
Continuous User Authentication by the Classification
Method Based on the Dynamic Touchscreen

Biometrics

Kirill Leyfer
ITMO University

Saint Petersburg, Russia
leyfer.kirill@gmail.com

Anton Spivak
ITMO University; Saint Petersburg Institute for Informatics

and Automation RAS (SPIIRAS)
Saint Petersburg, Russia

anton.spivak@gmail.com

Abstract—When developing protection mechanisms of the
confidential data on mobile devices, a balance of reliability and
ease of use must be maintained. Such a balance can be provided
by a biometric authentication system, which is quite easy to use
while being sufficiently reliable. Introduction of the dynamic
biometric and behavioral authentication factors into the system
can further improve its reliability keeping the balance. Most
smartphones have a touchscreen display, which is proven by the
previous studies to be able to capture the dynamic biometric and
behavioral characteristics of users' input events. This paper
proposes a method of distinguishing a legitimate mobile device
user from the intruder by analyzing dynamic biometric and
behavioral characteristics of touch screen input events.

I. INTRODUCTION
Numerous studies are devoted to the problem of

information access control, and a variety of access control
mechanisms had been adopted over time. However, in cases
where an attacker can impersonate a legitimate user, the threat
of unauthorized access to the data remains. This problem is of
great interest from mobile devices perspective as they usually
contain plenty of valuable personal information, and at the
same time, they are likely to be lost or stolen. Many users
prefer to use passwords as a mean of protection. However, the
stronger the password, the longer it takes to enter it and the
higher a chance of an error. A strong password can lower
consumer qualities of the device.

Only 47% of smartphone users utilize password-based
authentication mechanisms thus preferring quality over security
and not restricting access to their devices [1].

This example demonstrates the importance of maintaining a
balance between the consumer qualities of the device and the
level of protection of user data. Such a balance can be provided
by biometric authentication systems when the authenticator is
the user himself, more precisely, some unique characteristic of
his body (iris pattern, a papillary pattern on the fingers, etc.).
Biometric identification has better security/usability balance
then the password-based one. However, it has inherent flaws.
For instance, the authenticator can be copied or used against the
user's will. To address issues with the authentication factor,
we should introduce multiple authentication factors in the
system.

To preserve the balance between device simplicity and the
reliability of authentication, it makes sense to expand the
system with dynamic biometric, as well as behavioral
authentication factors. In other words, this research aims to
verify the user’s authenticity based on the dynamic
characteristics of the user (for example, walking parameters)
and characteristics of relatively stable patterns of user's
behavior over time.

To obtain the beforementioned characteristics, we first
should find a method to convert user interaction with the
mobile device into a data stream suitable for the feature-
engineering.

These devices are equipped with a large number of sensors
and other input devices. The touch-sensitive screen of the
smartphone is a particularly interesting example of the input
device. It first was applied on the smartphones in 1992 and has
evolved into a fairly accurate and responsive input device over
time. In most modern smartphones, a touchscreen can track up
to 10 simultaneous touches approximately 60 times a second
with a precision up to one pixel. This allows to track each user's
input gesture with high precision. Each gesture entered by a
user on the touch screen has a set of features reflecting the
user's unique dynamic biometric and behavioral characteristics
as proved in the previous study [2]. This makes the touchscreen
an excellent source for user interaction information to use in
our study.

In this study, we collect a large amount of the raw input
gesture data from the test users with the help of the improved
version of our tool TouchLogger. Then we process all the
collected data to normalize it and extract the features which
may represent users behavior. All the processed data will form
our dataset used in this study. Then we train the 1-vs-rest
classifier on the dataset and evaluate its results. In our case, the
Gradient Boosting classifier showed an average AUC metric of
0.97 in the task of a 1-vs-rest classification of a user with a
dataset generated by 10 test users.

