporal layer,
if the group is updated, regardless of the number of attributes
inside it. In general, in the beginning, synchronization group is
created from each attribute separately, afterward, based on the
data update time, synchronization groups can be detected and
merged either automatically using background processes
(group detector and synchronizer) or manually [9]. The
solution from the data model view is shown in the Fig. 6. It is
protected by the ISA hierarchy (a group can be composed
either from individual attributes or by using existing groups).
Vice versa, if the group is to be dropped, it is split into
individual attributes or into groups based on the hierarchy
evolution.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 208 --

Fig. 6. Group management data model

III. HIERARCHY MODELING

Hierarchy modeling is just a problem to be faced in this
paper. In existing temporal solutions, the emphasis is placed on
just one table, over which the change is made. However, let
have the object hierarchy (composition aggregation). It can be
inevitable to notify all upper-level nodes about the update (if
the property of the component is changed, the whole structure
must be notified). Current temporal systems do not provide
sufficient power to cover the hierarchical database models. In
that case, it is necessary to message all layers manually
sequentially. If the path length from the root up to the changed
node is not the same for all attributes, the problem is even
sharper forcing system to execute select and update statement
dynamically in the cycle, which causes strict performance
degradation. Moreover, there can be a problem with data row
access using index [12], [15].

Database systems allow you to define a hierarchical query.
In that case, self-relationship is used (the foreign key is
referencing the same table primary key – Fig. 7). Based on
technical reasons, many times, the temporal environment
removes the composite primary key by the transaction and
introduces a new virtual. The original primary key set is
delimited by the unique index constraint.

Fig. 7. Self-relationship transformation

Query getting current level data and parent requires to use
the particular table twice in the From clause. Both tables must
be delimited by the aliases.

SELECT *
 FROM TAB_new T1
 JOIN TAB_new T2

 ON (T1.id_row_change_parent
 = T2.id_row_change_child);

Query evaluation consists of scanning table using Table
Access Full method – sequential scanning of all blocks under
High Water Mark (HWM) sign (whereas the foreign key index
is not defined), followed by Index Range Scan of the primary

data. High Water Mark (HWM) sign points to the last block
associated with the table. Individual blocks are linked. Fig. 8
shows the execution plan (Autotrace) of such a solution.

OPERATION OBJECT_NAME CARDINALITY COST LAST_CR_BUFER_GETS LAST_ELAPSED_TIME

SELECT STATEMENT 2

NESTED LOOPS 6 66

NESTED LOOPS 2 2 5 58

TABLE ACCESS (FULL) TAB 3 2 3 35

INDEX (RANGE SCAN) TAB_IND 3 0 2 22

Access Predicates

PK.PK=FK.FK

TABLE ACCESS (BY INDEX ROWID) TAB 1 0 1 6

Fig. 8. Execution plan of the self-relationship query

It is, however, valid only for a two-layer architecture of the
hierarchy. If three layers are identified, the individual table
must be listed three times requiring using nested loops to reach
the results (Fig. 9):

SELECT *
 FROM TAB_new T1

 JOIN TAB_new T2
 ON (T1.id_row_change_parent

 = T2.id_row_change_child)
 JOIN JOIN TAB_new T3
 ON (T2.id_row_change_parent

 = T3.id_row_change_child);

In this case, the table is scanned three times and joined
together using a nested loop operation. Fig. 9 shows the
solution for three-level hierarchy based on self-relationship
architecture.

OPERATION OBJECT_NAME CARDINALITY COST LAST_CR_BUFER_GETS LAST_ELAPSED_TIME

SELECT STATEMENT 2

NESTED LOOPS 6 108
NESTED LOOPS 1 2 5 100

TABLE ACCESS (FULL) TAB 4 2 3 60

INDEX (RANGE SCAN) TAB_IND 4 0 2 29
Access Predicates

FK.FK=FKK.PK

TABLE ACCESS (BY INDEX ROWID) TAB 1 0 1 7

Fig. 9.Autotrace – three-level architecture

As a result, it is extremely inefficient, individual steps and
evaluation is highly dependent on the architecture and forces
the user to compose the command dynamically, which does not
only slowdowns the whole system, but also complicates the
possibility of defining access methods and indexes, whereas the
structure is constantly changing. Moreover, if a new layer is
added, all queries must be rewritten - the table must be
referenced one more time.

