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Abstract–The winning in the multiplayer online game Dota 2
for teams is a sum of many factors. One of the most significant of 
them is the right choice of heroes for the team. It is possible to 
predict a match result based on the chosen heroes for both teams. 
This paper considers different approaches to predicting results of 
a match using machine learning methods to solve the 
classification problem. The experimental comparison of 
predictive classification models was done, including the 
optimization of their hyperparameters. It showed that the best 
classification models are linear regression, linear support vector 
machine, as well as neural network with Softplus and Sigmoid 
activation functions. The fastest of them is the linear regression 
model, so it is best suited for practical implementation.

I. INTRODUCTION 
Computer games have become an important social, cultural 

and economic factor. Multiplayer online games currently 
attract a large number of players and have a wide audience of 
observers. In addition, there is a growing interest in games 
related to eSports. 

ESports includes team or individual competitions based on 
computer games. All eSports disciplines are divided into 
several main classes, which differ in the properties of spaces, 
models, game problem and developed skills of cyber 
sportsmen. Multiplayer Online Battle Arena (MOBA) games 
are among the most popular in eSports. 

Prediction about the results of matches in sports games has 
always been a popular topic in the machine learning area. 
Sports analytics is often used to make decisions in professional 
kinds of sport. Therefore, it can be assumed that such systems 
will also be useful for users of multiplayer online games. 

MOBA is a genre of computer games that combines the 
real-time strategy and computer role-playing. One of the most 
popular games in the MOBA genre is Dota 2 developed by 
Valve Corporation. Nearly 500 thousand players play it every 
day. So, it was selected as a subject of the current research.  

In Dota2, two teams of players fight on a certain type of 
maps in real time. The map is a combination of three lines 
(top, middle and bottom) and the area between them (jungles). 
Each player controls one hero, which he chooses from a list of 
heroes. Heroes differ from each other in various features and 
characteristics. During the match, heroes can become stronger, 
develop new skills, enhance their characteristics and acquire 

objects. The goal of the game is the destruction of the main 
building belonged to the enemy’s team by player controlled 
heroes and creeps controlled by artificial intelligence. 

Section 2 describes the existing approaches to solving the 
problem of increasing the efficiency of a team in the 
multiplayer online game DOTA 2. Formulation of machine 
learning problem for DOTA 2 and preparation of the training 
dataset are considered in Section 3. Section 4 presents the 
classifying models chosen from well-known frameworks, the 
classifiers are used to solve the formulated problem. 
Comparative study results of the classifying models trained on 
the prepared dataset, the optimization of their 
hyperparameters, as well as the results of neural network study 
(on CPU, GPU and TPU) and its hyperparameter optimization, 
are described in Section 5. 

II. RELATED WORK

There are many different approaches to solving the 
problem of increasing the efficiency of a team in the 
multiplayer online game DOTA 2. 

The success of the team is influenced by many different 
factors. They can be divided conditionally into two groups: the 
personal contribution of each player and the principle of team 
building. 

The first group includes such characteristics as the player’s 
experience, the sequence of his actions in the game, made 
decisions, etc. Paper [1] considers player models and methods, 
which can get results closest to the behavior of a real player. 
Player models take into account the choice of hero skills 
depending on the game situation and the sequence of such 
choices to increase their skills. The choice of items for 
purchasing by hero was also considered as part of studying the 
influence of the hero’s personal contribution to the success of 
the whole team [2]. 

More attention is paid to the principle of team building. In 
[3] Nataliia Pobiedina and others prove that a correct choice of 
heroes by player is the factor, which has the most significant 
effect on the success of a team in the game. 

There are several approaches to choosing the heroes for the 
match. Existing services, such as DotaBuff [4] and DotaPicker 
[5], use analysis of statistic information obtained from played 
matches. These statistics are updated sometime after each 
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release of the new update in the game to actualize available 
information. 

Machine learning is another approach, which is used for 
the selection of heroes in the game.  

In [6] Filip Beskyd considers a decision tree and a neural 
network to predict the outcome of the game based on chosen 
heroes.  

Zhengxing Chen and others [7] compared Monte-Carlo 
method, logistic regression and gradient boosting to predict the 
outcome of a match. 

It worth nothing that all authors, who use the machine 
learning approach in their research, gain accuracy ranged from 
50% to 70%. Moreover, the use of the same machine learning 
models by different researchers gives different results. This 
happens because these models are applied to different datasets 
or they are configured by different hyperparameters or 
structures (for neural networks). 

At present, there are no studies, which can help to choose 
the most efficient set of hyperparameters that affect the 
accuracy of predicting game outcome. 

III. FORMULATION OF MACHINE LEARNING PROBLEM AND
DATASET PREPARATION

The problem of our research is to build an effective 
algorithm for predicting match results based on information 
about the DOTA 2 heroes chosen by players. This problem is a 
binary classification problem with two output classes meaning 
victory for the “radiant” or “dire” team. 

The OpenDota API allows developers to get data about 
Dota 2 matches. The information about 56,690 matches played 
in 2018 was obtained through the OpenDota API. This 
information corresponds to a number of requirements. 

First, game modes must be such that each hero has a non-
zero probability of appearing in the game. Such modes are “all 
pick” (each player chooses one from all the heroes), “single 
draft” (each player chooses one from three random heroes), 
“all random” (each player gets a random hero), “random draft” 
(players take turns choosing heroes from a pool of 50 random 
heroes), “captain’s draft” (each team is assigned a captain who 
chooses heroes from the list of random heroes), “captain’s 
mode” (each team is assigned a captain who chooses heroes 
for his team and prohibits ones for opponents). 

Secondly, the skill level of the players in the match must 
be high. Such a requirement is necessary, so only those 
matches are considered to learn our model, in which heroes are 
selected based on any strategic considerations. 

Thirdly, only those matches are taken into account in 
which players do not leave the match until the end. This is 
necessary so that the math result depends only on skills and 
choice of the team's heroes, and doesn’t depend on the balance 
and the number of players. 

Based on downloaded data, a training set of labeled data 
was created consisting of pairs of vectors (x, y). Here x is a 
vector of size 216, which contains information about picks 

(pick is the choice of a hero), the first half of which is for the 
“radiant” team, the second half for the “dire” team: 

radiant" team
 had played with the hero  

" team
 had played with the hero 

There are 108 different heroes, and each of them can be 
selected once by both teams. Vector  contains information 
about the match result: 

For further research, it was necessary to compare various 
classification methods and select the optimal combination of 
their hyperparameters. 

IV. CLASSIFICATION MODELS FOR SOLVING THE
PROBLEM 

Gradient Boosting Classification (GBC) is a machine 
learning method for solving regression and classification 
problems that creates a prediction model as a linear 
combination of basic classifiers, which minimize the 
differentiated loss function. 

Random Forest Classification (RFC) is a machine learning 
algorithm that uses a set of decision trees, which reduces 
retraining problems and improves accuracy in comparison 
with a single tree. The result is obtained by aggregating the 
responses of multiple decision trees. 

XGBoost Classification (XGBC) uses pre-sorted algorithm 
and Histogram-based algorithm for computing the best split 
[8].  

Logistic regression (LR) is a method for constructing a 
linear classifier to estimate a posteriori probabilities of 
belonging objects to classes. It is a statistical model used to 
predict the probability of an event occurring by fitting data to a 
logistic curve. LR is a very powerful algorithm, especially for 
high-dimensional problems. It is actively used in Kaggle 
competitions along with tree boosting approaches. 

Linear support vector classification (LSVC) is an 
algorithm for solving classification problems using only the 
linear core. Compared to the SVM algorithm, Linear SVC 
learns faster and scales better. 

CatBoost Classification (CBC) is a machine learning 
algorithm using gradient boosting on decision trees, it 
available in the CatBoost library from Yandex. It is a follower 
of the MatrixNet algorithm, which is used for ranking and 
forecasting. Also, it is the base for recommender technologies. 

The implementations of classification methods for training 
and testing were used from the Scikit-learn, XGBoost and 
CatBoost libraries. Keras with Tensorflow were used to 
implement the neural network.  
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We chose these libraries due to their popularity, high level 
of optimization, availability of good documentation, examples, 
as well as a large community of users. 

Python was used to develop a Jupyter notebook for training 
and evaluation of abovementioned algorithms. 

V. EXPERIMENTAL STUDY OF MODELS 
Training and testing of models were carried out with 

Google Colaboratory. It is a cloud service to access a remote 
machine with machine learning software. The virtual 
environment provided by Google has the following 
characteristics: Intel (R) Xeon (R) CPU with a clock frequency 
of 2.20GHz and 1 core, 13GB of RAM, 33GB of free memory. 
All necessary machine-learning libraries (except CatBoost) 
and their dependencies are included to it. CatBoost was 
installed with pip command line tool for Python. 

All data is divided into training and test sets. The test set is 
10% of the total data, i.e. 5670 matches. 

