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Abstract—Driver-related factors (e.g., driver inattention) are 
a cause of majority of traffic accidents. To reduce the number of 
accidents and improve traffic safety a variety of driver assistance 
systems have been proposed. Today, many of these systems do not 
adapt recommendations and warning to the particular driver 
(having his-/her own driving style, reaction time etc.). However, 
in many cases utilization of personal characteristics and 
preferences may improve the quality of the driver assistance, 
besides if a driver’s expectations about the functionality provided 
by the assistance system are not met, it may decrease the trust to 
the system and lead to turning it off, therefore ignoring its 
potential utility and influence on increasing the safety. In this 
paper we review scientific publications in the area of driver 
assistance systems and a) identify most widely used directions of 
personalization and adaptation in driver assistance systems, b) 
identify and describe the most widely used models and methods 
leveraged for personalization and adaptation, c) identify existing 
research gaps. The paper may serve as mapping study as well as a 
reference and a toolset of how to deal with driver variability in 
driver assistance systems. 

I. INTRODUCTION 
According to the World Health Organization report [1], the 

number of annual road traffic deaths is about 1.35 million; a 
majority of these accidents can be attributed to human errors 
[2]. E.g., the US National Highway Traffic Safety 
Administration reports that 25% of the registered crashes were 
caused simply by driver-inattention [3]. 

To reduce the number of accidents and improve traffic 
safety by addressing human-related causes of traffic accidents 
the concept of (advanced) driver assistance system (or, ADAS) 
has been introduced. These systems aim to increase safety and 
support drivers by supplying relevant information about the 
environment, providing warnings in risky situations and 
automating some driving tasks to excuse the driver from 
manual control [4]. The functionality of driving assistance 
systems vary significantly (suggesting that it is a kind of an 
umbrella term); while some systems only provide warnings 
(visual, haptic or audible), other actively intervene in control 
when a potential risk is detected [5]. Currently, driver 
assistance systems perform a number of functions: antilock 
braking, adaptive cruise control, forward collision prevention, 
driver inattention and abnormal status monitoring to name a 
few. 

Modern driver assistance systems vary not only by specific 
functionality but also by employed hardware and software as 
well as business model. While most of the driver assistance 

systems are embedded in the vehicle’s hardware by 
manufacturer, there are also a number of independent third-
party solutions, running on custom hardware (e.g., smartphone-
based driver assistance systems [6], [7], [8]. 

There is a plenty of evidence (both common-sense and 
scientific [9]) that drivers vary significantly on goals (e.g., 
private and commercial) and driving habits. For some 
assistance functions this difference does not really matter (e.g., 
antilock braking system deals with mostly physics of friction), 
while for other functions (involving the processing of 
visual/audio signals/commands from the driver or 
recommending some actions to the driver) utilization of 
personal characteristics and preferences may improve the 
quality of the system. Another important aspect is that if a 
driver’s expectations about the functionality provided by the 
assistance system are not met, it may decrease the trust to the 
system and lead to turning it off, therefore ignoring its potential 
utility and influence on increasing the safety [10], [11], [12]. 

The aim of this paper is to review scientific publications in 
the area of driver assistance systems a) to identify most widely 
used directions of personalization and adaptation in driver 
assistance systems, b) to identify and describe the most widely 
used models and methods leveraged for personalization and 
adaptation, c) to identify existing research gaps. Driver 
assistance is a complex area that includes not only systems that 
are aimed on the accident reduction, but also that provide trip 
related information to the driver. This paper focuses only on 
systems and approaches that are aimed on supporting driving 
tasks and reducing traffic accidents. In general, driving 
assistance system can be divided into three main modules: 
sensor’s data preprocessing, dangerous event detection and 
recommendation processing. 

First step is collecting data from different sensors and their 
preprocessing, so the driver assistance system could use it. If 
one system have to use data from different sensors models and 
even brands (this happens with systems, distributed as 
smartphone applications, because they are installed on different 
devices), the need to calibrate data to uniformed view may 
occur. This assumption was checked and rejected by [13]. The 
developers made conclusion, that further event detection does 
not depend on device.  

Next step of driver assistance system is to process all given 
data to detect some events, such as aggressive lane change, 
reducing the distance to heading vehicle or driver drowsiness. 
This paper is mostly dedicated to personalization in such 
approaches. 
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After detecting the event the system has to inform the user 
about situation, warn him/her about dangerous state or produce 
some recommendation to prevent unwelcome situation. Here 
there is also a great field for development of personalized 
methods, because every driver will react differently on different 
signals and recommendation. So, that is where adaptive user 
interface methods are taking their place. Some adaptive user 
interface approaches are shortly described in [9] and [14] and 
won’t be reviewed in this paper.  

In parallel to user information, some built-in systems can 
perform actions to prevent dangerous situation (for example, 
adaptive cruise control systems). Some of such systems will be 
described further. 

The paper may serve as mapping study as well as a 
reference and a toolset of how to deal with driver variability in 
driver assistance systems. 

