
Anomaly States Monitoring of Large-Scale Systems
with Intellectual Analysis of System Logs

Oleg Sheluhin, Andrey Osin
Moscow Technical University of Communications and Informatics

Moscow, Russia
{sheluhin, osin_a_v}@mail.ru

Abstract—The article analyzes the paths and algorithms for
automating the monitoring of computer system states by means
of intellectual analysis of unstructured system log data in order to
detect and diagnose abnormal states. This information is
necessary for technical support to locate the problem and
diagnose it accurately. Because of the ever-growing log size,
mining data mining models are used to help developers extract
system information. At the first stage, logs are collected with
records of system states and information on the execution of
processes. At the second stage, the log parser is used to retrieve a
group of event templates, with the result that the raw logs are
structured. At the third stage, after the logs are parsed into
separate patterns, they are additionally represented as numerical
vectors of attributes (attributes). The set of all vectors forms a
matrix of signs. In the fourth stage, the feature matrix is used to
detect anomalies of machine learning methods to determine
whether the new incoming log sequence is abnormal or not. A
decision tree was used as a classification method for machine
learning. Using the example of a distributed HDFS data set, the
effectiveness of the considered method for detecting anomalous
system states is shown.

I. INTRODUCTION
The main purpose of the system log is to record system

states and important events at various critical points to help
debug system failures and perform root cause analysis. Log
data is an important and valuable resource for understanding
the state of the system and its performance, so various system
logs are an excellent source of information for online
monitoring and the detection of anomalies [1], [2], [3], [4], [6].

By anomalous, we mean instances in a data set that do not
correspond to the regular behavior of the system. The anomaly
detection system consists of four successive stages: the collection
of initial data, analysis and processing of the log, the extraction of
features and numerical representation, the construction of an
anomaly detection model [8], [12], [13], [14].

The purpose of the analysis and processing of system logs
(parsing) is to separate the permanent and variable parts of
messages and the formation of patterns (templates) of events
[9], [10]. To use the observed unstructured data in machine
learning algorithms, it is necessary to carry out their numerical
representation [11]. To this end, after processing the log, one
of the algorithms for the numerical representation is used [12].

At the next stage, possible paths and algorithms for
automating the monitoring of computer system states by
means of intellectual analysis of unstructured data of system
logs are analyzed in order to detect and diagnose abnormal
states.

The result of processing are clusters of messages, separated
by event type. To do this, the log data is divided into different
groups characterizing the sequence of messages. This is done
by sequentially reading the log file and storing a certain
number of events in the memory area (called a window) when
processing a dataset. Windows can be fixed, sliding and
session [13].

As a result of this step, a sequence of vectors is formed in
the numerical form of each sequence of messages. To search
for abnormal (emergency) states of the system, the vectors are
processed by machine learning methods.

The aim of the work is to study the efficiency of machine
learning algorithms for detecting abnormal (emergency) states
of large computer systems by automated processing of
unstructured data of a large amount of system logs.

II. LOGS PROCESSING WAYS

Large-scale systems typically generate logs for recording
system status and runtime information, each containing a
timestamp and a log message indicating what happened. This
valuable data can be used for a variety of purposes (for
example, anomaly detection), and therefore logs are first
collected for further use.

Log analytics involves searching the logs of billions of
records, collecting and analyzing real-time data and a variety
of visualizations. These features, combined with the flexibility
of the data sources available, have made log analytics an
excellent option for gaining visibility and understanding of the
situation.

The relevance of a log file may vary from one person to
another. Perhaps, the data of a particular log can be useful for
one user, but not related to another user. Therefore, useful log
data may be lost within a large cluster. Therefore, analyzing a
log file is an important aspect today.

When managing real-time data, the user can use the log file
to make decisions. But, since the amount of data increases,
say, to gigabytes, it becomes impossible for traditional
methods to analyze such a huge log file and determine the
necessary data. By ignoring log data, a huge amount of
relevant information will be missed.

Log data can be presented as a pivot table or file. In a log
file or table, the records are ordered according to time. All
software applications and systems produce log files. Some
examples of log files are a transaction log file, an event log
file, an audit log file, server logs, etc.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Logs are usually application specific. Thus log analysis is
necessary task for extracting valuable information from a log file.

