
Simulation Of ExoMars2020’s Rover Network Using
SystemC

Anas Nairi, Julien Plante
Institut Polytechnique des Sciences Avancées

Ivry-sur-Seine, France

{anas.nairi, julien.plante}@ipsa.fr

Nikolai Sinyov, Valentin Olenev, Ilya Korobkov
St. Petersburg State Univervity of Aerospace Instrumentation

Saint Petersburg, Russia

{nikolai.sinyov, valentin.olenev, ilya.korobkov}@guap.ru

Abstract—In this paper, we describe the process of implemen-
tation, goals and results of our research in the modelisation of
ExoMars2020’s network using SystemC. We will mainly see that
the use of database to store the result of a simulation’s running
can be efficient in a network involving packets with huge amount
of data, and if such kind of network can be made in parallel,
then we can increase the performance of its time execution.

I. INTRODUCTION

The ExoMars2020 mission has a goal to search evidence of
past or present life on the surface and/or subsurface of Mars.
The rover will explore the planets surface and subsurface like
its origin of formation and its geological composition, thanks
to its list of scientific instrumentation: PanCam, ISEM, CLUPI,
WISDOM, Adron, Ma_Miss, MicrOmega, MOMA, and RLS.
In fact, with its range of instruments, the rover will map the
surface and subsurface in 2D and 3D to localize icy spot, it will
list the types of rocks and take very close-up images of them
to study the geology of Mars. In addition, it will be possible
for it to take samples of the soil.

Fig. 1. 3D view of the ExoMars2020’s rover

A. Description of the ExoMars2020’s rover network

The main task of the provided research was to establish a
way to implement the network system of the ExoMars2020’s
rover. To do so, we get inspired with the Fig.2 below, that
we can find in [1]. To sum up briefly, we got a network that
consists of a SpaceWire router that interconnects all the instru-
ments between each other, making them able to communicate.
Moreover, this network got an antenna to simulate the sending
of information, resulting from the instruments, from the rover
on the Mars’ surface to the probe in orbit of the planet.
Also, two processors are placed in the rover’s architecture, one
for general instructions and the other is an image processor,
needed because of the amount of images that the rover has
to process. And, two memories, one for the mast part of the
rover and the other one for the main body part. At the end, data
will be sent from equipment, then to the memory, next to the
processor which will give instructions to the image processor.

Fig. 2. Data-handling structure of ExoMars’ rover

B. List of ExoMars2020’s rover equipment

1) PanCam

The PanCam is used to record 2D & 3D images of the
Mars surface, to understand the geological and morphological
situation on the planet. In fact, the PanCam is composed of
two WAC (Wide Angle Camera), one on the left, the other on
the right to have a stereoscopic view of the ground, and a HRC
(High Resolution Camera). Also, it operates to produce images
in the near infrared and visible wavelength. This device, in
synergy with the others, allows the rover to chose the best
potential locations site to drill, for example shallow ground

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

that may contains gases or water. The HRC and WAC, both
operates with an image resolution of 1024x1024 pixels, the
first one in RGB, the second with a multispectral filter wheel.

2) ISEM

The ISEM (or Infrared Spectrometer of ExoMars), as its
name means, is an infrared beam that senses the infrared part
of the suns light reflection onto Mars surface. With this method
used on the rocks near of the rover, it obtains the spectrometer
of these rocks and then get information about the geological
composition of the planets surface. Indeed, this device helps
the rover to chose a potential location to drill in, because the
presence of some minerals may indicate good places where to
find past life on Mars.

3) CLUPI

The CLUPI, or Close-Up Imager, is a high-resolution
camera which goal is to take close picture of rocks to be
able to detect each details of these ones. Thus, we can know
to what type of rock we are seeing or surrounded with, by
analysing the texture, the color, the morphology, etc. Also,
it will give information about the original context of possible
formation of these rocks, like, geological major events that they
experienced throughout their existence. Plus, with this kind of
close up pictures, we should be able to detect bio-signatures
at the surface of rocks. It is permitted because the CLUPI has
an image resolution of 2652x1768 pixels in RGB. It can take
picture in the visible wave length, with an exposure time of
1024 seconds.

