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Abstract—The article analyzes the paths and algorithms for 
automating the monitoring of computer system states by means 
of intellectual analysis of unstructured system log data in order to 
detect and diagnose abnormal states. This information is 
necessary for technical support to locate the problem and 
diagnose it accurately. Because of the ever-growing log size, 
mining data mining models are used to help developers extract 
system information. At the first stage, logs are collected with 
records of system states and information on the execution of 
processes. At the second stage, the log parser is used to retrieve a 
group of event templates, with the result that the raw logs are 
structured. At the third stage, after the logs are parsed into 
separate patterns, they are additionally represented as numerical 
vectors of attributes (attributes). The set of all vectors forms a 
matrix of signs. In the fourth stage, the feature matrix is used to 
detect anomalies of machine learning methods to determine 
whether the new incoming log sequence is abnormal or not. A 
decision tree was used as a classification method for machine 
learning. Using the example of a distributed HDFS data set, the 
effectiveness of the considered method for detecting anomalous 
system states is shown. 

I. INTRODUCTION 
The main purpose of the system log is to record system 

states and important events at various critical points to help 
debug system failures and perform root cause analysis. Log 
data is an important and valuable resource for understanding 
the state of the system and its performance, so various system 
logs are an excellent source of information for online 
monitoring and the detection of anomalies [1], [2], [3], [4], [6]. 

By anomalous, we mean instances in a data set that do not 
correspond to the regular behavior of the system. The anomaly 
detection system consists of four successive stages: the collection 
of initial data, analysis and processing of the log, the extraction of 
features and numerical representation, the construction of an 
anomaly detection model [8], [12], [13], [14]. 

The purpose of the analysis and processing of system logs 
(parsing) is to separate the permanent and variable parts of 
messages and the formation of patterns (templates) of events 
[9], [10]. To use the observed unstructured data in machine 
learning algorithms, it is necessary to carry out their numerical 
representation [11]. To this end, after processing the log, one 
of the algorithms for the numerical representation is used [12]. 

At the next stage, possible paths and algorithms for 
automating the monitoring of computer system states by 
means of intellectual analysis of unstructured data of system 
logs are analyzed in order to detect and diagnose abnormal 
states. 

The result of processing are clusters of messages, separated 
by event type. To do this, the log data is divided into different 
groups characterizing the sequence of messages. This is done 
by sequentially reading the log file and storing a certain 
number of events in the memory area (called a window) when 
processing a dataset. Windows can be fixed, sliding and 
session [13]. 

As a result of this step, a sequence of vectors is formed in 
the numerical form of each sequence of messages. To search 
for abnormal (emergency) states of the system, the vectors are 
processed by machine learning methods. 

The aim of the work is to study the efficiency of machine 
learning algorithms for detecting abnormal (emergency) states 
of large computer systems by automated processing of 
unstructured data of a large amount of system logs. 

II. LOGS PROCESSING WAYS

Large-scale systems typically generate logs for recording 
system status and runtime information, each containing a 
timestamp and a log message indicating what happened. This 
valuable data can be used for a variety of purposes (for 
example, anomaly detection), and therefore logs are first 
collected for further use. 

Log analytics involves searching the logs of billions of 
records, collecting and analyzing real-time data and a variety 
of visualizations. These features, combined with the flexibility 
of the data sources available, have made log analytics an 
excellent option for gaining visibility and understanding of the 
situation. 

The relevance of a log file may vary from one person to 
another. Perhaps, the data of a particular log can be useful for 
one user, but not related to another user. Therefore, useful log 
data may be lost within a large cluster. Therefore, analyzing a 
log file is an important aspect today. 

When managing real-time data, the user can use the log file 
to make decisions. But, since the amount of data increases, 
say, to gigabytes, it becomes impossible for traditional 
methods to analyze such a huge log file and determine the 
necessary data. By ignoring log data, a huge amount of 
relevant information will be missed. 

Log data can be presented as a pivot table or file. In a log 
file or table, the records are ordered according to time. All 
software applications and systems produce log files. Some 
examples of log files are a transaction log file, an event log 
file, an audit log file, server logs, etc. 
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Logs are usually application specific. Thus log analysis is 
necessary task for extracting valuable information from a log file. 

TABLE I. LOG TYPES 

Log name Log source Information in the log data 
Transaction 

log 
Database management 

system 
Consists of information about pending 
transactions, changes made by rollback 
operations, and changes that are not 
updated in the database. It is performed 
to save the ACID property (atomicity, 
consistency, isolation, durability 
property) during failures 

Message log Internet chat (IRC) and 
instant messaging (IM) 

In the case of IRC, consists of server 
messages during the time interval during 
which the user is connected to the 
channel. On the other hand, to ensure 
user privacy, IM allows you to store 
messages in an encrypted form in the 
form of a message log. A password is 
required to decrypt and view these logs. 

System log Network devices such 
as web servers, routers, 
switches, printers, etc. 

Syslog messages provide information 
about where, when and why, i.e. IP 
address, time stamp and log message. 
Contains two parts: the object (the 
source of the message) and security (the 
degree of importance of the log message)

Server log file Web servers It is created automatically and contains 
information about the user in the form of
three parts, such as the IP address of the 
remote server, the time stamp and the 
document requested by the user. 

Audit logs Hadoop Distributed 
File System (HDFS) 
ANN Apache Spark. 

Record all HDFS access activity 
occurring with the Hadoop platform 

Demon logs Docker Contains detailed information about the 
interaction between containers, the 
Docker service, and the host machine. 
By combining these interactions, you can 
identify the container cycle and violation 
in the Docker service. 

Pods Kubernetes This is a collection of containers that 
share resources, such as a single IP 
address and shared values. 

Amazon 
CloudWatch 

Logs 

Amazon Web Services 
(AWS) 

Used to monitor applications and 
systems using log data, that is, to check 
for errors with the application and the 
system. It is also used to store and access 
system log data. 

Quick logs Openstack These logs are sent to the Syslog and 
managed by the log level. Used to 
monitor the cluster, audit records, extract 
reliable server information, and more. 

The main steps in the log processing steps are: collecting 
and clearing data; data structuring; data analysis. Log data is 
collected from various sources. The information collected 
must be accurate and informative, as the type of data obtained 
may affect performance. Therefore, information should be 
collected from real users. Each type of log contains a different 
kind of information. 

Analysis of the structured log data can be performed in 
various ways, such as pattern recognition, normalization, 
classification using machine learning, correlation analysis, and 
much more. With the introduction of Data Mining to analyze 
logs, the quality of log data analysis is increasing. However, 
there are several problems with analyzing logs using data 
mining: 

 Every day the amount of log data increases from 
megabytes to gigabytes or even petabytes. There is a 
need for additional log analysis tools; 

 The log files do not always contain all the necessary 
information. So additional efforts are needed to 
extract useful data; 

 Different numbers of logs comes from different 
sources. As a result, logs in various formats should be 
analyzed. Having different logs creates a data 
redundancy problem. 

III. THE STRUCTURE OF THE SYSTEM LOG DATA PROCESSING 
ALGORITHM 

The structure of the anomaly detection algorithm using data 
analysis of system logs includes four stages: log collection 
(logs), log analysis (parsing), feature extraction and anomaly 
detection [1]. 

 

 
Fig. 1. Steps in detecting system log anomalies 

A. Logs collecting 
Large-scale systems typically generate logs of system 

status and process execution information, each containing a 
timestamp and a log message indicating what happened in the 
system. This data can be used to detect anomalies. 

An example of a fragment of the log file is shown in Fig. 2. 
148 Jan  1 2018 00:13:15 HUAWEI 
%%01SRM/4/BOOTMODE(l)[148]:Slot 14 has startup with Normal 
mode. 
164 Jan  1 2018 00:11:55 HUAWEI 
%%01SRM/4/BOOTMODE(l)[164]:Slot 3 has startup with Normal 
mode. 
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198 Jan  1 2018 00:11:23 HUAWEI 
%%01SRM/4/BOOTMODE(l)[198]:Slot 11 has startup with 
FastBoot mode. 
Fig. 2. Log file fragment 

B. Logs analysis 
The system logs are usually not structured and contain free-

form text. The purpose of the parse is to extract a group of event 
patterns, with the result that the raw logs can be structured. 

The purpose of the message type search is to create 
message patterns that exist in the log file (Fig. 3). The 
wildcard characters "*" represent variable messages. 

If each text line in the event log is considered a data point, 
and its individual words are considered attributes, then the 
clustering task is reduced to grouping similar log messages. 
For example, “Command has completed successfully” can be 
considered a 4-dimensional data point with the following 
attributes “Command”, “has”, “completed”, “successfully”. 

As a result, each log message can be divided by a parser 
into a pattern (pattern) of an event (fixed part) and parameters 
(variable part). 