TABLE I. LOG TYPES

Log name Log source Information in the log data
Transaction

log
Database management

system
Consists of information about pending
transactions, changes made by rollback
operations, and changes that are not
updated in the database. It is performed
to save the ACID property (atomicity,
consistency, isolation, durability
property) during failures

Message log Internet chat (IRC) and
instant messaging (IM)

In the case of IRC, consists of server
messages during the time interval during
which the user is connected to the
channel. On the other hand, to ensure
user privacy, IM allows you to store
messages in an encrypted form in the
form of a message log. A password is
required to decrypt and view these logs.

System log Network devices such
as web servers, routers,
switches, printers, etc.

Syslog messages provide information
about where, when and why, i.e. IP
address, time stamp and log message.
Contains two parts: the object (the
source of the message) and security (the
degree of importance of the log message)

Server log file Web servers It is created automatically and contains
information about the user in the form of
three parts, such as the IP address of the
remote server, the time stamp and the
document requested by the user.

Audit logs Hadoop Distributed
File System (HDFS)
ANN Apache Spark.

Record all HDFS access activity
occurring with the Hadoop platform

Demon logs Docker Contains detailed information about the
interaction between containers, the
Docker service, and the host machine.
By combining these interactions, you can
identify the container cycle and violation
in the Docker service.

Pods Kubernetes This is a collection of containers that
share resources, such as a single IP
address and shared values.

Amazon
CloudWatch

Logs

Amazon Web Services
(AWS)

Used to monitor applications and
systems using log data, that is, to check
for errors with the application and the
system. It is also used to store and access
system log data.

Quick logs Openstack These logs are sent to the Syslog and
managed by the log level. Used to
monitor the cluster, audit records, extract
reliable server information, and more.

The main steps in the log processing steps are: collecting
and clearing data; data structuring; data analysis. Log data is
collected from various sources. The information collected
must be accurate and informative, as the type of data obtained
may affect performance. Therefore, information should be
collected from real users. Each type of log contains a different
kind of information.

Analysis of the structured log data can be performed in
various ways, such as pattern recognition, normalization,
classification using machine learning, correlation analysis, and
much more. With the introduction of Data Mining to analyze
logs, the quality of log data analysis is increasing. However,
there are several problems with analyzing logs using data
mining:

 Every day the amount of log data increases from
megabytes to gigabytes or even petabytes. There is a
need for additional log analysis tools;

 The log files do not always contain all the necessary
information. So additional efforts are needed to
extract useful data;

 Different numbers of logs comes from different
sources. As a result, logs in various formats should be
analyzed. Having different logs creates a data
redundancy problem.

III. THE STRUCTURE OF THE SYSTEM LOG DATA PROCESSING
ALGORITHM

The structure of the anomaly detection algorithm using data
analysis of system logs includes four stages: log collection
(logs), log analysis (parsing), feature extraction and anomaly
detection [1].

Fig. 1. Steps in detecting system log anomalies

A. Logs collecting
Large-scale systems typically generate logs of system

status and process execution information, each containing a
timestamp and a log message indicating what happened in the
system. This data can be used to detect anomalies.

An example of a fragment of the log file is shown in Fig. 2.
148 Jan 1 2018 00:13:15 HUAWEI
%%01SRM/4/BOOTMODE(l)[148]:Slot 14 has startup with Normal
mode.
164 Jan 1 2018 00:11:55 HUAWEI
%%01SRM/4/BOOTMODE(l)[164]:Slot 3 has startup with Normal
mode.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 396 --

198 Jan 1 2018 00:11:23 HUAWEI
%%01SRM/4/BOOTMODE(l)[198]:Slot 11 has startup with
FastBoot mode.
Fig. 2. Log file fragment

B. Logs analysis
The system logs are usually not structured and contain free-

form text. The purpose of the parse is to extract a group of event
patterns, with the result that the raw logs can be structured.

The purpose of the message type search is to create
message patterns that exist in the log file (Fig. 3). The
wildcard characters "*" represent variable messages.