To solve the problem, the Oracle database system has
proposed Connect by the prior clause. In that case, the
hierarchy can be listed in one query regardless of the length
from the root to the particular node. The table is referenced
only once. The user does not need to determine and reconstruct
query if new intermediate step (new level) is added. Thus, from
the user point of view, the depth of the hierarchy is not
important. Internally, the query is divided and executed
gradually for each level applying the conditions of all lower
layers. It consists of Connect by prior filtering followed by
Index Unique Scan for primary key and Index Range Scan for
foreign keys. Fig. 10 shows the execution plan.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 209 --

OPERATION OBJECT_NAME CARDINALITY COST

SELECT STATEMENT 2 4

CONNECT BY (WITH FILTERING)

Access Predicates

TAB.FK=PRIOR TAB.PK

TABLE ACCESS (BY INDEX ROWID) TAB 1 1

INDEX (UNIQUE SCAN) SYS_C0016830 1 1

Access Predicates

PK=1

NESTED LOOPS 1 1

CONNECT BY PUMP

TABLE ACCESS (BY INDEX ROWID) TAB 1 0

INDEX (RANGE SCAN) TAB_IND 1 0

Access Predicates

connect$_by$_pump

Fig. 10. Execution plan based on using Connect by level clause

Performance limitation is just the index created on the foreign
key attributes in this case. If not available – not created or even
unusable [12], solution significantly degrades, Table Access
Full method must be used, instead (Fig. 11). Unusable index
means, that particular references to the data have been changed,
thus index cannot be used and is not maintained any more [12].
Data references are provided by the value ROWID, which
points to the physical data in the database. ROWID consists of
the identifier of the data file, block, and position of the block,
where the particular object row resist.
OPERATION OBJECT_NAME CARDINALITY COST

SELECT STATEMENT 3 3

CONNECT BY (NO FILTERING WITH START)

Access Predicates

TAB.FK=PRIOR TAB.PK

Filter Predicates

PK=1

TABLE ACCESS (FULL) TAB 3 2

Fig. 11. Performance limitation

IV. OWN HIERARCHY MANAGEMENT SOLUTION

Previously mentioned solutions described in chapter 3 are
robust, only if the structure of individual layers is the same,
whereas all the data are stored in one table. If not, models are
not optimal suffering from all the negatives of the non-
normalized data relation and the whole model – a potential loss
of operations, the necessity to change multiple records, when
changing only one value, etc. However, the main limitation is
just the performance expressed by the time consumption of the
processing, as well as size demands. It is necessary to evaluate
the type of the layer and then, access to relevant attributes. So,
one attribute definition type is added. Afterward, individual
attributes are accessed, mostly by using additional query.

Reliability of the solution is strictly limited by the
correctness of the object type, which must be secured and
authorized by the trigger before each destructive DML
operation, which also slowdowns execution plan [16], [17].

Our proposed solution originates from the standard non-
hierarchical query. If the structure is steady, path using
referential integrity without self-relationship can be used. The
proposed solution is, moreover, resistant against the structure
of individual layer modification. They can be changed anytime
dynamically, however, the architecture and number of layers
must remain original. Fig. 12 shows the solution.

Fig. 12. The proposed solution data model

Regarding the necessity to add a new layer, indexes and all
queries must be rebuilt, thus, if there is a chance to modify and
cover architecture evolution, the solution is not usable.

Therefore, we propose another solution using the fact, that the
best and quickest access to the data is the pointer. ROWID has
the following structure (up to Oracle 8i – 8bytes; From Oracle
8i – 10 bytes):

The data object number (1 - 32 bits),
Data file in which the row resides (the first file is 1; file
number is relative to tablespace) (33 - 44 bits),
Data block in the data file in which the row resides (45
- 64 bits),
The position of the row in the data block (the first row
is 0) (65 - 80 bits).