C. Attributes extraction 

After the logs are parsed into separate patterns, it is 
necessary to additionally present them in the form of 
numerical feature vectors, which makes it possible to apply 
machine learning methods at the next stage. To this end, the 
raw logs are first “sliced” into a set of logical sequences using 
various grouping methods, including fixed, sliding windows 
and session windows. 

Fixed windows are based on a mark that contains the time 
each message appeared. Each fixed window has its own size 
(time interval). The window size is a constant value equal to t, 
for example, one hour or one day. Thus, the number of fixed 
windows depends on the specified window size. Events that 
occurred in one window are considered as a sequence of events. 

 
Fig. 3. System log parsing 

In contrast to fixed windows, sliding windows are 
characterized by two attributes: the window size and the step 

size. For example, hourly windows, sliding in increments 
every five minutes. In general, the step size is smaller than the 
window size, which causes the overlapping of adjacent 
windows. The number of sliding windows is usually larger 
than fixed windows, which mainly depends on the window 
size and step size. 

Session session windows are characterized by identifiers 
instead of a timestamp. Identifiers are used to denote different 
execution paths in some log data. For example, HDFS logs 
with block_id record allocation, recording, replication, 
deletion of a specific block. As a result, there is the possibility 
of grouping according to identifiers, where each session 
window has a unique identifier. 

After constructing the log sequences, an X event matrix is 
generated. To this end, the number of occurrences of each log 
event is calculated in each sequence to form the event count 
vector. For example, if the event count vector is [0, 0, 2, 3, 0, 
1, 0], this means that in this sequence, event 3 occurred twice, 
and event 4 occurred three times. Finally, the set of vectors 
constitutes the matrix of events X, where the entry Xi, j 
reflects the number of times the event j occurred in the i-th log 
sequence. 

In the next step a vector object (event count vector) is 
created for each log sequence which is the number of 
occurrences of each event. The set of all vectors forms a 
matrix of attributes (attributes), which is also an event counter 
matrix. 

In this paper, the division of the log was made by fixed 
time windows. A time window of 30 seconds was selected 
(Fig. 4). 

Having obtained these vectors, one can apply machine 
learning methods to search for system alarm states. In order to 
avoid the concentration of alarms in one part of the data set, a 
random permutation is first performed. 

 
Fig. 4. Fragment of a file with features vectors 

When dividing the available data into a set of training and 
testing, we dramatically reduce the number of samples that can be 
used to study the model, and the results may depend on the 
random selection of a pair of sets (training, testing). Also, taking 
into account the fact that the number of abnormal instances is 
sufficiently small, it is necessary to use a different method of 
preliminary preparation of the data set for training and testing. 

Therefore, in this paper, the next step was to use a procedure 
called cross-validation (CV). In an approach called k-Fold CV, 
the training set is broken up into k smaller sets. For each of the k-
parts, the following procedure is implemented: first, the model is 
trained using k-1 data pieces as training data. The resulting model 
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is then checked for the remainder of the data (that is, it is used as a 
test set to calculate a performance measure, such as accuracy). As 
a result, the performance indicator, assessed during cross-
validation, is the average value calculated over all iterations. 

D. Anomalies detection 

A matrix constructed from such vectors can be used as an 
input for a machine learning model in order to create a model for 
the detection of anomalies. As an example of the presentation of 
syslog data, consider a distributed system dataset (HDFS) set up 
in open access [https://github.com/logpai/loghub]. HDFS logs are 
compiled in [16] using a cluster with 203 nodes on the Amazon 
EC2 platform. 

Fig. 5 shows an example matrix for HDFS log blocks. 

Fig. 5. Fragment of the event account matrix

Marked data for classifier training is presented in Fig. 6. The 
“1” label indicates the presence of an anomaly in this block. 

Fig. 6. Sample log data layout

The constructed model can be used to determine whether the 
new incoming log sequence is anomalous. 

IV. DATA STRUCTURE

We will use the BlueGene/L supercomputer log as an 
experimental dataset presented in https://www.usenix.org/cfdr-
data and in [15]. The triggered log fragment contains 100,000 
lines. Each of which includes a timestamp, a device name, a 
message itself, and a label indicating whether the message 
contains information about a specific type of error. Tags about 
the type of errors or abnormal (emergency) states of the system 
of the fragment in question are given in Table II. 

To illustrate the operation of the alarm state detection 
algorithm based on log data, consider a binary classification that 
takes into account only one type of anomaly. As an anomalous 
(emergency) state, we consider errors like “APPSEV”, 
“KERNMC” [9]. The number of instances of these types is quite 
large compared with the others presented in Table II. 