If each text line in the event log is considered a data point,
and its individual words are considered attributes, then the
clustering task is reduced to grouping similar log messages.
For example, “Command has completed successfully” can be
considered a 4-dimensional data point with the following
attributes “Command”, “has”, “completed”, “successfully”.

As a result, each log message can be divided by a parser
into a pattern (pattern) of an event (fixed part) and parameters
(variable part).

C. Attributes extraction

After the logs are parsed into separate patterns, it is
necessary to additionally present them in the form of
numerical feature vectors, which makes it possible to apply
machine learning methods at the next stage. To this end, the
raw logs are first “sliced” into a set of logical sequences using
various grouping methods, including fixed, sliding windows
and session windows.

Fixed windows are based on a mark that contains the time
each message appeared. Each fixed window has its own size
(time interval). The window size is a constant value equal to t,
for example, one hour or one day. Thus, the number of fixed
windows depends on the specified window size. Events that
occurred in one window are considered as a sequence of events.

Fig. 3. System log parsing

In contrast to fixed windows, sliding windows are
characterized by two attributes: the window size and the step

size. For example, hourly windows, sliding in increments
every five minutes. In general, the step size is smaller than the
window size, which causes the overlapping of adjacent
windows. The number of sliding windows is usually larger
than fixed windows, which mainly depends on the window
size and step size.

Session session windows are characterized by identifiers
instead of a timestamp. Identifiers are used to denote different
execution paths in some log data. For example, HDFS logs
with block_id record allocation, recording, replication,
deletion of a specific block. As a result, there is the possibility
of grouping according to identifiers, where each session
window has a unique identifier.

After constructing the log sequences, an X event matrix is
generated. To this end, the number of occurrences of each log
event is calculated in each sequence to form the event count
vector. For example, if the event count vector is [0, 0, 2, 3, 0,
1, 0], this means that in this sequence, event 3 occurred twice,
and event 4 occurred three times. Finally, the set of vectors
constitutes the matrix of events X, where the entry Xi, j
reflects the number of times the event j occurred in the i-th log
sequence.

In the next step a vector object (event count vector) is
created for each log sequence which is the number of
occurrences of each event. The set of all vectors forms a
matrix of attributes (attributes), which is also an event counter
matrix.

In this paper, the division of the log was made by fixed
time windows. A time window of 30 seconds was selected
(Fig. 4).

Having obtained these vectors, one can apply machine
learning methods to search for system alarm states. In order to
avoid the concentration of alarms in one part of the data set, a
random permutation is first performed.

Fig. 4. Fragment of a file with features vectors

When dividing the available data into a set of training and
testing, we dramatically reduce the number of samples that can be
used to study the model, and the results may depend on the
random selection of a pair of sets (training, testing). Also, taking
into account the fact that the number of abnormal instances is
sufficiently small, it is necessary to use a different method of
preliminary preparation of the data set for training and testing.

Therefore, in this paper, the next step was to use a procedure
called cross-validation (CV). In an approach called k-Fold CV,
the training set is broken up into k smaller sets. For each of the k-
parts, the following procedure is implemented: first, the model is
trained using k-1 data pieces as training data. The resulting model

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 397 --

is then checked for the remainder of the data (that is, it is used as a
test set to calculate a performance measure, such as accuracy). As
a result, the performance indicator, assessed during cross-
validation, is the average value calculated over all iterations.

D. Anomalies detection

A matrix constructed from such vectors can be used as an
input for a machine learning model in order to create a model for
the detection of anomalies. As an example of the presentation of
syslog data, consider a distributed system dataset (HDFS) set up
in open access [https://github.com/logpai/loghub]. HDFS logs are
compiled in [16] using a cluster with 203 nodes on the Amazon
EC2 platform.

Fig. 5 shows an example matrix for HDFS log blocks.

Fig. 5. Fragment of the event account matrix

Marked data for classifier training is presented in Fig. 6. The
“1” label indicates the presence of an anomaly in this block.

Fig. 6. Sample log data layout

The constructed model can be used to determine whether the
new incoming log sequence is anomalous.

IV. DATA STRUCTURE

We will use the BlueGene/L supercomputer log as an
experimental dataset presented in https://www.usenix.org/cfdr-
data and in [15]. The triggered log fragment contains 100,000
lines. Each of which includes a timestamp, a device name, a
message itself, and a label indicating whether the message
contains information about a specific type of error. Tags about
the type of errors or abnormal (emergency) states of the system
of the fragment in question are given in Table II.

To illustrate the operation of the alarm state detection
algorithm based on log data, consider a binary classification that
takes into account only one type of anomaly. As an anomalous
(emergency) state, we consider errors like “APPSEV”,
“KERNMC” [9]. The number of instances of these types is quite
large compared with the others presented in Table II.

Taking into account that the number of specifically abnormal
copies in the available database is quite small, it is necessary to
use the cross-validation procedure (CV). In the KV approach,
called k-fold, the training set is divided into k smaller sets. At the

beginning, for each of the k-parts, the model is trained using k-1
parts. The classification algorithm is then tested for the remainder
of the data. The result of the evaluation of efficiency, assessed in
case of CV, is the average value calculated for all iterations. To
implement the cross-validation process, we used the K-Folds
class from the sklearn library of the model_selection section
[https://www.usenix.org/cfdr-data] and the value of the parameter
k = 5. In order to avoid the concentration of abnormal messages
in one part of the data set, they are pre-randomly rearranged [5],
[8]. Table III shows the numerical values of the sample volumes
for each iteration separately used in the process of training and
testing the classifier, taking into account the 5-block HF.

TABLE II. LABELS OF ERROR TYPES

Error type label /
count

Message example Type of error or
alarm conditions

APPSEV/
7461

ciod: Error reading message prefix
after LOGIN MESSAGE on
CioStream [...]

App error

KERNTERM/
512

rts: kernel terminated for reason
1004rts: bad message header: [...]

Kernel error

KERNMNTF/
128

Lustre mount FAILED : bglio11 :
block id : location

Kernel error

KERNMC/
59

KERNEL FATAL machine check
interrupt

Kernel error

KERNPOW/
48

KERNEL FATAL Power
deactivated: R05-M0-N4

Kernel error (power
off)

R_DDR_STR/
44

ddr: Unable to steer.*consider
replacing the card

Card exchange

KERNRTSP/
30

KERNEL FATAL rts panic! -
stopping execution

Kernel error

KERNMICRO/
16

KERNEL FATAL Microloader
Assertion

Kernel error

KERNCON/
4

KERNEL FATAL
MailboxMonitor::serviceMailboxes()
lib ido error: -1033 BGLERR IDO
PKT TIMEOUT

Kernel error

Other/17

TABLE III. DATASET CHARACTERISTICS FOR CROSS VALIDATION

Anomaly/
Iteration num

Training sample Test sample
Anomaly
elements

Normal
elements

Anomaly
elements

Normal
elements

K
ER

N
M

C
 1

2
3
4
5

45 1864 12 466
45 1860 12 466
48 1862 9 468
46 1864 11 466
44 1866 13 464

R
_D

D
R

_S
T

R

1
2
3
4
5

35 1864 9 469
34 1875 10 468
37 1873 7 470
37 1873 7 470
33 1877 11 466

K
ER

N
R

TS
P

1
2
3
4
5

20 1889 8 470
25 1884 3 475
22 1888 6 471
22 1888 6 471
23 1887 5 472

A
PP

SE
V

 1
2
3
4
5

52 1857 12 466
49 1860 15 463
53 1857 11 466
49 1861 15 462
53 1857 11 466

Fig 7 shows the dependences of the change in the average
value for the selected metrics for evaluating the quality of
clustering during cross-validation.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 398 --

100 iterations of training and testing were conducted on a
single data set using random permutation using the NumPy
library's random.permutation () function developed by
[http://www.numpy.org/]. In the absence of cross-validation,
the ratio between the training and the test sample was 7/3.
Comparison of the presented dependences shows that the CV
allows to obtain characteristics that are more uniform and
resistant to data oscillations.