II. RELATED WORKS

The idea of identifying a smartphone user by biometrics is
not new. It has been adopted in various projects and explored in
numerous studies. Considering the excellent accuracy of the

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

touch screen, this input device is used quite commonly as a
biometric sensor in recent studies. Some of them are listed
below.

Julio Angulo and Erik Wastlund have used some concepts
of keystroke dynamics in their touchscreen-based identification
method [3]. This study aims to enforce overall weak pattern
locks (i.e., a matrix of dots which user should connect in some
order to unlock device) with biometric features. Using six
finger-in-dot variables (amount of time user holds his finger
inside each dot) and five finger-in-between-dots variables
(amount of time user connects neighbor dots) for each trial,
they prepared a total of eleven variables to feed the classifiers.

A Random Forest was used as a classifier due to its fast
learning process for large datasets, provided an average EER
(Equal error rate, the rate at which both acceptance and
rejection errors are equal) of 10.39% with a standard deviation
of 3.0%.

This principle evolves in other works, e.g., in [4] and [5]. In
former, a touchscreen user interface was designed to collect
input gesture durations. Giving 80 real attempts and 80 fraud
attempts from 10 users, researchers achieved EER 2.5% for
ANFIS (Adaptive-Network-Based Fuzzy Inference System,
type of classifier). The latter work utilizes and develops
principles of [3] to create biometrics-enhanced pattern-based
lock screen. Ala Abdulhakim Alariki et al. provide a
framework to implement a touch-based biometric identification
system [6].

Other touch-based biometrics approaches implement
keystroke dynamics algorithms (i.e., they analyze how you
type) on touchscreen-equipped devices. These algorithms are
utilized in the problem of user authentication based on
keyboard input [7], [8], [9]. Kambourakis, Damopoulos,
Papamartzivanos & Pavlidakis adapt these algorithms for the
touchscreen in form of the custom onscreen keyboard [10].

Christian Holz, Senaka Buthpitiya, and Marius Knaust used
the touchscreen as a biometric sensor to detect shapes of large
human body members, e.g., ears, palms, wrists, etc. by pressing
it against the touchscreen [11]. This research evolved into a
commercial product called Bodyprint. In evaluation performed
as part of the research with 12 participants, Bodyprint classified
body members with 99.98% accuracy and identifies users with
99.52% accuracy with a false rejection rate of 26.82%. This
classifies bodyprint as a reliable biometric user authentication
to a large number of commodity devices.

Most of the works referenced above utilize active
identification – i.e., they identify the user once he tries to
unlock his phone. Unlike those, some papers study different
approaches to create a continuous identification algorithm [12].
Continuous identification is the one which identifies a person in
the process of using the device. This allows eliminating
unauthorized access even after the device was unlocked.

Project Abacus by Google aimed to eliminate passwords by
substituting it with continuous biometric identification, applies
a similar principle. Abacus calculates a continuous trust score
using your location, facial recognition, speech input, keystroke
dynamics, motion created by how you walk, etc. The Abacus

demo at Google I/O 2015 showed continuously calculated trust
score on the scale of 1 to 100. Unfortunately, the exact
characteristics of the classifier are unknown. The initial goal of
this project is to provide these features to millions of Android
users just by the software update.

III. PROBLEM STATEMENT
In this work, we aim to develop a method of identification

of mobile device user based on dynamic biometric and
behavioral characteristics of touch screen input gestures.

Just like some related works, our research is aimed to
provide a reliable authentication method suitable for
continuous user authentication. This aim irradicates any
attempts to embed biometric classification inside a regular
standalone mobile device application like a biometrics-
enhanced lock screen in [5]. Our system should be able to
collect all input gestures of a user, from all the applications he
may use. Most, if not all, modern mobile operating systems
have a strong security model which forbids one application to
read touchscreen input events intended for another one. This
architecture makes reading system-wide input gestures a
complex technical challenge.

The other challenge is to expand the potential test user base
as much as possible. We should be able to use the data
collection software on the large subset of mobile devices.

To further expand our potential user base, we should be
able to collect input data remotely, to add input gestures data
from distant users. To achieve that, we should transmit data
over the Internet, which implies data encryption as touch
gestures may contain sensitive information.

As our test users may have different models of mobile
devices, with different screen sizes and resolutions, we should
also take appropriate actions on our side to process all input
data accordingly, to avoid the cases when our classification
would train to distinguish screens, not users.

The next challenge is to capture some extra application
usage data. We assume that the input gestures characteristics
of the same user may vary in different applications. Having
information about the application the user entered a gesture in,
we may authenticate a user more precisely.

After we develop the data collection system and run test
data gathering session with multiple test subjects, we should
collect all the data, evaluate it, normalize some values and
extract the features from the input gestures. After that, we
should train and test our classification on the 1-vs-rest task to
evaluate its ability to distinguish a legitimate user from a
potential intruder.

IV. DATA COLLECTION INFRASTRUCTURE

A. Client part
1) General description

Collecting touch input data from the whole system is a
challenging task. Some researches overcame this challenge by
providing their users with special custom smartphones with
data collection system built-in. This approach may be the

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 229 --

simplest, but it prevents the wide audience coverage. Others
may modify device firmware by installing a custom version of
the Android operating system on the device to implement data
collection on the OS level. This approach is more promising as
Android OS is free and open-source, so any enthusiast can
implement the desired OS extension. During the research, we
once decided to follow the same path and had modified
Android OS in a way that allows us to collect touchscreen
input gestures system-wide [13].

Unfortunately, OS modification implies reinstalling the
firmware on the device, which is not what any test subject
would be happy to do. In the previous work, we decided to
implement our data collection software using ability to run
code as root (superuser) on so-called “rooted” devices [14].
This approach extended the size of a potential user base
further, but the amount of the rooted android devices isn’t that
high, so we should adopt a different approach.

We found a simpler solution which works on any Android
device with “developer options” enabled (special hidden set of
tools present on each Android device to help a developer in
application debugging). When the developer options are
turned on, a special connection called Android Debug Bridge
(adb) can be established between PC and Android device. This
connection offers a command line environment where the
developer can execute commands with the privileges of a user
shell. Turns out that this user also has access to the input
devices, so he can read raw input data from the touchscreen.
This principle is utilized in the new version of our tool
Touchlogger [15]. Test subject should install android
application on the device, establish a connection with the
device via adb and launch a special payload which will read
the touch input gestures and pass this data to the main
application.

2) The main application
The main application has a very simple interface (see Fig.

1). It shows the status of the Touchlogger payload (whether it
is running or not), and also allows the user to control payload
by pausing or resuming a data collection process. We pay
attention to the privacy of user data and we use all the
collected data only for the purposes of the research, but we
still implemented pausing mechanism to gain users’
confidence in the privacy of their data.

1) The payload part
The payload part collects input gestures by reading them

from a symbolic device. The raw data from the symbolic
device is represented in the Linux kernel input event format
[16]. The new version of the tool can convert this data into
JSON format for almost any smartphone, not only for the few
models. Also, it has better multitouch screen support as the
conversion logic mimics the logic from the Android input
architecture [17].

To achieve the desired ability to collect information about
the target application where the user has entered the gesture,
the payload part also runs special dumpsys utility after each
gesture to extract the information about the top-level
application.

Fig. 1. Screenshot of the TouchLogger application user interface

TouchLogger works in the background collecting the data
and storing it in the private data directory. After it collects a
certain amount of input gestures, it encrypts data using
generated session key, encrypts the session key with the
private RSA key and sends the data on the server.

B. Server part
The server part hasn’t changed since the previous research.

The tasks of the server-side include receiving data from a
client, decrypting it and storing it into the database. A server
receives all data in a format of JSON object and stores this
object in MongoDB instance.

C. Data format
All the input data is represented in JSON format and

divided into separate gestures. Each gesture has the following
fields:

the duration of the gesture in microseconds
maximum pointer (i.e., distinct touch) count during
the gesture
gesture timestamp
device id
device model
application where this gesture was entered
list of input events forming the gesture

Each input event consists of the following fields:
input event timestamp
type of the event (e.g., DOWN, UP, MOVE,
POINTER_DOWN, etc.)
pointer count in this event
list of the pointers in this event

Each pointer is a distinct touch point on the screen. Modern
touchscreens support up to 10 pointers. In our research, each
pointer data structure consists of the following fields:

id (from 0 to maximum supported by the device)

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 230 --

pressure
x coordinate
y coordinate

This structure is based on the one used in the previous work
but has small refinements which help to speed up data analysis
and feature extraction.

II. INPUT DATA PROCESSING

A. Collected data statistics
During the data collection period 14 participants collected

over 76000 input events in 2 weeks.

From all the gestures collected, only 0.8% of the input
events are multi-finger, or multitouch gestures. This correlates
with the results of a data collection session in the previous
work (2.3% multitouch events).

B. Feature extraction
Unfortunately, while some users collected a descent amount

of input gestures, others barely sent anything at all (probably
due to some bug in the application). Table I demonstrates the
input gestures amount distribution across 14 test users.

TABLE I. INPUT GESTURES AMOUNT DISTRIBUTION ACROSS TEST USERS

User id 0 1 2 3 4 5 6

of
gestures

60 10480 1220 3560 4020 15820 3260

User id 7 8 9 10 11 12 13

of
gestures

240 100 11760 16400 5920 3520 400

To achieve fare classification results, we will filter out input
data from the users 0, 7, 8 and 13 as they sent around 1% of all
the data.

In our paper, the vast majority of the features we extract
from the gestures are quite basic. For instance, knowing first
and last timestamps of the input events in the gesture, we can
calculate gesture duration. However, due to some device-
specific system behavior, small fraction of all gestures have
very long (tens of minutes) or even negative duration. These
emissions should be filtered out as well.

Start and end pointer coordinates are also descent features
of the gesture. However, different devices have different
screen resolutions. To normalize all the coordinates, we divide
each x or y coordinate by device screen width or height
respectively. This lives us with the relative coordinates,
distributed from 0 to 1. However, some devices may generate
input events with the coordinates exceeding the screen
resolution. This can clearly be seen in Fig. 2. The source of
some scattered events is unknown, but most of them are
caused by the touchscreen driver implementation in the device.
For instance, some firmware developers use the touchscreen to
implement hardware touch-sensitive buttons, e.g., “home”,
“back” or “recent”. To distinguish hardware button press from
the usual touchscreen input event, they generate input event
for the hardware buttons with the coordinates exceeding the

screen resolution. As these events are not of our interest, we
can easily discard them.

The results of the events filtering by the coordinates can be
seen in Fig. 3.

This time every gesture is placed inside the square of side 1.
Also, this time we used a different plotting method to estimate
a density of gestures on the screen. Please, note that the "y"
coordinate of the gesture is inverted on the plot. The highest
gesture density is in the on-screen keyboard area, under the
location of the right thumb and near the common places for the
control buttons.

Fig. 2. Scatter of the normalized gesture coordinates (please note inverted y-
axis)

Fig. 3. Normalized gesture coordinates density (please note inverted y-axis)

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 231 --

Another feature is a normalized distance between the first
and last input events in the gesture, which gives us a gesture
length. Other features include pointer count, gesture angle
tangent, start and end coordinates of the gesture, gesture
curvature (the radius of the circle on which the first, middle
and last touch points lie) and gesture arc height.

The novel feature of this research is the tracking of the
application in which the gesture was entered. From the data
collection session, we have 129 unique applications where 14
users were entering the data. To make our classification less
dependent on this feature alone, we divided all application into
8 classes, depending on the type of the user interaction with
them. For instance, category “feed” includes applications with
scrolling gesture being the most frequent during the using of
the app. Instagram and Twitter clients are examples of the
apps in this category. All the classes and the distribution of
them by the number of gestures is shown in .

The last step in the feature extraction process is to evaluate
all the features and discard the statistically dependent ones on
the other features. To achieve that, we evaluate features
correlation using the Pearson correlation coefficient. You can
see the correlation between different features in Fig. 5.

It is clear that the start and end coordinates of the gesture
have a strong correlation. The source of such a correlation
became obvious if we plot gestures distribution by the length
(Fig. 6).

We can see that 55% of all input gestures have a length
close to 0, i.e., they are just simple touches. In this case, start
input event coordinates match the end ones. To justify end
coordinates feature presence, we should recalculate all the
correlation coefficients just for the long motion events. The
new results can be seen in Fig. 7.

As we can observe, correlation still remains at a high level
but x2 and y2 features are suitable for further use.

Filtering all the data by negative duration, abnormal length,
etc., leaves 74620 gestures from the initial 76760.

III. CLASSIFICATOR TRAINING AND EVALUATION

In the classification process we use a 1-vs-rest classifier,
i.e., we have trained 10 different classifiers, one for each user.
Each classifier has trained on the 50% of the dataset, where
gestures of a one user were considered entered by a legitimate
user, and the gestures of the rest users were considered entered
by an intruder. Fig. 5. Gestures parameters correlation

Fig. 6. Gestures distribution by the length

Fig. 7. Motion gestures parameters correlation

Fig. 4. Application classes distribution by the amount of input gestures

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 232 --

We decided to compare several classification methods. The
following classification methods were used for the comparison:

K Nearest Neighbors
Random Forest
Gradient Boosting
Linear Support Vector Machine

In our case, 30 neighbours were used in KNN as with n=30
log loss is optimal (see Fig. 8).

To evaluate the classifiers, we divided all dataset of 74620
gestures into equal parts. The first part was the training dataset,
the other one was the testing. Each classification method was
evaluated by avegare AUC value for 10 classifiers in 1-vs-rest
problem and by its learning time on the train dataset.
Evaluation process was executed on Intel Core i7 6700K CPU
with 16gb RAM. Python implementation of classifiers from
scikit-learn package was used. The evaluation results are listed
in Table II.

TABLE II. CLASSIFICATORS COMPARISON BY THE AUC VALUE AND
LEARNING TIME

Classification
method

AUC average
value

AUC std
deviation

Learning time
(seconds)

Random Forest 0.9698 0.0002 305

KNN (n = 30) 0.9091 0.002 12

Gradient Boosting 0.9692 0.0002 117

Linear SVM 0.5056 5.98e-05 44

Our evaluation demonstrates the differences in
classificators used. While KNN is the fastest to learn,, its AUC
metric is 6% lower then the one of Random Forest or Gradient
Boosting. Linear SVM performed the worst for our case, and
metrics of Random Forest and Gradient Boosting are almost
match, while the latter performs 2.6 times faster. So, the
Gradient Boosting method appears to be optimal in our case.

We evaluated Gradient Boosting classifier for each user
using the AUC metric and built a ROC curve with the results
present in . The average AUC value for 10 classifiers is 0.97
with the standard deviation of 0.0002.

IV. CONCLUSION

In this paper, we managed to achieve several improvements
over our previous work and over some related researches. First,
by extracting new features from our dataset, we’ve achieved
much more accurate user classification than in previous work.
Also, this time we used one gesture to extract features from,
instead of a series of gestures. This is more applicable in the
real world biometric authentication system as it allows the
system to react faster.

The technical part of this project was also improved over
the previous data collection session. As before, it is
opensource, so anyone can use our data collection system in
subsequent researches.