Evaluation of the efficiency of classification models was 
carried out using the k-fold cross-validation method (5 
blocks). For each classification algorithm, the parameters were 
optimized using the GridSearchCV algorithm, which performs 
a complete enumeration by a manually defined subset of the 
space of hyperparameters of the training algorithm. Table I for 
each classification model presents the hyperparameters and 
their enumerated values. Table II shows the best combinations 
of hyperparameters for each model. 

TABLE I. ENUMERATED  VALUES OF HYPERPARAMETERS OF CLASSIFICATION 
MODELS 

Model Hyperparameter Values 

LR 
penalty l1, l2

C 0.001, 0.01, 0.1, 1.0, 10.0 
solver lfbgs

LSVC 
C 1, 10, 100 

Gamma 0.001, 0.01, 0.1, 1.0, 10.0 

GBC 

loss deviance
max_features sqrt, log2

criterion mae, friedman_mse
n_estimators 10

RFC 

n_estimators 200, 500
max_features log2, auto, sqrt
max_depth 10, 25, 50 

criterion gini, entropy

XGBC 

colsample_bytree 0.6, 0.8, 1.0 
learning_rate 0.05, 0.1

silent 1
nthread 2, 4, 8 

min_child_weight 1, 5, 10 
n_estimators 5
subsample 0.6, 0.8, 1.0 
max_depth 3, 4, 5 
objective binary:logistic

CBC 

iterations 50, 100
depth 4, 6, 8 

loss_function Logloss, CrossEntropy
verbose True

learning_rate 0.01, 0.03, 0.1 
l2_leaf_reg -4, 0, 4

TABLE II. OPTIMAL VALUES OF HYPERPARAMETERS OF CLASSIFICATION 
MODELS 

Model Hyperparameter Hyperparameter 
meaning 

Optimal 
value 

LR 

penalty Used to specify the norm 
used in the penalization l1 

C Inverse of regularization 
strength 1.0 

solver Algorithm to use in the 
optimization problem lfbgs 

LSVC 

C Penalty parameter C of 
the error term 10 

Gamma 
Kernel coefficient for 

‘rbf’, ‘poly’ and 
‘sigmoid’ 

1 

GBC 

loss Loss function to be 
optimized deviance 

max_features 
The number of features 

to consider when looking 
for the best split 

sqrt 

criterion The function to measure 
the quality of a split mae 

n_estimators 
The number of 

estimators as selected by 
early stopping 

10 

RFC 

n_estimators The number of trees in 
the forest 500 

max_features 
The number of features 

to consider when looking 
for the best split 

log2 

max_depth The maximum depth of 
the tree 50 

criterion The function to measure 
the quality of a split entropy 

XGBC 

colsample_bytree 
The subsample ratio of 

columns when 
constructing each tree 

1.0 

learning_rate 
Step size shrinkage used 

in update to prevents 
overfitting 

0.05 

silent Verbosity of printing 
messages 1 

nthread 
Number of parallel 
threads used to run 

XGBoost 
4 

min_child_weight 
Minimum sum of 

instance weight (hessian) 
needed in a child 

10 

n_estimators The number of trees in 
the forest 5 

subsample Subsample ratio of the 
training instances 1.0 

max_depth Maximum depth of a tree 5 

objective Learning task parameter binary:lo
gistic 

CBC 

iterations The metric to use in 
training 100 

depth 

The maximum number 
of trees that can be built 
when solving machine 

learning problems 

6 

loss_function The metric to use in 
training Logloss 

verbose Defines the logging level True 
learning_rate The learning rate 0.1 

l2_leaf_reg L2 regularization 
coefficient 4 
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Table III presents the values of the efficiency (for optimal 
hyperparameters) and the learning time for each classification 
model.  

The ROC AUC (Receiver Operating Characteristic Area 
Under Curve), which represents the area bounded by the ROC 
curve and the axis of the fraction of false positive 
classifications, was used as a metric for assessing the 
efficiency of classifiers. 

This metric is used because the data is not balanced, that is, 
the number of instances in each of the classes is not the same. 
For such data, it is better to use the ROC AUC metric, rather 
than accuracy, since it is based on True Positive Rate and 
False Positive Rate. 

TABLE III. EVALUATION OF THE EFFICIENCY OF CLASSIFICATION MODELS 

Model ROC AUC Time, seconds
LR 0.7739 0.20

LSVC 0.7739 1.53
GBC 0.7409 16.01
RFC 0.7002 1.36

XGBC 0.7402 18.61
CBC 0.7673 12.85

The analysis of able  shows that LR and 
LSVC algorithms provide the greatest efficiency of 
classification, CBC – slightly less value of AUC. The 
fastest method is the LR algorithm. The remaining 
algorithms have AUC value close to 0.7.  