ROWID is used in the leaf layer of the index structure.
Particular data are located in the index and accessed by the
Rowid Scan. In our case, however, index access is absent,
whereas it would require B+tree traversing consuming time
(Fig. 13). Our solution stores the ROWID locators directly in
the table structure. Thanks to that, the specific index can be
omitted and does not need to be defined, at all.

Fig.13. Table access using the index and Rowid Scan

In this case, the Index Scan can be omitted, whereas a
particular data pointer is already stored in the database in the
upper layer. Thus, to access defined row, only Table Access By
Index ROWID method is used (Fig.14):

OPERATION OBJECT_NAME CARDINALITY COST

SELECT STATEMENT 1 1

TABLE ACCESS (BY USER ROWID) TAB 1 1

Fig.14.Execution plan of our proposed solution

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 210 --

In the first phase, we assumed, that index itself does not
need to be defined, at all. Later, based on complex case studies,
we came to the conclusion, that solution must have an index,
due to the security and reliability aspect. First of all, ROWID is
not a stable element. If there is an update of the row, it can
happen, that new tuple does not fit the original data block and
must be located in another. In that case, migrated row is created
and originally stored ROWID is not valid, however, the system
cannot determine it automatically (references are only one
dimensional). If the index is not defined, particular migrated
row pointer is not stored directly in the database and system
would access inappropriate data block consequencing in
scanning all the blocks under the High Water Mark (HWM)
sequentially. The property of the B+tree index, as the default
index type in the database, is just the effectivity and robustness
of the data locators [12], [13], [15]. If the ROWID is changed, a
particular pointer to another block is created automatically and
reference stored in the original block (Fig. 15). Our proposed
solution uses that fact, thus some index must be defined.
However, it does not need to be created for the foreign key, in
comparison with other mentioned techniques. Each table has a
primary key pointing to the data, so the index is created
automatically [7]. Moreover, it always uses ROWID locators,
whereas the table generally consists also of non-key
attributes.

The problem of the migrated row is shown in Fig. 15. The
particular data block is accessed using the ROWID stored in the
leaf layer of the index. Afterward, the referenced data block is
loaded into memory buffer cache (arrow from the table block 3
to buffer cache structure, which reflects the repository for the
data in the memory, Fig. 15), however, required the data are not
there, thus, migrated row pointer is used and another block is
loaded table block n must be loaded into the memory, Fig. 15).
If the access path is wide consisting of several migrations,
inappropriate blocks are loaded and the execution process
becomes more complicated and time and resource demanding.

Fig. 15. Rowid access protection – security and reliability aspect

Problems can arise, if the ROWID values are changed in
specific other situations, like using flashback technology
(operation of getting a historical image of the table), moving
data to other disks, tablespaces or files. These activities change

all the ROWID values for the table. It is not, however, the
problem in our solution, respectively it is easy to detect and
evaluate such situation, whereas if the data positions are
changed, the particular index is automatically listed as
UNUSABLE [1], [12], [13]. By using triggers, the whole
structure is notified and ROWID values are recalculated. Such a
situation, however, occurs very rarely. During the recalculation
process, Table Access Full Method (TAF) is used – all data
blocks are sequentially scanned to locate to the row.

Proposed solution with ROWID management provides a
relevant solution and fills the gap of data management in the
hierarchical architecture of the database approach. Based on the
time processing of the query, it provides benefits in the
performance sphere. On the other hand, again, it is not possible
to effectively change the structure and depth of the hierarchy.

The last proposed solution is universal and independent. It
can deal with any number of levels in the architecture and
automatically reacts to the structural evolution and any change
of the architecture. The principle is based on the object
references inside the relational structure. Solution model is
shown in the Fig. 16. Individual changes are stored in the
temporal table with self-relationship. References to the updated
values are not a direct part of the table itself (like in attribute
oriented temporal system), but the universal reference to the
object is used. For the solution, individual objects are defined
as child records (descendants) of the core object. Whereas each
child record can be used as a replacement of the parent, the data
structure can evolve anytime. It is just necessary to create a
new child object and register it in the temporal layer of the
solution. All other activities are maintained automatically by
background processes.