There is some thematic overlap with a recent review paper 
[9], but [9] focuses mostly on some active ADAS and 
autonomous driving systems, sidestepping, for example, 
personalization in driver monitoring. This paper reviews mostly 
driver assistance systems that perform driver monitoring and 
provide warnings and recommendations. 

The rest of the paper is structured as follows. Section II 
describes research methodology. Each of the following sections 
discusses one of the research questions posed in Section II. 
Section III lists driver assistance functions where 
personalization is important. Section IV discusses driver 
characteristics that are taken into consideration by personalized 
driver assistance systems. Section V outlines main models and 
methods used for personalization. Sections VI and VII describe 
quality characteristics used to measure the effect of 
personalization and evaluation guidelines respectively. 

II. RESEARCH METHODOLOGY 
The general aim of the paper has been decomposed into a 

number of specific research questions: 

1) What are the driver assistance subtasks where it is 
reasonable to personalize parameters of the system and 
adapt them to the particular driver (according to the 
authors of the published papers)? 

2) What driver characteristics have to be accounted for in 
driver assistance personalization? 

3) What are the concrete models and methods are most 
widely employed for personalization and adaptation in 
driver assistance systems? 

4) What are qualitative and quantitative performance 
characteristics of driver assistance system are influenced 
by driver personalization and adaptation? How the 
efficiency of personalization and its effect are usually 
measured (in the current body of work)? 

5) What is the accepted experimental methodology 
(existing benchmarks/datasets etc.) for personalization 
research in driver assistance systems? 

These questions, first, set the specific targets during the 
analysis of the each publication, second, they structure the rest 

of the paper, as we dedicate one section to each of the 
questions. 

Literature selection for the review was done in the 
following way. We searched the Scopus database 
(www.scopus.com) for papers title, abstract or keywords of 
which contained the following terms: “driver  AND (assistance 
OR assist OR recommend) AND (personalization)” with no 
other restrictions. 

We scanned the abstracts of the papers and selected only 
papers which abstracts contained a clear indication that one of 
the distinguishing features of the paper’s contribution was 
some personalization and adaptation technique in the context of 
driver assistance or some reflection on the role of 
personalization in such systems. 

During the analysis of the selected papers we also included 
some referenced papers that were not included into the initial 
set (probably, due to limiting keywords). 

III. PERSONIZABLE DRIVER ASSISTANCE TASKS 
This section contains our findings about the driver 

assistance subtasks where it is reasonable to personalize 
parameters of the system and adapt them to the particular driver 
(according to the authors of the reviewed papers). 

We found that currently elements of personalization are 
implemented in variety of driver assistance tasks. These 
“personalizable” tasks can be divided into the following 
categories. 

A. Self-driving capabilities 
Although the area of self-driving capabilities is studied 

mostly in the context of autonomous cars, some elements of 
vehicle “autonomy” are becoming typical for human-driven 
cars. The most prominent example is adaptive cruise  
control [9]. 

Adaptive cruise control system is a driving comfort system 
for the longitudinal control of the vehicle: it maintains a steady 
speed as set by the driver while keeping a desired time gap with 
the leading vehicle. The driver is free to choose a set speed but 
can only choose between a number of predefined time gaps 
which they adjust manually [9]. 

The goal of personalization in adaptive cruise control 
systems is to mimic the acceleration profile of the driver to 
make the system behave as close to the driver as possible while 
maintaining the desired time gap. 

For more detailed review of personalization in the context 
of self-driving capabilities the interested reader should refer  
to [9]. 

B. Monitoring capabilities 
There are a number of driver assistance system’s 

capabilities dealing with regular analysis of situation outside 
and/or inside of a vehicle and warning the driver in case some 
dangerous or urgent situation is detected. 

We have found three types of monitoring where some 
research efforts has been undertaken to adjust the monitoring  
and classification of the events to the particular driver. 
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Forward collision warning. Forward collision warning 
systems alert drivers of an impending collision with a slower 
moving or stationary car in front of them. The goal of 
personalization in forward collision warning is to decrease the 
false alarm rate of the system and to increase the warning time 
to give the driver a longer reaction time (see [15]). 

Lane keeping. The task of lane keeping assistant is to alert 
the driver when the system detects that the vehicle is about to 
leave a traffic lane. The aim of personalization is to detect the 
lane departures early and to minimize the false alarm rate of the 
system. The way to minimization of false alarm rate is 
modeling typical driving habits of a driver to better 
“understand” current intent by driver action monitoring (see 
[23]). 