Fig.1 and Fig. 2 show the normalized confusion matrices 
for LR and LSVC algorithm. Both models are difficult 
to classify the “radiant” team due to imbalanced 
dataset. 

Fig. 3 shows the ROC curves that allow evaluating the 
quality of the classification. They display the relationship 
between True Positive Rate and False Positive Rate. 
According to the results, the best classifiers are LR, LSVC and 
CBC. 

A neural network also can be used to solve the 
classification problem. Fig. 4 shows the scheme of the neural 
network obtained by the TensorBoard visualizer. 

Fig. 1. Normalized confusion matrix for LR algorithm 

Fig. 2. Normalized confusion matrix for LSVC algorithm 

Fig. 3. ROC curves of classification models 

Code Fragment 1 shows the code for the Keras framework 
which describes the creation of this network. Used 
hyperparameters are presented in Table 4. The network input 
layer is a binary vector of 216 values, which is then divided 
into two parts x_radiant and x_dire using Keras Lambda 
layers, then the Dense layers hero_layer_1, hero_layer_2, 
hero_layer_1_1, hero_layer_2_1 are applied to them, which 
are necessary to eliminate the influence of the heroes on the 
“dire” or “radiant” team on the match result, the resulting 
output vectors are concatenated. Then there are three more 
hidden Dense layers together with dropout regularization 
layers to get a solution. The output layer of the neural network 
is the Dense layer with 1 neuron and the Sigmoid activation 
function. This network architecture was considered by Mark 
Dunne in [9]. 

Code Fragment 1 Neural network for Keras framework 
# Input layer, which represents a vector of 216 binary values 
input = Input(shape=(216,)) 
# Lambda layer, which extracts the first 108 values of input as 
x_radiant (choice of “radiant” team) 
x_radiant = Lambda(lambda x: x[:, :108])(input)  
# Lambda layer, which extracts the next 108 values of input 
as x_dire (choice of “dire” team) 
x_dire = Lambda(lambda x: x[:, 108:])(input)  
# Dense layer of NUM_UNITS_IN_FIRST_LAYERS 
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neurons  
hero_layers_1 = Dense (NUM_UNITS_IN_FIRST_ 
LAYERS, activation='relu') 
# Apply it to x_dire, the output is dire_layer1 
dire_layer1 = hero_layers_1(x_dire) 
# Apply it to x_radiant, the output is radiant_layer1 
radiant_layer1 = hero_layers_1(x_radiant) 
# Dense layer of NUM_UNITS_IN_FIRST_LAYERS 
neurons  
hero_layer_2 = Dense (NUM_UNITS_IN_FIRST_ LAYERS, 
activation='relu') 
# Apply it to dire_layer1, the output is dire_layer2 
dire_layer2 = hero_layer_2(dire_layer1) 
# Apply it to radiant_layer1, the output is radiant_layer2 
radiant_layer2 = hero_layer_2(radiant_layer1) 
# Concatenate dire_layer2 and radiant_layer2 
conc = concatenate([dire_layer2, radiant_layer2]) 
# Apply dropout regularizations  
dropout1 = Dropout(DROPOUT1)(conc) 
dropout2 = Dropout(DROPOUT2)(dropout1) 
#  Dense layer of NUM_UNITS_HIDDEN1 neurons 
hidden1 = Dense(NUM_UNITS_HIDDEN1, 
activation='relu')(dropout2) 
# Dropout regularization 
drop_hidden1 = Dropout(DROPOUT2)(hidden1) 
#  Dense layer of NUM_UNITS_HIDDEN2 neurons 
hidden2 = Dense (NUM_UNITS_HIDDEN2, 
activation='relu')(drop_hidden1) 
# Dropout regularization 
drop_hidden2 = Dropout(DROPOUT2)(hidden2) 
#  Dense layer of NUM_UNITS_HIDDEN3 neurons 
hidden3 = Dense (NUM_UNITS_HIDDEN3, 
activation='relu')(drop_hidden2) 
# Output layer 
output = Dense(1, activation='sigmoid')(hidden3) 
# Final Keras model 
model = Model(inputs=input, outputs=output) 

The hyperparameters of the neural network were optimized 
by the GridSearchCV algorithm. Table IV contains the 
meaning and possible values of each parameter. The optimal 
combination of hyperparameters is shown in Table V. 