Fig. 16 shows the solution architecture. It consists of three
components. Individual changes and hierarchy are stored in the
self-relationship table. It can be referenced to the temporal
ecosystem based on defined granularity (third component of the
solution). Data themselves are not, however, stored directly in
the hierarchy, but the references using objects are used. The
reference type is tObjBase as the root of the object types, all
others are under that as extensions. Thanks to that, any object
type can be referenced (as the child of the tObjBase type).
Objects and references are managed in the second component
of the solution. The last part is created from the temporal
registration, where acknowledges, notifications and storage
principles for temporal data are defined and maintained.

Fig. 16. Solution architecture using object pointers

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 211 --

V. PERFORMANCE ANALYSIS
Experiment results were provided using Oracle Database

11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production;
PL/SQL Release 11.2.0.1.0 – Production. Parameters of the
used computer are:

Processor: Intel Xeon E5620; 2,4GHz (8 cores),
Operation memory: 16GB,
HDD: 500GB.

Performance is the whole solution in comparison with
existing approaches is also covered in this paper. Let assume,
that only 1 000 records are stored in the hierarchical database.
In that case, if the number of levels is two (master and child
record), notification and Select statement requires 6 values of
the costs and lasts 187ms (existing solution described in section
3, performance shown in fig. 8).

If the system, however, consists of three levels, performance
degrades – it requires 6 costs but elapsed 304ms (existing
solution performance is shown in section 3, Fig. 9). A general
solution is not usable, whereas the processing demands are
rising very deeply.

Using Connect by prior clause solves the problem only
partially, although it is level independent. Although the costs
are only characterized by the value 5 (improvement using
16,7%), if the index is not defined, performance does not
provide sufficient power. A more significant limitation is just
the necessity to define the same structure for each level, which
is not easy to ensure in a real environment. Moreover, this
clause is defined for the DBS Oracle and other systems do not
provide it. Therefore, we propose our own solution for dealing
with hierarchy. It has been tested using DBS Oracle, but the
solution is not dependent and can be implemented on any
system type. Costs are lowered to the value 2 (reference
Fig. 14), whereas direct access to the data using ROWID can be
used.

To be critical, there are also limitations of our proposed
solution. The most significant is based on de-duplication. There
is no support for limiting the same component definition, to
point the same data to several objects with the reflection of the
change. If the component is linked to the several objects and is
altered later, the particular change would be present in all the
objects to which it belongs, which does not need to be correct
in general. Therefore, in the future, we want to focus on the
decomposition of the component after the change.

VI. CONCLUSIONS

Current relational systems do not provide complex
management of hierarchy in the database. They highlight only
architectures with the same data structure on each level.
Temporal evolution requires storing the whole evolution during
the object lifecycle. If the temporal aspect degree is added to
the system, performance significantly degrades, whereas the
architecture of the solution is not proper. Therefore, in this
paper, we summarize technologies for dealing with hierarchical
oriented data management in the temporal environment. We
target the availability of storing heterogeneous data with the
evolving structure inside the layer, as well as the whole
architecture of the levels. Thanks to that, any change can be
directly reflected and data structure and model can be changed

dynamically with availability to get a historical image in the
original structure.

This paper extends the existing approaches by proposing two
solutions. The first solution is based on storing ROWID of the
lower layer directly in the database as the data pointer. The
specific index does not need to be defined, it aims only as the
notifier if the data position is changed. In that case, the index is
marked as UNUSABLE and all ROWID values are not relevant
and must be recalculated. The second proposed solution is such
a problem immune. It is characterized by the object-oriented
data tuples, instead of standard relational theory. Thanks to
that, pointers to the data are based on references to the objects.
Access to the data in the Select queries is direct without the
necessity of using any specific access method. If there is a
necessity to change data, a function-based index using object
reference is used. However, notice, that in temporal databases,
most data changes are expressed by the Insert statements,
corrections can be done only in bi-temporal architecture using
physical data.

