
An Architectural Approach to Increase Adoption of
the MDBCI Tool

Andrey Vasilyev, Maksim Kosterin
P.G. Demidov Yarsolavl State University

Yaroslavl, Russia

andrey.vasilyev, maksim.kosterin@fruct.org

Abstract—This paper describes improvement of MariaDB
continuous integration infrastructure (MDBCI) and the issues
that were encountered on a way towards making it an easy to
pick and use tool for everyday use by the end users. The ease of
distribution and installation is achieved by providing MDBCI
in the form of single executable file with minimum external
dependencies. Contribution towards everyday use by developers
is done by reducing the total execution time via introduction of
multi-threaded approach.

I. INTRODUCTION

MariaDB continuous integration infrastructure (MDBCI) is
a set of tools for execution of end-to-end tests with complex
database servers configurations including multiple database
servers, proxy servers, high availability tools [1]. The core
components provide a convenient way to automate creation
and configuration of virtual machines (VMs). The main goal
of implementing such automation process is to be able to create
a fully configured and ready-to-use fleet of VMs with just a
few commands. The whole feature set of managing VMs is
split across several steps that are available to the end user as
separate commands that allows:

• creation of VMs based on a template;

• automatic and reliable deployment of MariaDB,
MaxScale and other applications to the created VMs;

• creation and management of VM state snapshots;

• reliable destruction of created VMs.

Besides that, MDBCI automatically generates a network
configuration description file for created VMs that can be
used to access the created VMs. MDBCI also maintains the
list of binary repositories for each version of each supported
applications for all target platforms. The MDBCI is developed
as the open source project and available from the GitHub
repository.

MDBCI was initially distributed as the source code that
the end user must put into the destination folder and then
install a set of dependencies that are required for the tool
to run. The main problems with such a setup were different
dependencies for different Linux distributions, dependency
upon Ruby and Python language interpreters and the problems
with their libraries. This lead to the low adoption of the tool
even between the end users. In order to mitigate this issue we
decided to provide end users with the accessible installation
option.

Currently MDBCI is mainly used to enable operation
of continuous integration tasks of the MariaDB MaxScale
product. It is mainly used to build MaxScale packages for a
variety of different Linux distributions and perform the system
testing. Typical test configuration includes ten virtual machines
running at the same time with eight of them having installed
the two sets of database servers with different replication
configurations and last two with the MaxScale itself. The
configuration of the whole VM fleet takes about half an hour,
however the whole system test suite takes up from four to six
hours to complete.

The time of VM fleet set up for the whole test suite can be
seen as negligible, but it becomes quite long for a developer
to perform a subset of tests that are connected to ones recent
changes. VMs can also be used during the actual development
of a new feature, making setting up a set of VMs a common
operation. Decreasing the overall time it takes for MDBCI to
setup a VM fleet would allow developers to more frequently
use the tool.

The paper is structured as follows. In Section II we describe
the initial set of dependencies that MDBCI tool had and
the approach we took to decrease their number and variety.
Section III states the problem of packaging application for use
in Linux distributions, describes the tooling that was developed
to package the MDBCI and shows some adaptations needed
for the tool to work. In Section IV we describe the approach
we took to enable parallel configuration of VMs in a fleet and
present test results. Conclusion summarizes the paper.

II. REDUCING THE NUMBER OF MDBCI DEPENDENCIES

A. Overview of MDBCI dependencies

MDBCI heavily relies on a wide set of various tools to
manage VMs. The overview of essential elements used by
the MDBCI is shown in Fig 1. VM are instantiated using
Vagrant that utilizes Libvirt [2] and Amazon Web Services
(AWS) [3] to take care of virtualization. The interaction
between Vagrant and its providers, Libvirt and AWS, are
handled by vagrant-libvirt and vagrant-aws [4]
plugins respectively. vagrant-aws plugin allows Vagrant
to control every aspect of an AWS virtual machine, which
includes creation, destruction and snapshot management, while
Libvirt machines require virsh command line tool to take end
restore snapshots and perform reliable destruction.

The core dependency for MDBCI is the Ruby interpreter as
the tool is written using the Ruby programming language. With
that comes a list of Ruby gems that are needed to be installed

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

AWS Virtual MachinesKVM/QEMU Virtual Machines

Ruby

Ruby gems

MDBCI

Vagrant AWS CLIvirsh

Chef Solo vagrant-awsvagrant-libvirt

AWSKVM/QEMU

Python

Python packages

AWS Instance 1AWS Instance 2QEMU VM 1QEMU VM 2

Fig. 1 Dependencies that MDBCI uses manage VMs

for the interpreter. Providing necessary version of Ruby on a
target PC was one of the first major obstacles encountered on
a way to an easy out-of-the-box usage of MDBCI. Installing
Ruby and its gems on the target computer is not always a
straightforward task considering that many of required gems
have their own dependencies in the form of C or C++ libraries.
Furthermore the version of Ruby required by MDBCI may
conflict with the already installed one thus forcing user to
switch between different versions just to be able to execute
MDBCI.

As was previously mentioned, Vagrant does take care of
most tasks related to VM management including customizing
the configuration of state of VM by utilizing the built-in
Chef solo client [5]. However it requires certain plugins to be
installed to directly interact with virtualization software. For
MDBCI needs, those plugins are vagrant-libvirt and
vagrant-aws. To utilize Libvirt virtual machines target PC
must provide the following tools:

• Libvirt — a toolkit to interact with the virtualization
capabilities.

• Libvirt development library — a set of development
files for the libvirt library.

• