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Abstract—In the framework of the Huber’s minimax variance
approach to designing robust estimates of localization parameters,
a generalization of the classical least informative distributions
minimizing Fisher information for location is obtained in the
wide class of ranging error distributions with a bounded quantile
value. The considered variational problem set up naturally
originates from the real-life problem of estimation of the unknown
coordinates of an asset surrounded by the beacons with known
positions.

I. INTRODUCTION

The problems of accurate and reliable estimation of local-
ization (location) are primary both in numerous applications
(the localization of people and assets, the navigation beyond
GPS coverage, etc.), especially in harsh environments (say,
in the non-line-of-sight (NLOS) condition), as well as in the
theory and applications of statistical signal processing [1],
[2], [3]. The balance between accuracy and reliability, that
is, between efficiency and stability of statistical procedures, is
achieved by the methods of robust statistics [4], [5], [6], [7].

Recall that robustness of a statistical procedure means its
stability to possible uncontrolled departures from the accepted
probabilistic models of the underlying data distribution. This
branch of mathematical statistics has been definitely formed as
a robust extension of the classical parametric statistics by the
end of the eighties, in particular, this mostly refers to robust
estimation of location.

In present, there exist two general approaches to the design
of robust estimates: historically the first Huber’s minimax
approach of quantitative robustness [4], [5], [6] and the Ham-
pel’s local approach based on influence functions (qualitative
robustness) [7]. Within the first approach, the least informative
(favorable) distribution minimizing Fisher information in a
given class of data distributions is used with the subsequent
application of the maximum likelihood parameter estimate for
this least informative distribution. In this case, the minimax
approach provides the guaranteed accuracy of estimation,
namely, the asymptotic variance of the minimax parameter
estimate is upper bounded. Within the second approach, a
parameter estimate is defined by the desired influence function,
which suits the set of the qualitative measures of robustness
of estimates such as their sensitivity to the presence of gross
outliers in the data, to the data rounding-off, etc.

In what follows, we mostly deal with the Huber’s minimax
approach to the design of robust parameter estimates. Recall
that, generally, the minimax approach aims at the best solution

in the worst situation providing a guaranteed result, sometimes
rather pessimistic. However, Huber’s implementation of the
minimax principle in the problem of robust estimation luckily
gives quite reasonable results.

The key-step of this approach to robust parameter estima-
tion is the solution of the variational problem of minimizing
Fisher information in a given class of pdfs (with a bounded
distribution variance, or a bounded distribution quantile, or a
bounded pdf, or a bounded distribution cumulative function,
etc.)—next we briefly review several classical results on the
least informative distributions, some of them work in further
novel constructions.

An outline of the remainder of the paper is as follows. In
Section II, the Huber’s minimax approach is briefly reviewed.
In Section III, a general problem set up for the design of
minimax variance M-estimates of localization is given. In
Section IV, the least informative distribution of the ranging
errors is derived. In Section V, some conclusions are drawn.

II. HUBER’S MINIMAX APPROACH TO ROBUST

ESTIMATION OF LOCATION

A. Preliminaries

All further considered estimates belong to the class of M -
estimates of location—now we define them. Let x1, . . . , xn be
a random sample from a distribution with pdf f(x−θ), where
θ is a location parameter to be estimated. Next, assume that f
belongs to a convex class F of symmetric and unimodal pdfs.
Without any loss of generality, set θ = 0.

An M -estimate Tn of the location parameter θ is defined
as a solution to the following implicit equation

n∑
i=1

ψ(xi − Tn) = 0, (1)

where ψ(u) is an estimating or a score function.

Consider the following particular cases of (1):

1) for ψ(u) = u, we have the sample mean xn as the
estimate;

2) for ψ(u) = sgn(u), we arrive at the sample median
medx as the estimate;

3) for a given pdf f , the choice ψ(u) = − log f(u)′
= −f ′(u)/f(u) yields the maximum likelihood (ML)
estimate.
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Under rather general conditions of regularity imposed on
the class Ψ of score functions ψ and on the class F of
distribution densities f [4], [5], M -estimates are consistent
and asymptotically normal with the asymptotic variance

var(n1/2Tn) = V (ψ, f) =

∫
ψ2(x)f(x) dx(∫
ψ′(x)f(x) dx

)2 . (2)

The asymptotic variance of M -estimates satisfy the mini-
max or saddle-point property [4], [5]

V (ψ∗, f) ≤ V (ψ∗, p∗) ≤ V (ψ, p∗), (3)

V (ψ∗, p∗) = sup
f∈F

inf
ψ∈Ψ
V (ψ, p),

where f∗(x) is the least informative pdf f∗ that minimizes
Fisher information for location I(f) over the class F

f∗ = argmin
f∈F
I(f), I(f) =

∫ [
f ′(x)
f(x)

]2
f(x) dx. (4)

From (3) and (4) it follows that the optimal score function
is given by the maximum likelihood method for the least
informative pdf f∗

ψ∗(x) = −f∗(x)′
/f∗(x).

The right-hand part of inequality (3) is nothing but the Cramér-
Rao inequality

V (ψ, f∗) ≥ V (−f∗′/f∗, f∗)

= 1
/∫

(f∗(x)′/f∗(x))2f∗(x) dx =
1

I(f∗)
,

whereas its left-hand part provides the guaranteed accuracy
of minimax estimation, namely, the upper bound upon the
asymptotic variance of the optimal robust M -estimate of
location with the score function ψ∗(x)

V (ψ∗, f) ≤ 1

I(f∗)

for any pdf f(x) in the class F .

Now we represent the well-known Huber minimax solution
for the class of ε-contaminated Gaussian distributions (Tukey’s
gross-error model):

Consider

Fε = {f : f(x) ≥ (1− ε)ϕ(x), 0 ≤ ε < 1},
where ϕ(x) is the standard Gaussian.

In this case, the least informative density f∗ has the central
Gaussian part with the exponential tails

f∗(x) =

{
(1− ε)ϕ(x), |x| ≤ k,
A exp(−B|x|), |x| > k,

The corresponding optimal score function is linear bounded

ψ∗(x) = max{−k,min{x, k}},
where the constants A, B and k are determined from the condi-
tions of normalization and smoothness, namely, continuity and
differentiability of the optimal density at the points x = ±k.

B. The class of pdfs with bounded interquantile ranges

This class of pdfs is defined as follows:

Fβ =

{
f :

∫ l

−l
f(x) dx = β

}
. (5)

The parameters l and β (0 < β ≤ 1) are given; the latter
characterizes the degree of closeness of f(x) to a finite pdf.
The restriction on this class means that the inequality |X| ≤ l
holds with probability β.

Now we define the class Fβ in a slightly different way,
namely as the class with a given interquantile distribution range
IQRβ = F−1(1− β/2)− F−1(β/2)

Fβ = {f : IQRβ(f) = 2l} . (6)

C. The least informative pdfs and optimal score functions in
the class with bounded interquantile ranges

Now we write out the least informative pdfs and the
corresponding score functions for the class Fβ . In the class of
pdfs with bounded interquantile ranges, the least informative
pdf has two branches: the cosine one in the central part and
the exponential at the tails [5], [8], [9] (see Fig. 1)

f∗
β(x) =

⎧⎨
⎩
A1 cos2(B1x) for |x| ≤ l,

A2 exp(−B2|x|) for |x| > l,
(7)

Fig. 1. The least informative pdf for the class Fβ

where the constants A1, A2, B1, and B2 are determined
from the simultaneous equations characterizing the restrictions
of the class Fβ , namely the conditions of normalization and
boundness of interquantile ranges, and the conditions of con-
tinuity and continuous differentiability of the optimal solution
at x = l (for details, see [8], p. 64.)

The solution of those equations is given by the following
formulas

A1 =
βω

l(ω + sin(ω))
, B1 =

ω

2l
,

A2 =
(1− ω)λ

2l
eλ , B2 =

λ

l
,

where the auxiliary parameters ω and λ satisfy the equations

2 cos2(ω/2)

ω tan(ω/2) + 2 sin2(ω/2)
=

1− β
β
, 0 < ω < π

and λ = ω tan(ω/2).
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The optimal score function ψ∗
β(x) is bounded

ψ∗
β(x) =

{
tan(B1x) for |x| ≤ l,

tan(B1l)sgn(x) for |x| > l.

D. The least informative pdfs and optimal score functions in
the classes of finite and non-degenerate distributions

Now we write out the least informative pdfs and the
corresponding score functions for two particular cases of the
class Fβ . First, consider the class of finite distributions F1:

F1 =

{
f :

∫ l

−l
f(x) dx = 1

}
. (8)

This class corresponds to the case when the inequality |X| ≤ l
holds with probability 1. The additional restriction on this class
yields the conditions of regularity at the boundaries ±l

f(±l) = 0, f ′(±l) = 0.

In this class, the least informative distribution density has
the cosine form [8], [9] (see Fig. 2)

f∗
1
(x) =

⎧⎪⎨
⎪⎩

1

l
cos2

(πx
2l

)
for |x| ≤ l,

0 for |x| > l.
(9)

Fig. 2. The least informative pdf for the class F1

The optimal score function is unbounded: ψ∗
1
(x) =

tan
(πx

2l

)
for |x| ≤ l.

Second, consider the class of non-degenerate distribution
densities [8], [10]:

F0 =

{
f : f(0) ≥ 1

2a
> 0

}
. (10)

It is one of the most wide classes: any distribution density with
a nonzero value at the center of symmetry belongs to it. The
parameter a of this class characterizes the dispersion of the
central part of a distribution.

In the class of nondegenerate distribution densities F0,
the least informative distribution density is the Laplace or the
double-exponential one [10] (see Fig. 3)

f∗
0
(x) = L(x; 0, a) =

1

2a
exp

(
−|x|
a

)
(11)

with the optimal sign score function ψ∗
0
(x) = sgn(x).

Fig. 3. The least informative pdf for the class F0

The least informative density in the class F0 of nondegen-
erate distribution densities can be regarded as the limiting case
of the optimal solution in the class Fβ as the parameters l→ 0
and β → 0 tend to zero so that

β

2l
→ 1

2a
.

Now we comment on the aforementioned solutions. First,
the exponential and trigonometric parts of the the least infor-
mative distribution densities arise due to the form of the solu-
tion of the basic variational problem of minimization of Fisher
information for location I(f) =

∫
(f ′/f)2f dx under the side

conditions of normalization
∫
f dx = 1 and nonnegativeness

f(x) = g2(x) ≥ 0: the Euler-Lagrange equation for the new

variable g(x) =
√
f(x) is just the differential equation for the

harmonic oscillator

4g′′(x) + λg(x) = 0,

where λ is the Lagrange multiplier corresponding to the side
condition of normalization.

Second, the least informative density f∗
β also minimizes

Fisher information in the class with the restriction of an
inequality form∫ l

−l
f(x) dx ≥ β, 0 < β ≤ 1

or as a class with an upper bound on the distribution interquan-
tile range IQRβ(f) of level β

IQRβ(f) ≤ 2l, 0 < β ≤ 1

as in the correctly posed problem the minimum of Fisher
information is attained in the equality case.

III. PROBLEM STATEMENT AND MOTIVATION

A. Localization problem

Consider the localization problem setting given in [1]: there
is a single agent with an unknown position p = (x, y, z) sur-
rounded by N anchors with known positions pi = (xi, yi, zi),
i = 1, . . . , N .

The distance between the agent and anchor i is denoted by

di(p, pi) = ||p−pi||2 =
√

(x− xi)2 + (y − yi)2 + (z − zi)2.
The agent’s estimates of this distance are d̂i, i = 1, . . . , N with
the ranging error Δi = d̂i − di(p, pi).

Given the known anchor coordinates {(xi, yi, zi)}N1 and

the set of observations {d̂i}N1 , we have to estimate the un-
known localization coordinates (x, y, z).
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B. Maximum likelihood estimates of localization

Generally, the pdf fΔ of ranging errors is unknown, or
partially known. First, we assume that fΔ is given and the
ranging errors {Δi}N1 are i.i.d. random variables with pdf
fΔ(x) = f(x) defined on a non-negative support, that is,
Δi ≥ 0. Then we can apply the maximum likelihood (ML)
approach to estimating the unknown localization p = (x, y, z)
given the observations {pi = (xi, yi, zi)}N1 and {d̂i}N1 .

The likelihood has the following form:

L(d̂1, . . . , d̂N ;x, y, z) =

N∏
1

f(Δi) =

N∏
1

f(d̂i − di(p, pi));

logL =
N∑
1

log f(d̂i − di(p, pi)), (12)

which is to be maximized.

Next, we write out the estimating equations for localization
p = (x, y, z), namely, the equations for the stationary point
(x̂, ŷ, ẑ) of the loglikelihood (12):

∂ logL

∂p
=

N∑
1

∂ log f(d̂i − di(p, pi))
∂p

=

N∑
1

∂ log f(Δi)

∂Δi

(x̂− xi)i + (ŷ − yi)j + (ẑ − zi)k
di

= 0,

which yields the following system of equations for (x̂, ŷ, ẑ)

N∑
1

f ′(Δi)

f(Δi)

(x̂− xi)
di

= 0,

N∑
1

f ′(Δi)

f(Δi)

(ŷ − yi)
di

= 0,

N∑
1

f ′(Δi)

f(Δi)

(ẑ − zi)
di

= 0

with the solutions in the form of the weighted averages

x̂ =

∑N
1
wixi∑N

1
wi
, ŷ =

∑N
1
wiyi∑N

1
wi
, ẑ =

∑N
1
wizi∑N

1
wi
, (13)

where the weights wi are

wi =
f ′(Δi)

f(Δi)di
, i = 1, . . . , N.

For the solution of system (13), an iterative algorithm
can be proposed when we begin with low-complexity initial
estimates of localization coordinates (x̂(0), ŷ(0), ẑ(0)), say,
with the sample means (x̄, ȳ, z̄) or the sample medians
(medx,med y,med z), and substitute them into the following
iterative equations:

x̂(k+1) =

∑N
1
wi(x̂

(k), ŷ(k), ẑ(k))xi∑N
1
wi(x̂(k), ŷ(k), ẑ(k))

,

ŷ(k+1) =

∑N
1
wi(x̂

(k), ŷ(k), ẑ(k))yi∑N
1
wi(x̂(k), ŷ(k), ẑ(k))

, (14)

ẑ(k+1) =

∑N
1
wi(x̂

(k), ŷ(k), ẑ(k))zi∑N
1
wi(x̂(k), ŷ(k), ẑ(k))

,

k = 0, 1, . . . , .

The convergence of algorithm (14) is usually provided:
similar iterative schemes are widely used in robustness for
computing M-estimates of location [5].

Under general conditions of regularity imposed on the
ranging error pdfs [11], ML-estimates are consistent and
asymptotically normal with the following covariance matrix

C = I−1,

where I is the Fisher information matrix of the diagonal form
due to the i.i.d. assumption for ranging error random variables
{Δi}N1

I =

[
I11 0 0
0 I22 0
0 0 I33

]
. (15)

Now we compute the entries of matrix I

I11(x, y, z) = E

(
∂ logL

∂x

)2

= E

N∑
1

(
f ′(Δi)

f(Δi)

)2
(x− xi)2
d2i

=

N∑
1

E

(
f ′(Δi)

f(Δi)

)2
(x− xi)2
d2i

= E

(
f ′(Δi)

f(Δi)

)2 N∑
1

(x− xi)2
d2i

= I(f)
N∑
1

(x− xi)2
d2i

,

where I(f) is the Fisher information for location at the ranging
error distribution

I(f) =

∫ ∞

0

(
f ′(x)
f(x)

)2

f(x) dx. (16)

The similar structure arises for I22 and I33:

I22 = I(f)
N∑
1

(y − yi)2
d2i

, I33 = I(f)
N∑
1

(z − zi)2
d2i

.

Thus, the asymptotic accuracy of ML-estimates of the lo-
calization coordinates has the common factor I(f). Then the
covariance matrix of localization coordinate estimates is of the
following form:

C = I−1

=
1

I(f)

⎡
⎢⎢⎣
∑

(x−xi)
2

d2i
0 0

0
∑

(y−yi)2
d2i

0

0 0
∑

(z−zi)2
d2i

⎤
⎥⎥⎦

−1

.

The structure of this obtained result allows for considering
the minimax approach in robust estimation of location in
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some practically suitable class F of ranging error pdfs f(x):
f ∈ F . Recall that the key-point of the minimax approach is
the derivation of the least favorable (informative) pdf f∗(x)
minimizing Fisher information for location (16) over the
chosen class with the subsequent use of the ML-estimate for
this distribution density f∗(x).

C. Problem setup

The choice of the class of ranging error pdfs strongly
depends on the availability of experimental data on their
distribution. Here we use the results of the extensive ranging
measurement study performed in [1]. The obtained results on
the histograms of ranging errors are different for the LOS and
and NLOS conditions (see [1]). This information presented in
Fig. 4 and Fig. 5 can be used in several possible ways:

1) designing an adaptive algorithm of estimation of lo-
calization by the use of the histogram (kernel density
estimate) based ML-estimates;

2) designing an adaptive algorithm of estimation of
localization by the use of a parametric pdf approxi-
mation of histograms with the subsequent application
of ML-estimates;

3) designing a robust minimax algorithm of estimation
of localization.