4) WISDOM

To find if there are some evidence of the past and present
life on Mars, we can search in the subsurface, where organics
molecules could be shielded from destructive events. In fact,
the WISDOM, or Water Ice Subsurface Deposit Observation
on Mars, is a ground penetrating radar which will help to notify
and describe the type of the shallow surface that is pointed by
this one. If an information about a place in subsurface has been
processed as a potentially location of organics molecules, the
ExoMars drill will then dig in it. WISDOM is working with
others instruments to precise if a place in the subsurface is
relevant or not by gathering in formation from Adron, PanCam
and Ma_Miss. From the Adron, we can obtain information
about the composition of a source of water in liquid or ice
form. From the PanCam, we get 3D information of the rovers
environment, that can help it to better filter locations to dig in.
And, because the Ma_Miss is in the drill, it is in direct contact
with the subsurface, thus data from this one are compared with
those from WISDOM that will permit to set a 3D map of the
subsurface.

5) Adron

The Adron is a detector of radiations of neutrons that are
sensed from the subsurface of the planet. With the data from
WISDOM, it permits to detect the water distribution in the
Mars subsurface and the presence of certain elements in this
water. Then, the combination of the both instruments data
would help to localize the best places to drill in order to find
evidences of potential past or present life on the surface of
Mars and below it.

6) Ma_Miss

Ma_MISS, for Mars Multispectral Imager for Subsurface
Studies, is a spectrometer located in the drill of the rover, used
to determine horizontal and vertical composition of the Martian
soil.By illuminating the borehole and analysing the reflected
light and its spectrum, it will be able to gather information
about the distribution of minerals, especially of water-related
ones, to search potential indicators of life. It will work along-
side the three other spectrometers (RLS,MicrOmega,MOMA),
being specialised in studying unexposed material, and in col-
laboration with WISDOM and ADRON to choose interesting
drilling location.

7) MicrOmega

MicrOmega is an infrared spectrometer made to identify
composition of Martian soil samples at a grain scale, after
their gathering by the drilling system. It is similar as RLS
and MOMA in this way, since the three spectrometers will
study samples collected by the drill. The infrared study of
the samples is adapted to find evidences of past or present
carbon and water presence. It uses an infrared hyper-spectral
microscopic imager to acquire the spectrum of a 250 × 256
pixels square (5× 5mm2) for 320 wavelength, between 0.95
and 3.65 m. Thus having a maximum of 20480000 bytes to
transmit.

8) RLS

RLS uses the Raman effect to find life signatures in Martian
soil samples in a non-destructive way. The measurements
carried out by the RLS will be performed as described with in
the ExoMars Rover Reference Surface Mission, which includes
six experiment cycles (with two samples each,one extracted
from a surface target and the other at depth) and two vertical
surveys (with five samples each extracted at different depths).
It generates information about a 2048 × 512 pixels of 15
m, totalling a surface of approximately 30.7 × 7.7 m2, and
1048576 bytes.

9) MOMA

MOMA (Mars Organics Molecule Analyser) is an instru-
ment designed to detect organic molecules in spots of interest
detected by the collaboration of RLS and MicrOmega, thus
providing extremely precise analysis of Martian environment,
and great information about potential origin,evolution and
distribution of life on the planet. To do so, it will study
samples gathered by the drill, as well as analysing the gases
of the Martian atmosphere. It features to modes of opera-
tion: Gas Chromatograph-Mass Spectrometry (MOMA GC-
MS) and Laser Desorption-Mass Spectrometry (MOMALD-
MS), the first one being used to analyse atmosphere gases,
and the second soil samples. No information about size of
data produced was found.

C. Related work

Few researches about the modelling of ExoMars2020 rover
are shared at the time of writing, especially concerning its
network. However, some was found concerning the simulation
for other aspects of the rover.

In [4], the authors investigate the use of INRIA SICONOS
software to simulate the interaction between the wheels of

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 270 --

Fig. 3. Single structure of the ExoMars2020’s network (caption can be seen
with the Fig. 5)

planetary rovers and the ground, thus allowing to study the
control law of the rover and its behaviour. They modelled
the ExoMars2020 rover using 3DROV, a planetary rover sim-
ulation framework, and after adding SICONOS successfully
simulated the behaviour of the rover on a planetary terrain.