Drowsiness detection. Unlike the other capabilities 
mentioned under the category of driver monitoring, this one is 
targeted not on monitoring the situation around the car, but on 
monitoring the situation inside the car, specifically, the state of 
the driver. The goal of the system is to detect when the driver is 
sleepy and therefore his/her attention is reduced and provide 
some warnings to draw the driver’s attention to the situation on 
the road, or some recommendations on how to effectively 
combat drowsiness. While there are two distinct features in 
drowsiness detection systems, i.e., determining the drowsiness 
state and recommending an effective countermeasure, in our 
research we have found only publications aimed on 
personalization of determining the drowsiness state. 
Personalization is especially important for drowsiness detection 
based on physiological parameters, as a) visual indicators of 
drowsiness are relatively similar (like yawning), while 
physiological indicators (photoplethysmogram, galvanic skin 
response etc.) are characterized by high variability, b) based on 
physiological parameters it is possible to implement early 
detection of drowsiness (before any visual indicators appear) 
(e.g. [16], [17], [18]). 

C. Maneuver assistance 
Maneuver assistance is a popular kind of the functionality 

of driver assistance systems. It provides visual, audial or haptic 
support while performing a maneuver by monitoring the 
situation (usually, outside the vehicle) and suggesting actions to 
the driver or warning about possible threats. Specifically, we 
have found evidence of importance of personalization for 
assistance in several typical maneuvers. 

Lane change assistance. Lane change assistant monitors the 
situation in the lane vehicle is moving and adjacent lane and 
provides recommendations about acceptable opportunities of 
lane change (and also, possibly, required preparation – 
acceleration or deceleration). The rationale behind the 
personalization here is that different drivers have different 
acceptability criteria of the time gap in the adjacent lane and 
the relative speed. Providing recommendations without taking 
into consideration these individual preferences will decrease 
the driver’s trust to the system and acceptance of the system in 
general [10].  

Left turn assistance. Left turn (especially, from a minor 
road or on a non-regulated intersection) is complicated by a 

necessity to monitor the situation both from the left and from 
the right of the car. Left turn assistant helps the driver to 
monitor the approaching cars and estimate the expected time 
gap, as well as classify the time gap either as acceptable or not. 
The aim of the personalization here is to make the classification 
of the time gap as close as possible to the driver’s natural 
classification, as different drivers perceive different gaps as 
acceptable/comfortable [12], [19], and [20]. It is worth noting 
that in the reviewed materials there were not found any 
references to right turn assistance. It may be due to the fact, 
that right turn is a relatively simple maneuver. 

Route planning. The paper [11] proposes a personalized 
solution for intersection crossing, helping to select driving 
speed to optimize both fuel consumption and travel time 
(taking as many green lights as possible). The role of 
personalization here is twofold, first, on an upper level, it 
adjusts to driver’s tradeoff between speed and energy 
consumption, second, on a lower level, it takes into account 
typical acceleration and deceleration styles of the driver, to 
make recommendations more natural for him/her. 

IV. DRIVER CHARACTERISTICS 
This section discusses what particular characteristics and 

features are accounted in different kinds of driver assistance 
personalization and adaptation. A natural way to structure this 
section is by typical driver assistance tasks (derived in  
Section III). 

A. Self-driving capabilities 
The driver parameters taken into account for 

personalization of adaptive cruise control are: typical time gap 
to the car in the front, typical acceleration and deceleration (for 
more details refer to [9]). Typical here means that these 
parameters should be determined in the comparable context 
(i.e., following the other car). 

B. Monitoring capabilities  
Characteristics, that are used for monitoring driving state 

can be divided into three categories: 

 driving vehicle characteristics; 
 driver physiological characteristics; 
 driver behavior characteristics. 

Vehicle characteristics. Every car model has its own 
conditions, such as structure, weight, performance, depending 
on that vehicle behaves itself differently on the road. One of the 
application, that calibrate itself to detect events independently 
of different vehicle conditions, is SenseFleet [13]. 
Experimental evaluation of proposed approach shows that 
different car models may have different jerk deviation. Jerk is 
calculated as the time derivative of the acceleration magnitude. 
Another parameters, that are monitored for acceleration and 
steering event detection are average yaw rate, speed variation 
and bearing variation. 

Vehicles vary in weight and tires width. It affects friction 
force and energy absorption (the wider the tires are the higher 
surface friction is the higher energy absorption will be and the 
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heavier the vehicle is the higher energy absorption will be). 
Consequently, the real acceleration of vehicle and the one, 
experienced by the driver in the cabin, differ and every car 
model has its own difference value. To reduce the impact of 
this, developers of DriveSafe propose to calculate theoretical 
acceleration by multiplying angular and linear velocities and 
adjust accelerations events thresholds for every  
vehicle [21]. 

Driver physiological characteristics. Drowsy state can be 
recognized by eyes closeness, eye blinking rate, yawn or head 
bending. There is a research [18], that propose detect 
drowsiness by three feature: eyes aspect ratio (EAR – indicate 
eye blinking), mouth opening ratio (MOR – indicate yawning) 
and nose length ratio (LNR – indicate head bending, because 
the ratio of nose length to average nose length is measure of 
head bending). All these features are calculated by extraction 
facial landmarks from driver image using image recognizing 
methods. The size of eye (mouth and nose) can differ from 
person to person, so it is necessary to provide a calibration 
phase. During this phase average values of eye and mouth size 
and nose length for every person will be calculated. These 
values will be used as alert state values. Deviation from them 
will be the indicator of drowsy state. 

In [16] a personalized classifier for detection of driver’s 
drowsiness detection based on physiological data is proposed. 

It is based on the following driver characteristics, measured by 
a wearable device, described in [17]: photoplethysmogram 
(PPG), galvanic skin response (GSR), temperature (TEM), 
acceleration, and the rate of rotation. PPG is a signal that 
represents the change in blood volume in the blood vessels 
according to heartbeat. GSR is a signal that shows a change in 
skin conductance according to sweat gland activity. 

Behavior characteristics. It is also possible to detect 
drowsiness by some driving characteristics such as lane 
deviation indicators. There are Time to Line Crossing, Mean 
Squared Error for lane position and heading error (angle 
between driving vehicle’s direction and tangent line of driving 
lane). These lane deviation indicators proceed on the 
assumption that drowsy driver have problems in maintaining 
lane direction. There is an approach, that optimize indicator 
parameters to maximize detection accuracy [22]. 

In [15], proposing a forward collision detection, a driver is 
described by risk perception (unobservable variable) of a 
situation which is assumed to depend on two observable 
variables: time headway and inverse time-to-collision. 

An important kind of behavioral characteristics is a 
temporal model of a driver, connecting driving situation 
(application-specific), state (lane keeping, lane change etc.) and 
control inputs applied in such situation and in this state 

Fig. 1. Conceptual model of adaptive driver assistance system 
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(steering, acceleration). E.g., in [23] such model is used to 
detect possible lane departure. 

C. Maneuver assistance 
Considering maneuver assistance, it turns out that it is often 

impossible to name a single (and relatively simple) 
characteristic of a driver that is taken into account by a 
personalization routine. Instead, the whole process of 
personalization is aimed on learning some implicit decision 
rule inherent in the particular driver about safety and 
acceptance of a particular maneuver in a particular situation 
(described by a set of parameters). This inherent implicit rule is 
the most important driver-specific characteristic for this kind of 
driver assistance systems, however, it usually cannot be 
properly named unless by some rather vague phrase as “driving 
style”. Having said that, in this section we mostly describe 
measurable parameters that are considered by the authors of 
different publications as significant for maneuver-dependent 
situation analysis (and therefore, the parameters used to learn 
driver-specific classifier of the maneuver acceptance). 

The parameters taken into consideration while learning 
driver-specific decision rule for lane change are related to three 
vehicles: the leading vehicle in the origin lane, the leading 
vehicle in the destination lane and the following vehicle in the 
destination lane. Particular parameters taken into consideration 
are: relative speed between the subject and the vehicles of 
interest, distance between the subject and the vehicles of 
interest, the subject speed, direction of lane change and whether 
the lane change is mandatory or discretionary (mediated by 
blinker status) [10]. 

Also, if the gap is not acceptable, a driver has an option to 
align with the gap by increasing or decreasing the speed. In 
[10] the driver’s preferences for longitudinal adjustment are 
captured by two parameters: the driver’s willingness to perform 
adjustment and the preferred direction (both are encoded by 
empirical frequencies of the respective events). 

In left turn assistance, one approach (implemented in [12], 
[19]) is to use detailed characteristics of driving: speed, 
longitude and latitude acceleration and steering wheel speed, 
collected in previous maneuvers. The other approach is just to 
model one personalized parameter – acceptable time gap [20]. 

In general route planning, two types of driver characteristics 
(preferences) are taken into account: low level (influencing 
acceleration and deceleration) and high-level (reflecting 
general priorities and values of the driver) [11]. Low level 
characteristics are: maximum speed (in certain context), typical 
deceleration while braking, acceleration profile – a model, 
describing dependency of the acceleration from the speed (after 
a full stop), and preferred speed of crossing an intersection (at 
green light) in each of the possible directions – straight, to the 
left and to the right. As for the high-level parameters, a driver 
is described by the compromise between time of the travel and 
fuel consumption (in a form of weights of the respective trip 
characteristics). 

Fig.1 shows conceptual model of adaptive driver assistance 
system. There are represented some of possible options of 
measuring devices, sensor’s data and collected characteristics. 
The system, which contains all of this data isn’t considered in 
this paper. There are some devices with sensors, that provide 
data to system. One of the popular devices is smartphone, 

mounted on the windshield of the vehicle. It can collect data 
from accelerometer, gyroscope, GPS and cameras (back 
camera for road situation monitoring through lane or road 
objects detection, front camera for monitoring driver state such 
as drowsiness). Another device for monitoring driver state is 
some kind of wearable device, which can collect user’s heart 
rate or temperature data. Furthermore, some system can include 
processing of data, provided by vehicle’s sensors, such as 
speed or distance to heading object from radar. The system 
processes all collected data and pass it to event/state detection 
modules, which detect drowsy state or dangerous maneuvers. 
Some of data can be passed to calibration module to adjust 
personalized driver models. These models are used in 
event/state detection too. Depending on type of detected event, 
warning for user or recommendation to prevent dangerous 
situation is generated. The built-in systems with functions of 
lane keeping or adaptive cruise control can even intervene in 
vehicle’s control (for example, to prevent unintentional lane 
changing). 

V. METHODS OF ADAPTATION 
This section describes specific approaches and methods that 

are used to adapt driver assistance to real (or expected) 
behavior of a driver. First of all, all these methods can be 
divided into two groups: explicit and implicit. In explicit 
methods of adaptation the driver sets the parameters of the 
assistance system him-/herself. Obviously, it can work only 
with the parameters that can be easily interpreted by human 
driver. Usually these parameters express a kind of preference or 
a goal, e.g., in [11] a driver can explicitly set the weights 
assigned to two objectives of the route optimization task – fuel 
efficiency and travel time. In implicit methods, the system tries 
to adapt based only on the analysis of driver’s behavior. The 
methods of this group are much more numerous, and the rest of 
the section is dedicated to them. 

A. Adaptive thresholds 
A very popular technique in implementing driver assistance 

is using some threshold, separating acceptable values of some 
observable parameter from unacceptable. This technique is 
used in various driver monitoring (e.g., [13], [21], [18]) and 
maneuver assistance (e.g., [10]) systems. In the simplest case, 
thresholding is used for only one parameter (e.g., in [20] the 
left turn recommendation rule uses only time gap between 
vehicles – if time gap is more than the threshold, the assistant 
gives clearance for performing the maneuver), while in other 
cases there are several thresholds treated independently (e.g., in 
[8] there are independent thresholds on percentage of eyes 
closure and head nodding used to detect the drowsiness).  

 Usually threshold are set empirically. They are the same for 
different application’s users, cars and road context. However, 
in practice thresholds can differ depending on user state and 
driving style, road situation, vehicle characteristics. Therefore, 
many driver assistance systems employ adaptive thresholds. 
This turns out to applicable when the accepted region is defined 
by a hypercube in the feature space and this hypercube is 
defined exactly by the (observable) parameters describing the 
driver. There are various different techniques to adapt the 
thresholds. 

One of them is setting up a fuzzy system [24]. In this case, 
system performs two processes: calibration or fuzzification and 
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normal functioning of application, based on fuzzy rules. Each 
fuzzy rule compares input variables with set of fuzzy values 
and outputs a type of event (e.g. aggressive steering). 

Fuzzy system is implemented in SenseFleet application 
[13]. Calibration process includes collecting of a fixed number 
of input samples and the computation of their cumulative 
distribution function. After the collection of samples, the 
system adjusts the fuzzy variables and can start event detection 
process. In SenseFleet app each input sample consists of 
calculated from GPS and accelerometer speed variation, 
bearing variation, average yaw rate and jerk standard deviation. 
After calibration the system can determine each value as low, 
medium, high or very high (e.g. low speed variation). Fuzzy 
rule for detection of hard acceleration is:  

if  

(jerk standard deviation is HIGH or VERY HIGH) and  

(yaw rate is LOW) and  

(bearing variation is LOW) and  

(speed variation is HIGH-ACC)  

then event is acceleration.  

So, the system checks for high speed variation and low yaw 
rate and bearing change. 

Developers of SenseFleet application have noted, that fixed 
calibration phase can be non-representative because of 
abnormal conditions while calibration (if calibration is 
performed on low speed and accelerations, even normal 
acceleration will be marked as high). As a solution they suggest 
to use a continuous calibration, when input values are analyzed 
periodically. Another solution can be using dynamic 
calibration, when the system collect data for different speed 
and acceleration. Finally, system can use global parameters, 
that are computed from data, obtained from different users. 

To overcome problem of prior calibration developers of 
DriveSafe application propose an adaptive fuzzy classifier, 
which implements online calibration process based on 
adjusting threshold using data, obtained in certain route section 
such as concentrated turns and uniformed accelerations [21]. 
Input samples of this app contain data from accelerometer 
(accelerations in longitudinal and transverse axis), GPS (linear 
velocity) and gyroscope (angular velocity).  

For all features (az – longitudinal acceleration, ay – 
transverse acceleration, linear velocity and angular velocity) 
are set fixed threshold. Velocities are precise and their 
thresholds don’t need to be calibrated. At the same time az and 
ay values depend on vehicle and need to be adjusted. 

The ay – acceleration in transverse axis – gives acceleration 
experienced by the driver. The vehicle itself has another 
acceleration because it is provided with energy absorbing 
system. The value of absorbed energy depends on tire width 
and vehicle’s weight. To reduce the impact of this difference 
developers of DriveSafe propose to calculate theoretical 
acceleration by multiplying angular and linear velocities. The 
car, chosen as master vehicle, will perform some sharp turns to 
adjust one of thresholds. Theoretical acceleration for these 
events will be calculated, so there will be the theoretical range 
for thresholds. Now, if theoretical acceleration of another car 

falls in the range, the system get its acceleration as value to 
adapt threshold. In such way all thresholds are adjusted. The 
same process is performed for az value calibration. Theoretical 
longitudinal acceleration is calculated as second derivative of 
position of the vehicle obtained from GPS. 

Thresholds can be adapted without using of fuzzy rules. 
There is research, that propose to use the size of eye (mouth 
and nose) to detect drowsiness state [18]. These size can differ 
from person to person, so during the calibration phase average 
values of eye and mouth size and nose length will be 
calculated. Then, if eye size smaller than average will be 
detected, drowsiness state will be registered. The same rule 
with mouth size and deviation of nose length from average 
nose length. If one of parameter exceed the threshold on 70 
frames from 75 last frames, drowsiness is detected. Head 
bending and yawning are continuous processes, so if it is 
detected on consecutive frames, it will be registered as one 
event. 

Similarly, in [11] the averaging is used for estimating 
driver-specific deceleration while breaking, turn speed, 
intersection passing speed. 

In [20] an important parameter for left turn assistance in an 
acceptable time gap between cars. So, the system gives 
clearance when the gap is larger that some critical acceptable 
gap for the specific user. I.e., this critical acceptable gap is 
understood as an adaptive threshold, and the process of finding 
of the threshold is based on the assumption that this critical 
acceptable gap has a lognormal distribution and has a value 
between the shortest taken gap and the longest not taken. 
Therefore, the value of the driver-specific threshold is 
determined based on driver’s history by maximum likelihood 
estimation. 

In [22] authors use genetic algorithm to optimize indicator 
parameters for drowsiness detection. Indicators are Time to 
Line Crossing, Mean Squared Error for lane position and 
heading error. For detecting thresholding is used, rule for which 
contains parameters. These parameters can be set heuristically, 
but it does not ensure the best accuracy. To generate ground 
truth experts classify data samples into alert and drowsy state. 
Then, parameters for indicators were optimized with genetic 
algorithm. Because of lack of data this approach was not 
implemented to personalize system to particular driver, but to 
optimize parameters based on all available drivers data. 
Researchers noted, that it is hard to collect enough data for 
developing model for each individual driver. However, genetic 
algorithm could be used to optimize parameters to achieve 
personalization. 

So, basically, we have found three techniques for 
determining adaptive thresholds: 1) estimation of a threshold 
based on average for particular driver/vehicle, 2) estimation of 
the threshold by maximum likelihood method, under 
assumption of some specific distribution of the respective 
characteristic (a more elaborated example of the previous one, 
as averaging can be seen as maximum likelihood estimation 
under assumption of normal distribution), 3) fuzzy logic. 

B. Classifiers 
As it was already noted, thresholds on observable 

parameters allow to build only rather limited variety of decision 
rules, besides, adaptive thresholds are applicable only when it 
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is possible to describe a driver with some boundary value of an 
observable parameter (time gap, size of eyes and so on). In a 
more general case, a decision rule separating acceptable states 
from non-acceptable can be non-trivial and has to be modeled 
by a set of non-observable parameters of some driver-specific 
classification model. Personalization in this case is usually 
done by creating a specific classification model (based on the 
parameters listed in section IV) and learning the parameters by 
some machine learning algorithm (this approach is taken in 
papers [12], [15], [16]). After that, this classification model is 
used for personalized driver assistance. 

In [16] online SVM is used to train a driver specific 
classifier for detecting drowsiness based on physiological data: 
PPG, GSR, temperature, acceleration, and the rate of rotation 
are used in the proposed system to monitor the driver’s 
conditions. To learn the classifier the authors use ground truth 
provided by the driver (when warned about drowsiness state, a 
driver can agree or disagree with the system). 

In [12] and [19] a personalized decision model is built with 
a help of an artificial neural network. The authors experiment 
with two types of driver-specific input for this model the first 
uses statistical characteristics of previous turns (min and max 
acceleration) the second uses the LSTM-models of the previous 
turns. 

In [15] decision tree learning is used to adjust the decision 
rule to the actual decision-making of the driver. 

One of the most interesting issues here is to implement a 
trade-off between a non-personalized solution (where there is a 
plenty of data but not very adapted to particular driving habits) 
and a personalized one (where there is much less data, but 
relevant to a particular driver). Surprisingly, we have found not 
so many papers that actively explore this tradeoff. A good 
example may be [16]. 

C. Personalized functional dependencies 
Some authors propose to model personalized functional 

dependencies between some parameters. In some cases such 
dependencies play a role very similar to a classifier. E.g., in 
[10] a linear regression is used to predict acceptable gap for the 
lane change from the current road situation. In other cases these 
dependencies are used for personalized planning, for example, 
in [11] a driver-specific dependency of acceleration from speed 
(with a help of other parameters) allows to estimate energy 
consumption of an intersection crossing schedule. 

D. Personalized temporal patterns 
In some driver assistance systems driver-specific temporal 

sequences (e.g., steering sequences) are learned. These 
sequences are then exploited to predict future state of the car 
and recognize driver’s intent. One of the most popular learning 
frameworks for this kind of driver models is Hidden Markov 
Model (HMM). E.g., HMM connecting driving situation, state 
and control inputs from the driver is used in [23] to detect 
possible lane departure. 

VI. QUALITY OF PERSONALIZATION 

In general, there are two (non mutually exclusive) types of 
declared goals for personalization in driving assistance 
systems: a) to mimic driving behavior of a particular driver (if 
it comes to elements of self-driving, e.g. cruise control) or to 

provide the most natural recommendations for a particular 
driver, b) to increase the overall acceptance of the system. 

Quite symmetrically, effectiveness of personalization and 
adaptation is measured in the research papers under review in 
two different ways. In this paper we call them objective and 
subjective effectiveness respectively. 

A. Objective effectiveness 
The methods of this group are characterized by the fact that 

they use actual actions performed by the driver and actions 
recommended (or performed) by a driver assistance system. 
They are designed to formally measure the degree of 
accomplishment of some local (specific) goal of the system (or 
particular function of a system). For cruise control there are 
driver’s actions and decisions while following vs. adaptive 
cruise control system. For external monitoring (forward 
collision warning system of lane keeping) there is subjective 
evaluation of a situation by the driver vs. evaluation made by a 
personalized model. For driver monitoring system there is real 
state of the driver vs. state of the driver evaluated by a 
personalized model. Anyway, there is some actual driver’s 
decision, evaluation or state, and the respective entity predicted 
by a personalized model. The correspondence between actual 
and predicted driver’s decision, evaluation or state is performed 
in some way typical for machine learning – by leveraging one 
of appropriate quality measures: accuracy, F1 etc. The 
particular effect of personalization corresponds to how the 
quality measure improves when a non-personalized model, 
trained with different drivers, is changed to a personalized one. 

This approach is utilized in [12], [13], [16], [18] and [21]. 
E.g., [16] compares accuracy of drowsiness prediction with 
models build only with one driver, all drivers and some hybrid 
scheme (a contribution of the authors), [12] compares F1 score 
and accuracy of left turn acceptance prediction by model 
utilizing previous turns made by a particular driver and by 
driver-agnostic model. 

B. Subjective effectiveness 
The subjective effectiveness of the adaptation addresses the 

user’s satisfaction and user acceptance of the system. 
Interesting fact is that although several reviewed papers noted 
that one of the goals of personalization is increasing user 
acceptance (e.g., [10], [11]), direct measurement of the change 
in user evaluation of the system and user acceptance was 
performed only in [20]. Specifically, it analyses how the 
acceptance and efficiency of the left turn assistance system can 
be increased by a personalization of the recommended gaps to 
the individual driver. 

Typical instrument for performing a subjective evaluation is 
a carefully composed questionnaire and feedback collection 
protocol. For example, in [20] the participants were asked to 
drive under three conditions: a “manual drive” where the 
assistance system was not activated, a default assistance system 
drive and the personalized assistance system drive (the 
participants were not informed on differences between them). 
After each drive the participants were asked to fill in a 
questionnaire. Finally, another questionnaire with a direct 
comparison between the personalized and non-personalized 
assistance systems was answered by the participants. In 
addition, the participants were asked to give feedback about the 
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appropriateness of the time gaps after every intersection during 
drives with assistance systems (both personalized and non-
personalized). The questionnaires included following aspects: 
usefulness (useful, intuitive, easy to use, reliable, relied on 
system, time gaps comfortable), workload (relieved, facilitated 
monitoring, facilitated decision), affective evaluation (liked to 
use, not annoying) and safety (felt safe in usage, increased 
traffic safety). 

VII. METHODS OF EVALUATION 
Our review confirms typical approaches of evaluation 

personalization models and techniques enumerated in [9]: 

- Offline evaluation. This approach relies on raw data 
collected from several drivers (in a real or modelled 
environment) probably including some additional markup (i.e. 
maneuver assistance models rarely need additional markup, as 

all the input and output parameters of the model are usually 
contained in the recorded actions and environment, while 
driver state monitoring models usually requires some ground 
truth markup). The data is processed by an assistance model 
and the results of the model are compared to the registered 
actions (or ground truth in the dataset). The effect of the 
personalization is measured by comparing output of the 
personalized model to the output of the non-personalized 
model. Examples of papers using this approach are: [10], [11], 
[12], [18], and [21]. 

- Simulation. The assistance model is deployed in a 
simulated environment. Each driver usually has several drives 
allowing to compare personalized and non-personalized 
assistants. Evaluation by simulation is done, e.g. in [20]. 

- Field study. Driving with an assistance model in real life 
conditions. 