Fig. 4. Histogram of the ranging error for the LOS condition

Fig. 5. Histogram of the ranging error for the NLOS condition

In this work, we follow way 3: in order to guarantee
the quality of performance of estimation of localization, we
propose to use Huber’s minimax approach to robust estimation.
The key-step in the implementation of the minimax approach
to the problem of robust estimation is the solution of the
variational problem of minimization of Fisher information over
a certain class of pdfs. This class should be chosen basing
on the experimentally observed specificity of the underlying
distributions. Hence, we consider the class FΔ of pdfs with
the non-negative support f(x) ≥ 0 for x ≥ 0 and f(x) = 0
otherwise, and with a bounded quantile value:∫ l

0

f(x) dx = β, 0 < β < 1.

The parameter β is chosen, and the quantile value l is taken
from the histogram

Finally, we pose the following variational problem:

f∗ = argmin I(f) =

∫ ∞

0

[
f ′(x)
f(x)

]2
f(x) dx (17)

under the side conditions of non-negativity, normalization,
bounded quantile value, and as it follows from Fig. 4 zero
value of the pdf at the left boundary

1) f(x) ≥ 0,
∫∞
0
f(x) dx = 1;

2)
∫∞
0
f(x) dx = β, 0 < β < 1;

3) f(0) = 0.

IV. MAIN RESULT

The solution of the aforementioned variational problem is
given by the following statement.

Theorem The least informative (favorable) pdf for the
class FΔ has the form (see Fig. 6):

f∗
Δ
(x) =

⎧⎨
⎩
A1 cos2(B1(x− x0)) for |x| ≤ l,

A2 exp(−B2x) for |x| > l,
(18)

where the constants A1, A2, B1, B2 and x0 are determined
from the simultaneous equations characterizing the restrictions
of the class FΔ.

These constants take the following values:

A1 =
2βω

(ω − sin(ω))l
, B1 =

ω

2l
,

A2 =
(1− β)λ
l

eλ , B2 =
λ

l
,

x0 =
πl

ω
,

where the auxiliary parameters λ and ω satisfy the equations

λ = − ω

tan(ω/2)
,

ω − sin(ω)

2ω sin(ω/2)2
=

β

1− β ,
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Fig. 6. The least informative pdf for the class FΔ

where π < ω < 2π.

The maximum likelihood score function ψ∗
Δ
(x) is bounded

(see Fig. 7)

ψ∗
Δ
(x) =

{
tan(B1x) for |x| ≤ l,

tan(B1l)sgn(x) for |x| > l.

Fig. 7. The least informative pdf for the class FΔ

The Fisher information at the least informative pdf takes
the form:

I(f∗
Δ
) =
βω2

l2
+

(1− β)λ2
l2

.

Sketch of the proof. Basing on the similar minimization
problem with symmetric distributions considered in Section II,
we choose a candidate for the optimal solution in the form of
the glued two principal extremals, trigonometric and exponen-
tial, of the basic variational problem. Here we have 5 unknown
parameters: A1, A2, B1, B2 and x0; the parameters l and β are
given (taken from the histogram of the ranging errors in the
line-of-site (LOS) and non-line-of-sight (NLOS) conditions,
see Fig. 4 and Fig. 5).

The unknown parameters are determined from the condi-
tions of normalization, given quantile value and smoothness:∫ ∞

0

f∗
Δ
(x) dx = 1,

∫ l

0

f∗
Δ
(x) dx = β,

f∗
Δ
(l − 0) = f∗

Δ
(l + 0), (f∗

Δ
(l − 0))′ = (f∗

Δ
(l + 0))′,

f∗
Δ
(0) = 0.

It can be shown that the obtained result holds for the quantile
levels lying in the interval 1/3 < β < 1: this interval covers the
central zone and the tail area of the ranging error distribution.

V. CONCLUSION

1) The novel result obtained in this work for the least
informative pdf of ranging errors defined on the non-
negative support generalizes the classical results ob-
tained in the symmetric case. However, the existence
of the least informative (favorable) distribution does
not guarantee the existence of the minimax variance
saddle-point for the problem of robust estimation of
localization. So, this problem is open for the further
study.

2) The finite sample size properties of the proposed
algorithm also have to be studied, especially its bias.

3) A positive feature of the presented solution is that
it holds for the most wide thinkable class of pdfs,
namely, with a bounded quantile value: for instance,
Pareto-type pdfs belong to this class.
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