Another modelling task is presented in [3], focusing on
the Panoramic Camera system PanCam, a specific onboard
equipment carried by the rover used to acquire images and
terrain information after processing. The authors focus on the
modelling of the computer vision algorithms behaviour on both
single and multiple sites analysis, to determine the distance
error induced by the cameras resolution and algorithms them-
selves.

In the reference [5] and [6], Airbus provides a top view
model of the ExoMars’ rover to see the placement of the elec-
tronic box and the cables that are connecting the instruments.
This kind of model can be used to see at the end if the power
consumption is okay, and also to test equipment like radars in
some real-simulated test.

A lego model had been made (see reference [7]) to choose
what is the best way to drive the rover from its lander. To do
so, they modelled, with a lego structure, the functionalities of
the rover to navigate, they put tiny little cameras. Then, they
placed this lego-rover in the CNES Toulouse, and from the
ESAs ESTEC in the Netherlands, 1000 km away, they tried to
drive in a secure way the rover to get it down from its lander.

II. MAIN CONCEPTS OF THE PROJECT AND MOTIVATION

We choose to simulate the environment of ExoMars2020
because, as we can see in the Fig.2, it got an architecture
where the instruments of the rover are connected thanks to
only one SpaceWire router. In fact, it contains equipment that
need to work and communicate with each others, memories, an
antenna, and processors. That makes the implementation with
SystemC useful, cause to instantiate any kind of equipment,
we use one module customised for this purpose, which makes
flexible the execution of the simulation. Also, we could manage
some aspect of the system thanks to the SpaceWire protocol

communication, like the speed of transmission of bits and
packets, the RMAP protocol to request writing or reading data.

A. SpaceWire

SpaceWire is a data-handling communication network de-
veloped for spacecraft. It is used a lot in spacecraft nowadays
because of many aspects. It is easy to implement in order to
obtaining high speed of data’s transmission. It is appreciate
for its simplicity, its low consumption of energy, and its low
cost of implementation. It permits to interconnect equipment
between each other, to make them communicate by sending
data with a speed from 2 Mbits/s and up to 400 Mbits/s.

Our project features the modelling of the network and
packet layer of the SpaceWire specification, as requested, but
also a part of the exchange layer. The packet layer covers
the use of packets to transmit data from one node to another,
with possible routing on the way. Also, we partly modelled
an exchange level. We only have the transmission by frames
of packets, allowing for transmission delay simulations and
transmission error modelling, due to some possible incident
radiation. It also made us think about the problem of data
collision, since we used bidirectional channels, this forced us
to create some security mechanism. But, we did not implement
the Error End of Packet (EEP) and error link recovery at this
level.

B. RMAP protocol

The only transport-layer protocol implemented is RMAP,
since we found out that ExoMars2020 uses this protocol.

The RMAP protocol consists of two modes in write and
read types. One is the command, that is sent from a node A
to a node B, when these two need to communicate together.
It mainly handles the sender and receiver logical address, the
command that is used like the type used and if acknowledge-
ment are taken into account, the CRC result used to know if
the packet has been changed or not, the memory’s address in
which we want to write or read data to/from, the length of
the data, and of course it contains the data sent or read. The
other is the reply of the node B which receives the command,
it informs the node A if the whole packet has been changed
or not, thanks to the value of the status. In that way, it gives
the possibility to monitor the error’s data bit.

As a matter of fact, this protocol permits to know which
node wants to read to and write into another one’s local mem-
ory. But, note that in our case, ExoMars2020’s instruments use
the protocol to read to and write into the corresponding part’s
memory, because we thought that it would correlate more to
the structure seen in the Fig.2.