a)

b)

c)
Fig. 7. Cross-validation metrics: a) Precision; b) Recall; c) F-measure

V. METRICS OF CLASSIFICATION ALGORITHMS
In machine learning tasks, various metrics are used to assess

the effectiveness of the constructed models, such as: accuracy
(precision), completeness (recall), F-measure (F-score), ROC-
curves (Receiver Operating Characteristic curve - error curve),
AUC- ROC and AUC-PR (Area Under Curve - area under the
error curve and area along the pricison-recall curve)

After the classification, four types of results are possible:
TP (True Positive - true positive), TN (True Negative - true
negative), FP (False Positive - false positive), FN (False
Negative - false negative).

The completeness (recall, sensitivity, sensitivity) shows the
proportion of properly marked positive instances among all
instances of the positive class:

.TPrecall
TP FN

Precision is sensitive to the distribution of data while recall
is not. Recall does not reflect how many samples are labeled
as positive incorrectly, and accuracy does not give any
information about how many positive samples are labeled
incorrectly.

F-measure (F-score, F) combines the above two metrics -
harmonic mean accuracy (precision) and recall:

2
21 .precision recallF

precision recall

The F-measure reaches a maximum with recall and
precision equal to one, and is close to zero if one of the
arguments is close to zero.

ROC curve or error curve - a graph that allows to evaluate
the quality of classification, displays the ratio between the
sensitivity (TPR - True Positive Rate) of the algorithm and the
fractions of negative objects that the algorithm predicted
incorrectly (FPR - False Positive Rate) when the decision rule
threshold is varied. The analysis of classifications using ROC
is called ROC analysis.

.FPFPR
FP TN

A quantitative interpretation of the ROC curve is given by the
ROC-AUC index, the area under the ROC curve. In the ideal
case, when the classifier does not make mistakes (FPR = 0, TPR
= 1), the area under the curve is 1; if the classifier "guesses", then
the AUC-ROC will tend to 0.5, since the classifier will produce
the same amount of TP and FP. The area under the curve in this
case shows the quality of the algorithm (more - better), besides
this, the steepness of the curve itself is important - it is desirable
to maximize TPR while minimizing FPR, which means that the
curve should ideally tend to the point (0,1).

The AUC-ROC criterion is resistant to unbalanced classes
and can be interpreted as the probability that a randomly
selected positive object will be ranked higher by the classifier
(will have a higher probability of being positive) than the
randomly selected negative object.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 399 --

VI. ANOMALY DETECTION RESULTS
Consider the averaged results of the evaluation of three

selected classification methods for the considered types of
anomalous states: Decision Tree (DecisionTreeClassifier),
Support Vector Vectors (LinearSVC), K-Nearest Neighbors
(KNeighborsClassifier) [10], [11].

These methods are implemented in the library for Python -
scikit-learn [http://scikit-learn.org/stable/index.html. The
classification results are shown in Fig. 8.

a)

b)

Fig. 8. Estimation of error type: a) APPSEV; b) KERNMC

Based on the graphs obtained, it can be concluded that all
three classifiers presented successfully cope with the task of
classifying APPSEV anomalies. Presented in Fig. 8b, the
averaged results of the evaluation of three selected classification
methods for KERNMC type anomalies in the HF process show
that the nearest neighbors method is significantly inferior to the
two other SVC classification algorithms and the decision tree.
This can be caused by both features of this type of anomaly, and
a small number of anomalous samples in the sample at the
training stage. In these samples, the number of abnormal copies
did not exceed 1% of the total amount of data available for
training.

As an example, Fig. 9 presents the ROC-curves for the binary
classification of the KERNMC type anomaly.

As can be seen from the presented dependencies, the
accuracy of detecting anomalous events lies within 0.92 ... 0.99

using the SVM and DecisionTree classification algorithms. The
worst results belongs to classifier that implements the algorithm
for K-nearest neighbors. For a more accurate comparison of the
selected methods, a greater number of anomalous elements in the
sample are needed.