Taking into account that the number of specifically abnormal 
copies in the available database is quite small, it is necessary to 
use the cross-validation procedure (CV). In the KV approach, 
called k-fold, the training set is divided into k smaller sets. At the 

beginning, for each of the k-parts, the model is trained using k-1 
parts. The classification algorithm is then tested for the remainder 
of the data. The result of the evaluation of efficiency, assessed in 
case of CV, is the average value calculated for all iterations. To 
implement the cross-validation process, we used the K-Folds 
class from the sklearn library of the model_selection section 
[https://www.usenix.org/cfdr-data] and the value of the parameter 
k = 5. In order to avoid the concentration of abnormal messages 
in one part of the data set, they are pre-randomly rearranged [5], 
[8]. Table III shows the numerical values of the sample volumes 
for each iteration separately used in the process of training and 
testing the classifier, taking into account the 5-block HF. 

TABLE II. LABELS OF ERROR TYPES

Error type label / 
count 

Message example Type of error or 
alarm conditions 

APPSEV/ 
7461 

ciod: Error reading message prefix 
after LOGIN MESSAGE on 
CioStream [...] 

App error 

KERNTERM/ 
512 

rts: kernel terminated for reason 
1004rts: bad message header: [...] 

Kernel error 

KERNMNTF/ 
128 

Lustre mount FAILED : bglio11 : 
block id : location 

Kernel error 

KERNMC/ 
59 

KERNEL FATAL machine check 
interrupt 

Kernel error 

KERNPOW/ 
48 

KERNEL FATAL Power 
deactivated: R05-M0-N4 

Kernel error (power 
off) 

R_DDR_STR/ 
44 

ddr: Unable to steer.*consider 
replacing the card 

Card exchange 

KERNRTSP/ 
30 

KERNEL FATAL rts panic! - 
stopping execution 

Kernel error 

KERNMICRO/ 
16 

KERNEL FATAL Microloader 
Assertion 

Kernel error 

KERNCON/ 
4 

KERNEL FATAL 
MailboxMonitor::serviceMailboxes() 
lib ido error: -1033 BGLERR IDO 
PKT TIMEOUT 

Kernel error 

Other/17

TABLE III. DATASET CHARACTERISTICS FOR CROSS VALIDATION

Anomaly/ 
Iteration num

Training sample Test sample 
Anomaly 
elements 

Normal 
elements 

Anomaly 
elements 

Normal 
elements 

K
ER

N
M

C
 1 

2 
3 
4 
5 

45 1864 12 466
45 1860 12 466
48 1862 9 468
46 1864 11 466
44 1866 13 464

R
_D

D
R

_S
T

R
 

1 
2 
3 
4 
5 

35 1864 9 469
34 1875 10 468
37 1873 7 470
37 1873 7 470
33 1877 11 466

K
ER

N
R

TS
P 

1 
2 
3 
4 
5 

20 1889 8 470
25 1884 3 475
22 1888 6 471
22 1888 6 471
23 1887 5 472

A
PP

SE
V

 1 
2 
3 
4 
5 

52 1857 12 466
49 1860 15 463
53 1857 11 466
49 1861 15 462
53 1857 11 466

Fig  7 shows the dependences of the change in the average 
value for the selected metrics for evaluating the quality of 
clustering during cross-validation. 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 398 ----------------------------------------------------------------------------



100 iterations of training and testing were conducted on a 
single data set using random permutation using the NumPy 
library's random.permutation () function developed by 
[http://www.numpy.org/]. In the absence of cross-validation, 
the ratio between the training and the test sample was 7/3. 
Comparison of the presented dependences shows that the CV 
allows to obtain characteristics that are more uniform and 
resistant to data oscillations. 

a) 

b) 

c) 
Fig. 7. Cross-validation metrics: a) Precision; b) Recall; c) F-measure 

V. METRICS OF CLASSIFICATION ALGORITHMS 
In machine learning tasks, various metrics are used to assess 

the effectiveness of the constructed models, such as: accuracy 
(precision), completeness (recall), F-measure (F-score), ROC-
curves (Receiver Operating Characteristic curve - error curve), 
AUC- ROC and AUC-PR (Area Under Curve - area under the 
error curve and area along the pricison-recall curve) 

After the classification, four types of results are possible: 
TP (True Positive - true positive), TN (True Negative - true 
negative), FP (False Positive - false positive), FN (False 
Negative - false negative). 