TABLE I.  SUMMARY OF THE REVIEWED PAPERS 

Task Characteristics Methods Effectiveness 
measurement

Experiments References

Forward Collision 
Warning 

Driver specific probability distribution of 
the danger level of a situation, 
Time headway, Time to collision, Risk 
perception 

Recursive least squares, 
Decision tree learning 

Objective (accuracy, 
precision. true positive 
rate, true negative rate, 
false alarm rate)

Offline 
evaluation 

[15]

Lane Keeping Velocity, distance to the lane center, 
steering 

HMM Objective (rate of 
successful 
interventions, rate of 
false alarms)

Offline 
evaluation 

[23]

Drowsiness 
Detection 

EAR, MOR, LNR (camera) Adaptive fixed 
thresholding (averaging) 

Objective (sensitivity, 
specificity, accuracy) 

Offline 
evaluation 

[18]

PPG, GSR, TEM (wearable device) 
Acceleration 
Rate of rotation

Online SVM Objective (accuracy, 
total operation time) 

Offline 
evaluation 

[16], [17]

Heading error, lane position, time to 
collision 

Genetic algorithm Objective ( sensitivity, 
specificity, accuracy) 

Offline 
evaluation 

[22]

Lane Change 
Assistance 

Relative speed 
Distance to leading and following 
vehicles, speed, lane change direction

Linear regression Subjective Offline 
evaluation 

[10]

Left Turn Assistance Speed, accelerations, steering wheel speed 
(from previous experience) 

ANN (LSTM) Objective (accuracy) Offline 
evaluation 

[12], [19]
 

Acceptable time gap Adaptive thresholding 
(maximum likelihood)

Subjective Simulation [20]

Route Planning Maximum speed, typical deceleration, 
acceleration profile, compromise between 
time and fuel consumption 

Adaptive fixed 
thresholding (averaging), 
Personalized functional 
dependency

Subjective Offline 
evaluation 

[11]

Acceleration/steering 
event detection 

Jerk deviation 
Average yaw rate 
Speed and bearing variation 

Adaptive thresholding, 
Fuzzy system 

Objective (sensitivity, 
specificity, accuracy) 

Offline/Field 
study 

[13]

Linear and angular velocities 
Accelerations 

Adaptive thresholding, 
Fuzzy system

Objective (recall, 
precision)

Offline 
evaluation 

[21]
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It should be noted that offline evaluation may include prior 
simulation (to collect the data). The key difference between 
offline evaluation and other approaches is that with offline 
evaluation the data is collected without the implemented driver 
assistance model. It should also be noted that particular 
evaluation technique is connected with the quality measures 
selected by the researchers. In offline evaluation it is possible 
to estimate only objective effectiveness (as the model being 
verified does not influence actions of the driver). On the other 
hand, experiments in simulated environments and field test 
allow to estimate both subjective and objective effectiveness of 
the model. 

The number of drivers used to evaluate models in the 
reviewed papers ranges from three [10], [11] to 32 [12]. 

VIII. CONCLUSION 
The aims of the research have been achieved. We have 

identified main approaches used for personalization in driver 
assistance systems, as well as directions of personalization and 
evaluation approaches (the approaches from the reviewed 
papers are summarized in Table I). 

The review allowed us to identify several research gaps that 
have to be addressed in further research. 

First, there is significant limitation of the driver’s sample 
(e.g., see [22]), which is currently addressed either by structure 
of the model (that is why most models have rather few 
parameters) or by hybrid schemes allowing to account for both 
the specific driver and other drivers (we have found only one 
such paper – [16]). There is a need to systematically research 
the idea of such hybrid personalization methods. 

Second, there is a gap in evaluation driver assistance 
quality. The fact is that one of the main reasons for applying 
personalization is usually called improving user acceptance, 
that is, increasing driver confidence in the system, greater 
willingness to listen to recommendations, etc. However, in 
practice these characteristics are not analyzed – instead typical 
measures of quality characteristic of machine learning tasks 
(accuracy, F1 etc.). Apparently, the measurement of the impact 
of personalization in various driver assistance tasks on user 
acceptance of the system is on the research agenda. 

Third, the fundamental problem in the personalization of 
driver support systems is to find a balance between obviously 
safe parameters (recommended for most drivers) and 
personalized ones. The essence of the contradiction is that the 
safe parameters seem to be too conservative for drivers 
characterized by aggressive driving style, therefore, they are 
not credible and lead to the abandonment of the use of the 
assistance system. Probably, a more complicated process is 
possible here, including building trust and its exploitation, 
which can serve as a separate subject of study in organizing 
human-machine interaction in a given class of systems. It is 
also important to research how personalization affects traffic 
accident probability. Currently, personalization (especially, in 
maneuver acceptance prediction) techniques are evaluated 
mostly by measuring how a personalized model fits the style of 
a driver, while the whole idea of driver assistance is to reduce 
the possibility of an accident which in some sense is a 
conflicting goal (especially when it comes to aggressive driving 

style). It would be interesting to organize experiments in a 
simulated environment to explore this tradeoff. 
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