C. SystemC version 2.3.2

SystemC is a library of classes in C++. Thanks to this
one, we can use a lot of powerful tools in the oriented-object
language C++. It contains primary channels that are mainly
used like signal, fifo, mutex, or we can simply customised
our own channel. Also, it got a lot of structural elements
like modules, ports, interfaces. Plus, we can use many data
types. Moreover, it got an engine simulation that allows to use

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 271 --

Fig. 4. Write and read operations of the RMAP protocol

processes and events. Actually, it permits to model material and
numerical systems in a precised and detailed level of design.
One useful tool of SystemC to debug and fix our code is the
possibility of creating tracefile, that permits to monitor the
state of signals in time during the simulation.

The fact of using C++ language for SystemC is useful in
this respect, because in our project we could use other libraries
or extensions like OpenMP, SQLite, msbuild, WindowsAPI,
QtCreator language and also the C++ standard.

III.RESEARCH RESULTS

A. SystemC : ExoMars’s equipment modelisation

As said before, SystemC allows to build and customize our
own tools. In our case, we used a custom class named Node to
simulate the presence of the different onboard equipment of the
rover. The use of this class permits its object to use functions
to send and write data to another one, that is managed by the
RMAP protocol.

Firstly, there are three type of daemons, which are the
three main type of threads of this module. We named them
daemons because it usually describes threads that run in the
background, handling every thing important. The main one
is receiver_daemon, in charge of handling reception of
packets, and choosing what should be done with them. It is
written to receive RMAP packets, and sending back replies if
needed. This daemon is only launched once, and runs during
the whole simulation, which is not necessarily the case of the
others. sending_daemon and generating_daemon are
very similar, the first one being in charge of sending RMAP
commands, and the second one generating data directly to the
node memory. Any number of these two can be spawned,
according to the fields “Connections” and “Generations” of
the config file. They can also finish before the end of the
simulation if their role are finished.

Secondly, the function send allows to send a packet
of any type, and waiting for a reply. If the reply has a
positive status(1), the function ends, and if the status is 0,
the packet is sent again, until a positive status is received,
allowing for safe communication and error recovery. There is
no receive function currently, since we only use the reply as
acknowledgement packet, but we could create a recv function
that sends an acknowledgement back, for both commands and
replies.

Finally, a function send_raw and recv_raw, at the
lowest level, each one having as parameter one packet and

which are respectively in charge of sending actual data into the
port and receiving actual data, determining the type of packet
and accordingly create the correct packet before returning.
One interesting difficulty for the recv_raw function was that
RMAP uses different header structures for different actions,
and we had to determine the type of the packet on the fly,
while receiving, to correctly distinguish the end of the header,
and the beginning of the data.

This module also features regular logging and database log-
ging, which is not its first role, but still key points, especially
for debugging and analysis of the model.

B. SystemC : packet general structure

Another custom class is the description of the different
types of packets sent in the two different modes : read and
write command, read and write reply. According to their
structure, we respected as much the integrity of these packets.

This class aims to simplify communication throughout the
network. It contains two vectors, one for the header and one
for the data, since each part got variable sizes in the RMAP
protocol, as well as two checksums (CRC), for the header and
the data. Data can be inserted or extracted as it would be
done for a stream, using operators << and >>, which allows
to compute the CRC on the fly, as it would be done in a
real equipment. But this interface is not always handy, and we
needed to add functions about the end of the header, because
of the variable header size of the RMAP protocol, and maybe
the class would need to provide simpler interface.

That being said, it is very useful to contain packets, simply
more than using FIFO, and can be printed in a clean way
through the over loading of operator<<.

C. SystemC : SpaceWire router

SwitchUnit is designed to mimic a simplified version of
the SpaceWire router. Some interesting features are available
with this module, such as the table of commutation (also
named routing tables, or switch matrix) and wormhole routing.
It allows this module to be fully adaptable: the number of I/O
ports is determined at runtime, specified in the routing table
passed in the constructor of this module. At the beginning
of the simulation, a thread init_thread is launched, and
spawns a port_processing thread for each port. These
spawned threads are in charge of handling every packet that
enter in their ports, and routing it according to the table
of commutation of the current SwitchUnit instance. To
ensure that packets don’t mingle, SwitchUnit associates
to each port a mutex, locked at the beginning of packet
transmission through this port, and unlocked at the end. We
used a custom mutex that simply inherits from the mutex
already implemented in the SystemC library and add the public
member function unlock_event, allowing to wait for this
mutex until its unlocked.