The completeness (recall, sensitivity, sensitivity) shows the 
proportion of properly marked positive instances among all 
instances of the positive class: 

.TPrecall
TP FN

Precision is sensitive to the distribution of data while recall 
is not. Recall does not reflect how many samples are labeled 
as positive incorrectly, and accuracy does not give any 
information about how many positive samples are labeled 
incorrectly. 

F-measure (F-score, F ) combines the above two metrics - 
harmonic mean accuracy (precision) and recall: 

2
21 .precision recallF

precision recall

The F-measure reaches a maximum with recall and 
precision equal to one, and is close to zero if one of the 
arguments is close to zero. 

ROC curve or error curve - a graph that allows to evaluate 
the quality of classification, displays the ratio between the 
sensitivity (TPR - True Positive Rate) of the algorithm and the 
fractions of negative objects that the algorithm predicted 
incorrectly (FPR - False Positive Rate) when the decision rule 
threshold is varied. The analysis of classifications using ROC 
is called ROC analysis. 

.FPFPR
FP TN

A quantitative interpretation of the ROC curve is given by the 
ROC-AUC index, the area under the ROC curve. In the ideal 
case, when the classifier does not make mistakes (FPR = 0, TPR 
= 1), the area under the curve is 1; if the classifier "guesses", then 
the AUC-ROC will tend to 0.5, since the classifier will produce 
the same amount of TP and FP. The area under the curve in this 
case shows the quality of the algorithm (more - better), besides 
this, the steepness of the curve itself is important - it is desirable 
to maximize TPR while minimizing FPR, which means that the 
curve should ideally tend to the point (0,1). 

The AUC-ROC criterion is resistant to unbalanced classes 
and can be interpreted as the probability that a randomly 
selected positive object will be ranked higher by the classifier 
(will have a higher probability of being positive) than the 
randomly selected negative object. 
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VI. ANOMALY DETECTION RESULTS 
Consider the averaged results of the evaluation of three 

selected classification methods for the considered types of 
anomalous states: Decision Tree (DecisionTreeClassifier), 
Support Vector Vectors (LinearSVC), K-Nearest Neighbors 
(KNeighborsClassifier) [10], [11]. 

These methods are implemented in the library for Python - 
scikit-learn [http://scikit-learn.org/stable/index.html. The 
classification results are shown in Fig. 8. 

 
a) 

 
b) 

Fig. 8. Estimation of error type: a) APPSEV; b) KERNMC 

Based on the graphs obtained, it can be concluded that all 
three classifiers presented successfully cope with the task of 
classifying APPSEV anomalies. Presented in Fig. 8b, the 
averaged results of the evaluation of three selected classification 
methods for KERNMC type anomalies in the HF process show 
that the nearest neighbors method is significantly inferior to the 
two other SVC classification algorithms and the decision tree. 
This can be caused by both features of this type of anomaly, and 
a small number of anomalous samples in the sample at the 
training stage. In these samples, the number of abnormal copies 
did not exceed 1% of the total amount of data available for 
training. 

As an example, Fig. 9 presents the ROC-curves for the binary 
classification of the KERNMC type anomaly. 

As can be seen from the presented dependencies, the 
accuracy of detecting anomalous events lies within 0.92 ... 0.99 

using the SVM and DecisionTree classification algorithms. The 
worst results belongs to classifier that implements the algorithm 
for K-nearest neighbors. For a more accurate comparison of the 
selected methods, a greater number of anomalous elements in the 
sample are needed. 

 
Fig. 9. ROC curves (“KERNMC” type error) 

VII. CONCLUSION 
For effective automatic detection and diagnosis of 

anomalous states based on unstructured system log data, a 
four-step algorithm based on the classification by machine 
learning methods has been proposed. 

The central element of the considered algorithm is the 
formation of a matrix of attributes based on a group of 
templates in the parser after structuring the initial data of the 
system logs. The feature matrix was used to detect whether a 
new incoming log sequence is abnormal or not. 

An analysis of the results obtained shows that the 
DecisionTree algorithm shows the best results in the binary 
classification of big data anomalies under consideration. The 
SVM algorithm is slightly inferior to it. The “nearest 
neighbors” algorithm does not work well with high 
dimensional data and therefore cannot be recommended for 
the problem of detecting anomalies based on unstructured data 
of system logs in which the dimension of vectors is 
comparable to the number of selected log event patterns. 
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