V. FUTURE WORKS
In the future, we may further improve the technical part of

the project to eliminate some bugs which might lead to the
small amount of data collected from certain users.

As one may note, we hand-sorted all the applications
collected into categories. This step can be improved by
implementing some extra data analysis and machine learning
techniques to achieve automatic application categorization
based on the input gesture features.

Also, we may consider training the classifier on a
subsequent series of gestures (2, 3, or more) to further improve
authentication metrics.

REFERENCES
[1] D. Tapellini. Smart Phone Thefts Rose to 3.1 Million Last Year,

Consumer Reports Finds. Web:
http://www.consumerreports.org/cro/news/2014/04/smart-phone-
thefts-rose-to-3-1-million-last-year/index.htm.

[2] K.I. Leyfer, A.I. Spivak, “Method of person identification based on
biometric characteristics of touch screen gestures”, in 2017 20th
Conference of Open Innovations Association (FRUCT), 2017, pp.
222-227.

[3] Julio Angulo and Erik Wastlund, “Exploring Touch-screen
Biometrics for User Identification on Smart Phones”, Web:
http://www.it.iitb.ac.in/frg/wiki/images/4/48/113050033_Paper10.pdf
.

[4] Orcan Alpar, “Intelligent biometric pattern password authentication
systems for touchscreens”, in Expert Systems with Applications, vol
42, Issues 17–18, pp. 6286–6294, 2015.

Fig. 8: Negative log loss of a KNN classifier depending on the number of the
neighbours

Fig. 9: ROC curves of 10 Gradient Boosting classifiers in 1-vs-Rest
classification of 10 users

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 233 --

[5] Taekyoung Kwon et al, “TinyLock: Affordable defense against
smudge attacks on smartphone pattern lock systems”, in Computers
& Security, vol 42, pp. 137–150, 2014.

[6] Ala Abdulhakim Alariki et al, “Touch gesture authentication
framework for touch screen mobile devices”, in Journal of
Theoretical and Applied Information Technology, vol. 62 No.2, 2014

[7] Buchoux A., and Clarke N. L., “Deployment of Keystroke Analysis
on a Smartphone”, in Australian Information Security Management
Conference (2008).

[8] P. Campisi, E. Maiorana, M. Lo Bosco, and A. Neri, “User
authentication using keystroke dynamics for cellular phones”, IET
Signal Processing 3, 4 (2009), 333–341.

[9] N.L. Clarke, and S.M. Furnell, “Authenticating mobile phone users
using keystroke analysis”, International Journal of Information
Security 6, 1 (Aug. 2006), 1–14.

[10] G. Kambourakis, D. Damopoulos, D. Papamartzivanos, and E.
Pavlidakis, “Introducing touchstroke: keystroke�based
authentication system for smartphones”, Security and Communication
Networks 9, 6 (2016), 542–554.

[11] C. Holz, S. Buthpitiya, and M. Knaust, “Bodyprint: Biometric User
Identification on Mobile Devices Using the Capacitive Touchscreen
to Scan Body Parts”, in CHI '15 Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, pp.
3011-3014, 2015.

[12] Hui Xu, “Towards Continuous and Passive Authentication via Touch
Biometrics: An Experimental Study on Smartphones”, Web:
https://www.usenix.org/system/files/conference/soups2014/soups14-
paper-xu.pdf.

[13] platform_frameworks_base forked repository, Web:
https://github.com/BOOtak/platform_frameworks_base.

[14] Touchlogger project source code repository. Web:
https://github.com/BOOtak/touchlogger-client.

[15] Improved version of the Touchlogger data collection tool source
code. Web: https://github.com/BOOtak/touchlogger-dirty.

[16] Linux Input Subsystem userspace API. Web:
https://www.kernel.org/doc/html/v4.12/input/input.html.

[17] J. Levin, Android Internals::Power User's View, Jonathan Levin,
2015.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 234 --