To store the information passing into the router, we use
vector from the C++ standard. This class also got a connect
function, that allows to connect a node to the router through a
channel, and automatically modify the routing table to match
the new connection. The only limitation here is that we did not

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 272 --

write any connect function to link two routers, but we did not
need this at the time of writing, since ExoMars2020 contains
only one router. But if we need to develop a more complete
and versatile simulator, this could become a need.

D. Configuration file

Because of the lack of precise documentation on the
network structure of ExoMars2020 rover, the modelling of this
network can only be approximate. A configuration file was thus
used to describe every SpaceWire node and channel, to include
any new information about the network structure easily. Using
the JSON format, the interaction between this configuration
file and the SystemC model is implemented cleanly, allowing
for good flexibility in the description of the network. This
configuration file is also used to split the simulated network
in independent parts, preparing for the parallel implementation
of the simulation.

E. Database log-system

To increase debugging possibilities and to better handle and
manage the save of information that has been sent through the
simulation, we added a logging system. It was at first under the
form of a simple text logging. The information printed to the
standard output was also written to files, with one log for each
node, resulting in a less mixed output. But this was not very
practical, since analysis on these files was tedious, because of
no formal format used. This is why we decided to investigate
database logging. We chose to use SQLite as database, since
its use was much simpler and more adapted than MongoDB,
the other database client investigated. Indeed, we wanted to
use database as a handy file format to store our information,
which is easily allowed by SQLite, that stores everything in
one file. MongoDB on its side uses the client/server paradigm,
and would have forced to go through the localhost, bringing
complications. We successfully logged packet transmission
using SQLite, and the ability to perform SQL requests proved
its interest, allowing us to find bugs, and permitting custom
analysis of what happened during the simulation after its end.

F. Parallel network model

One side-task was to make our single model parallel. In
fact, in that way we can see if the rover’s network using
the SpaceWire communication can be improved using parallel
processes. As the rover is already composed of two parts, it is
intuitive to make them run in parallel.

Indeed, we transmit in the network big packets, and the
simulation began longer and longer as we added features. An
idea to improve the time execution of the simulation is to run
the two independent parts of the network in parallel, hoping
for a performance increase.

To do so, we described the two distinct parts using a
configuration file, and used preprocessor directives alongside
preprocessor definitions to compile two different executables.
Each one of them is then able to simulate one part of the
network. For that, we use the Windows API, and the function
to run the two parts concurrently.

It can be important to know what results we obtain, if we
can make in parallel any type of SpaceWire network. It can
give us some interesting results in one case, but in another one
it can make the execution time slower. This can help for future
SpaceWire implementation in spacecraft.

Fig. 5. Parallel structure of the ExoMars2020’s network

G. Result of the parallel model

One of the problems we address in this paper is the
parallelization of the single model network simulation to
increase the modelling speed. Approaches are developed to
make in parallel the SystemC kernel itself (reference [2]) but
are not shared for now. In the case of our ExoMars2020’s
singel model, the network can be separated in two independent
parts, and the solution chosen to make the simulation parallel,
is to create two different simulations, containing each one
a part of the network. Since the parts are independent, the
results of both simulations are still relevant, and are the same
as the results obtained using the sequential implementation
of the model. The consistency of the results is ensured by
the configuration file, the same being used for each imple-
mentation, but interpreted differently to handle the different
parts. An increased performance is observed using the parallel
model without database logging, as well as why no significant
performance increase is noticed when using database logging.

As seen on the I, we can notice on a quad-core machine an
increase of performances by a factor 4, only by running two

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 273 --

TABLE I. COMPARISON OF THE TIME EXECUTION’S RESULTS IN

SEQUENTIAL IMPLEMENTATION AND PARALLEL IMPLEMENTATION

Not using SQLite using SQLite
Sequential implementation 24.07 s 54.19 s

Parallel implementation 6.28 s 50.47 s

sub-simulations on two different cores. We expected only a
factor 2, since the network is split in only two different parts,
and the reason for such performances is still to be investigated.