TABLE IV. ENUMERATED VALUES OF HYPERPARAMETERS OF NEURAL 
NETWORK 

Hyperparameter Hyperparameter meaning Value
DROPOUT1 Percentage of dropped values 

of neurons outputs 
0.3, 0.5 

DROPOUT2 0.3, 0.5
BATCH_SIZE Number of training samples in 

the batch 
512, 
1024 

NUM_EPOCHS Number of epochs 50, 100, 
150 

NUM_UNITS_IN_FIRST
_LAYER 

Number of neurons in the first 
and second hidden layers 

50, 80, 
100 

NUM_UNITS_HIDDEN1 Number of neurons in the 
hidden layer that is the first 

after concatenation layer 

150, 120, 
100 

NUM_UNITS_HIDDEN2 Number of neurons in the 
hidden layer that is the second 

after concatenation layer 

100, 75, 
50 

NUM_UNITS_HIDDEN3 Number of neurons in the 
hidden layer that is the third 

after concatenation layer 

50, 25, 
10 

Fig. 4. Neural network scheme 

TABLE V. THE OPTIMAL COMBINATION OF THE NEURAL NETWORK 
HYPERPARAMETERS

11 Value
DROPOUT1 0.5
DROPOUT2 0.5

BATCH_SIZE 512
NUM_EPOCHS 100

NUM_UNITS_IN_FIRST_LAYER 80
NUM_UNITS_HIDDEN1 100
NUM_UNITS_HIDDEN2 50
NUM_UNITS_HIDDEN3 25

The neural network training was conducted using the 
Google Collaboratory. This service provides the opportunity to 
train models on GPU Tesla K80 with 13 Gb of video memory 
and on TPU – Tensor Processing Unit from Google, which is 
intended for a larger volume of computations with reduced 
precision. TPU uses XLA (Accelerated Linear Algebra) –
compiler that optimizes TensorFlow computations. 
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Table VI shows the results of neural network training on 
CPU, GPU and TPU for optimal combination of 
hyperparameters. 

TABLE VI. NEURAL NETWORK TRAINING ON CPU, GPU AND TPU 

Hardware 
accelerator 

Time, seconds ROC AUC 

CPU 828.52 0.7711
GPU 547.32 0.7705
TPU 304.92 0.7716

We can conclude from obtained results that the fastest way 
of training the neural network is using TPU, which is nearly 
1.8 times faster than GPU Tesla K80.  

Table VII presents the AUC values for the neural network 
depending on the number of hidden layers after the 
concatenation layer in its structure. Training of the neural 
network was performed taking into account the optimal 
combination of hyperparameters. 

TABLE VII. TRAINING OF THE NEURAL NETWORK FOR A DIFFERENT NUMBER OF 
HIDDEN LAYERS 

Number of 
hidden layers 

Time, s ROC AUC 

1 56134.62 0.7273
2 56285.84 0.7493
3 547.32 0.7705
4 698.84 0.7630

Analysis of the results shows that the most optimal in 
terms of training time and efficiency are three hidden layers in 
the structure of the neural network. 

In addition, different activation functions were considered 
(see Table VIII). Activation functions Softplus, Softsign, 
ReLU, Tanh and Sigmoid show good values of ROC AUC 
metric. Tanh and Sigmoid demonstrate the best values. The 
least efficient is the Exponential function. 

Thus, the best implementation of neural network should 
use the optimal hyperparameters from Table V, Softplus or 
Sigmoid activation function and contain three hidden layers 
after the concatenation layer in its structure. For the best 
performance, it can be trained on TPU. 

VI. CONCLUSION

Analysis of the classification models shows that the 
maximum value of ROC AUC metric that can be archived 
with hyperparameter optimization is 0.77. In this case, the best 
models are Linear Regression, Linear SVC and neural network 
with the activation functions Softplus and Sigmoid. The fastest 
of them is the linear regression model, so it is best suited for 
practical implementation. 

TABLE VII. COMPARISON OF ACTIVATION FUNCTIONS 

ACTIVATION FUNCTION ROC AUC 
SOFTMAX 0.7686

ELU 0.7696
SELU 0.7697

SOFTPLUS 0.7740
SOFTSIGN 0.7704

RELU 0.7715
TANH 0.7702

SIGMOID 0.7740
EXPONENTIAL 0.6197

In the future, we plan to study other factors potentially 
affecting the outcome of a match, such as player experience, 
characteristics of heroes and their synergy within a team. They 
can improve the efficiency of classification models and 
provide more accurate information about the match 
outcome.  

In this case, it will be necessary to use different feature 
engineering techniques, which are not applicable to the 
classification problem in its current formulation. 
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