Fig. 9. ROC curves (“KERNMC” type error)

VII. CONCLUSION
For effective automatic detection and diagnosis of

anomalous states based on unstructured system log data, a
four-step algorithm based on the classification by machine
learning methods has been proposed.

The central element of the considered algorithm is the
formation of a matrix of attributes based on a group of
templates in the parser after structuring the initial data of the
system logs. The feature matrix was used to detect whether a
new incoming log sequence is abnormal or not.

An analysis of the results obtained shows that the
DecisionTree algorithm shows the best results in the binary
classification of big data anomalies under consideration. The
SVM algorithm is slightly inferior to it. The “nearest
neighbors” algorithm does not work well with high
dimensional data and therefore cannot be recommended for
the problem of detecting anomalies based on unstructured data
of system logs in which the dimension of vectors is
comparable to the number of selected log event patterns.

REFERENCES
[1] D. Zou, H. Qin, H. Jin, W. Qiang, Z. Han, X.Chen, «Improving Log-

Based Fault Diagnosis by Log Classification». In Network and
Parallel Computing, Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, vol. 8707, pp. 446-458.

[2] Min Du, Feifei Li, Guineng Zheng, Vivek Srikumar, «DeepLog:
Anomaly Detection and Diagnosis from System Logs through Deep
Learning», in CCS '17 Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp.1285-1298.

[3] Daniel Dias Gonçalves, «Automatic Diagnosis of Security Events in
Complex Infrastructures using Logs», Instituto Superior Tecnico,
Universidade de Lisboa, May, 2015.

[4] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, Gilles
Tredan.Experience, «Log Mining Using Natural Language
Processing and Application to Anomaly Detection», report on IEEE
28th International Symposium on Software Reliability Engineering
(ISSRE), 2017.

[5] Kristian Hunt, «Log Analysis for Failure Diagnosis and Workload
Prediction in Cloud Computing», Stockholm, Sweden, 2016.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 400 --

[6] Berkay Kicanaoglu, «Unsupervised Anomaly Detection in
Unstructured Log-Data for Root-Cause-Analysis», Master’s Degree
Theses, Tampere University of Technology, 2015.

[7] Qiang Fu, Jian-Guang Lou, Yi Wang, Jiang Li, «Execution Anomaly
Detection in Distributed Systems through Unstructured Log
Analysis», in Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, December 06 - 09, 2009, pp. 149-158.

[8] R. Vaarandi, «A data clustering algorithm for mining patterns from
event logs», in IPOM’03: Proc. of the 3rd Workshop on IP Operations
and Management, 2003.

[9] Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu, «System Log
Analysis for Anomaly Detection». Experience report on 2016 IEEE
27th International Symposium on Software Reliability Engineering
(ISSRE), 23-27 Oct. 2016.

[10] Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu, «An
Evaluation Study on Log Parsing and Its Use in Log Mining». In
2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 28 June-1 July, 2016.

[11] Wei Xu, Ling Huang, Armando Fox, David Patterson, Michael I.
Jordan, «Detecting Large-Scale System Problems by Mining Console

Logs». In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, October 11 - 14, 2009.

[12] Tim Zwietasch, «Detecting Anomalies in System Log Files using
Machine Learning Techniques». University of Stuttgart, 2014.

[13] O.I. Sheluhin, V.S. Ryabinin, M. . Farmakovskiy, «Obnaruzhenie
anomal'nyh sostoyanij komp'yuternyh sistem sredstvami
intellektual'nogo analiza dannyh sistemnyh zhurnalov», Voprosy
kiberbezopasnosti (in Russian), vol. 2(26), 2018.

[14] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, «An evaluation study on
log parsing and its use in log mining», in Proc. of the 46th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, 2016.

[15] Jon Stearley, Adam Oliner, «What Supercomputers Say: A Study of
Five System Logs», Stanford University Department of Computer
Science Palo Alto, CA 94305, USA, Sandia National Laboratories
Albuquerque, NM 87111 USA, 25-28 June, 2007.

[16] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael
Jordan, «Large-scale system problem detection by mining console
logs», in Proc. of the 22nd ACM Symposium on Operating Systems
Principles (SOSP’ 09), Big Sky, MT, October 2009.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 401 --