H. Simulation outputs

Multiple solutions were investigated to gather information
on the model during the simulation:

• Console output

• Logfile

• Database

• Tracefiles

Console output and logfile are easily implemented, but lack
clear structure, and are thus difficult to analyse afterwards.
Waveforms proved to be useful to track errors but are also
difficult to analyse automatically. Finally, databases feature
deep analysis possibilities using SQL requests, and are adapted
to store the results of the simulation. SQLite was at first
chosen to handle our database but turned out to be poorly
adapted to parallel computation, since parallel access to the
database is forbidden, to avoid data inconsistency. The use of
other database management systems allowing parallel use of
a database is still to be investigated, to feature performance
improvement when using the parallel implementation of the
model.

Fig. 6. Example of waveform of a packet received by a node, resulting from
a write operation

Fig. 7. Example of database display that represents two read replies

I. Graphic User Interface

We chose the Qt framework to develop it, since it is one
of the most developed widget toolkit with GTK+, and seems
easier to use than the last, since it is written in C++ and
thus does not need bindings, which is the case for GTK+.
Moreover, the existence of QtDesigner allows us to easily
design our UI and quickly obtaining interesting results. At
the time of writing, it permits to generate the configuration

file, compiling and starting simulation of the different parts of
the network, and also analysing the results thanks to a simple
SQLite database viewer.

Because of the lack of time, we still have some improve-
ments like reading from existing configuration file to load
network parameters, network part management when editing
nodes, and possibility to choose from which database we
want to read, as well as a refresh button for the database
viewer. Further possible but hypothetical improvements could
be adding a graphical representation of the network, and a
graphical editor, instead of parameters only, and real time
animation of the graphical editor during the simulation, in
order to representing and also to make in parallel other kind of
SpaceWire network communication similar to ExoMars2020’s
rover.

Fig. 8. First GUI’s tab - Simulation control

Fig. 9. Second GUI’s tab - Specification of a node’s characteristics

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 274 --

Fig. 10. Third GUI’s tab - Specification of one or multiple packets’
characteristics

Fig. 11. Fourth GUI’s tab - Database viewer

IV.CONCLUSION

Building a model, especially in area related to space, is
important to test as much general features than specific ones.
As we saw, some had been made for the ExoMars2020’s rover
to describe its internal and external structure, the behaviour of
its wheels in contact with the surface of Mars, the process of
get down of the lander, and a specific model for one of the
equipment of the rover.

Compared to other models, we developed and ran a model
of the network of ExoMars2020’s rover using SystemC, by
implementing the network and packet layer of SpaceWire, as
well as a part of the exchange layer, and the RMAP transport-
layer protocol. Because little information about the network
itself was distributed (most information concerns the scientific
research) this model may not be totally relevant, but is a strong
basis for future simulations, if more details about the network’s
structure were to be revealed.

A database log system was implemented as well and proved
to be efficient to study results of the simulation, while not
being efficient when using the parallel implementation of the
model. Other database management systems should be studied
to be able to run efficiently in parallel.

Taking advantage of the fact that the network of Exo-
Mars2020 can be split in two independent parts, we succeeded
to divide the modelling time by 4, when not using databases.
This solution could be used efficiently alongside parallel of
the SystemC kernel, to take advantage of all cores.

We are still working on a GUI to configure the network
and adapt to further information about the network, and study
the results of the simulation.

ACKNOWLEDGMENT

In the situation of doing an international semester in the
university SUAI at Saint Petersburg in Russia, we (Anas
and Julien) had to complete a R&D project that consists in
simulate the network communication of the ExoMars2020’s
rover. We are two students from the engineering school of
aeronautics and aerospace IPSA at Ivry-Sur-Seine in France,
in 2nd year of the engineering cycle (end of our study in
2020). It was stimulating to do this project, because we had
the possibility to practice and improve our skills and learn
new notions in IT programming, plus to develop our culture
in spatial engineering. This project had been brought by one of
our teacher, Valentin Olenev that introduced and made us the
subject of our R&D project. We mainly worked with another
of our teacher, Nikolai Sinyov, that explained us some specific
concepts that we couldn’t understand or when we needed to
do major choice to progress in our project. Plus, when needed
to do a defense report of our project Nikolai Sinyov and Ilya
Korobkov guided and helped us to produce it. Also, our three
teachers made some comments and questions during our final
presentation in order to fixing some mistakes.