The proposed architecture is now implemented on the
intelligent transport systems consisting of an expanding
network of charging stations for electric vehicles and their
management, where any component failure or change
influences the whole system. The infrastructure and conditions
evolve over the time dynamically.

Proposed solution is architecture and approach general and
can be implemented in any field, like railway transport,
individual networks or industry as well. Based on the
performance analysis - not only experiments described in this
paper, solution is robust and does not degrade performance
with the data number increase.

In the future, we will extend the solution by the notification
layer – if there is a change, the system will automatically notify
ll the upper layers sequentially, up to the root of the hierarchy.
Our preference will highlight the de-duplication techniques for
modeling many-to-many relationship cardinality of the
hierarchy, as well.

ACKNOWLEDGMENT
This publication is the result of the project implementation:
Centre of excellence for systems and services of intelligent

transport II., ITMS 26220120050 supported by the Research
& Development Operational Programme funded by the ERDF.

The work is also supported by the project VEGA
1/0089/19 - Data analysis methods and decisions support tools
for service systems supporting electric vehicles.

"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU
PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ

REFERENCES
[1] K. Ahsan, P. Vijay. Temporal Databases: Information Systems,

Booktango, 2014.
[2] A. Alelaiwi. “Evaluating distributed IoT databases for edge/cloud

platforms using the analytic hierarchy process”, Journal of Parallel
and Distributed Computing, pp. 41-46, 2019.

[3] R. Behling et al., “Derivation of long-term spatiotemporal lanslide

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 212 --

activity – a multisensor time species approach”, 2016. In Remote
Sensing of Environment, Vol. 136, pp. 88-104.

[4] C. J. Date, N. Lorentzos, H. Darwen. Time and Relational Theory :
Temporal Databases in the Relational Model and SQL. Morgan
Kaufmann, 2015.

[5] M. Doroudian, et al.: "Multilayered database intrusion detection
system for detecting malicious behaviours in big data transaction"
IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), 2016.

[6] M. Erlandsson et al., “Spatial and temporal variations of base cation
release from chemical weathering a hisscope scale”. 2016. In
Chemical Geology, Vol. 441, pp. 1-13.

[7] T. Johnston. Bi-temporal data – Theory and Practice. Morgan
Kaufmann, 2014.

[8] T. Johnston and R. Weis, Managing Time in Relational Databases,
Morgan Kaufmann, 2010.

[9] M. Kvet, K. Matiaško, “Temporal Data Group Management”, IEEE
conference IDT 2017, 5.7. – 7.7.2017, pp. 218-226.

[10] M. Kvet, K. Matiaško, “Transaction Management in Temporal
System”, 2014. IEEE conference CISTI 2014, 18.6. – 21.6.2014, pp.
868-873.

[11] M. Kvet and K. Matiaško, “Uni-temporal modelling extension at the
object vs. attribute level”, IEEE conference UKSim, 20.11 – 22.
11.2014, , pp. 6-11, 2013.

[12] D. Kuhn, S. Alapati, B. Padfield, Expert Oracle Indexing Access
Paths. Apress, 2016.

[13] S. Li, Z. Qin, H. Song. “A Temporal-Spatial Method for Group
Detection, Locating and Tracking”, In IEEE Access, volume 4, 2016.

[14] Y. Li et al., “Spatial and temporal distribution of novel species in
China”, 2016. In Chinese Journal of Ecology, Vol. 35, No. 7, pp.
1684-1690.

[15] A. Noury, M. Amini. “An access and inference control model for
time series databases”, Future Generation Computer Systems, Vol.
92, pp. 93 – 108, 2019.

[16] P. Rusnak, J. Rabcan, M. Kvassay and V. Levashenko. “Time-
dependent reliability analysis based on structure function and logic
differential calculus”, Advances in Intelligent Systems and
Computing, Volume 761, pp. 409-419, 2019.

[17] E. Zaitseva, V. Levashenko, M. Kvassay, P. Barach. “Healthcare
system reliability analysis addressing uncertain and ambiguous data”,
Proceedings of the International Conference on Information and
Digital Technologies, IDT 2017.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 213 --