We (Julien and Anas) want to thanks Mr Nikolai Sinyov,
Mr Valentin Olenev, and Mr Ilya Korobkov, for their time and
their help to realise the project they provided to us during
our international semester at Saint Petersburg in the university
SUAI, and also to write this publication. Thanks to them, we
learned a lot things that will be useful, for both of us, for the
rest of our studies and and our business career in companies.
We also want to thanks our school in France, IPSA, without
who this semester wouldn’t be possible.

REFERENCES

[1] Steve Parkes, SpaceWire Users Guide. STAR-Dundee, 2012.
[2] B. Chopard, P. Combes, J. Zory, “A Conservative Approach to SystemC

Parallelization”, STMicroelectronics - AST, Geneva, Switzerland, ICCS
2006, Part IV, LNCS 3994, pp. 653660, 2006

[3] Li, D Li, R Yilmaz, Alper, “ESA ExoMars: Pre-launch PanCam
Geometric Modeling and Accuracy Assessment.”, ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, XL-3. 177-182. 10.5194/isprsarchives-XL-3-177-2014.

[4] Vincent Acary, Maurice Brémond, Konstantinos Kapellos, Jan Michal-
czyk, Roger Pissard-Gibollet, “Mechanical simulation of the Exomars
rover using Siconos in 3DROV”, ASTRA 2013 - 12th Symposium on
Advanced Space Technologies in Robotics and Automation, May 2013,
Noordwijk, Netherlands. 2013. <hal-00821221>.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 275 --

[5] exploration esa official website, robotic exploration of Mars, Web:
http://exploration.esa.int/jump.cfm?oid=60366.

[6] exploration esa official website, robotic exploration of Mars, Web:
http://exploration.esa.int/jump.cfm?oid=60369.

[7] exploration esa official website, space in images, Web:
https://www.esa.int/spaceinimages/Images/2016/05/Lego_ExoMars_model.

[8] PanCam team, “The PanCam Instrument for the ExoMars Rover”, Jorge
L. Vago. in Astrobiology Vol. 17, No. 6-7.

[9] ISEM team, “Infrared Spectrometer for ExoMars: A Mast-Mounted
Instrument for the Rover”, Jorge L. Vago. in Astrobiology Vol. 17,
No. 6-7.

[10] CLUPI team, “The Close-Up Imager Onboard the ESA ExoMars Rover:
Objectives, Description, Operations,and Science Validation Activities”,
Jorge L. Vago. in Astrobiology Vol. 17, No. 6-7.

[11] WISDOM team, “The WISDOM Radar: Unveiling the Subsurface

Beneath the ExoMars Rover and Identifying the Best Locations for
Drilling”, Jorge L. Vago. in Astrobiology Vol. 17, No. 6-7.

[12] ADRON team, “The ADRON-RM Instrument Onboard the ExoMars
Rover”, Jorge L. Vago. in Astrobiology Vol. 17, No. 6-7.

[13] Ma_MISS team, “Ma_MISS on ExoMars: Mineralogical Characteriza-
tion of the Martian Subsurface”, Jorge L. Vago. in Astrobiology Vol.
17, No. 6-7.

[14] MicrOmega team, “The MicrOmega Investigation Onboard ExoMars”,
Jorge L. Vago. in Astrobiology Vol. 17, No. 6-7.

[15] MOMA team, “he Mars Organic Molecule Analyzer (MOMA) Instru-
ment: Characterization of Organic Material in Martian Sediments”,
Jorge L. Vago. in Astrobiology Vol. 17, No. 6-7.

[16] RLS team, “The Raman Laser Spectrometer for the ExoMars Rover
Mission to Mars”, Jorge L. Vago. in Astrobiology Vol. 17, No. 6-7.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 276 --

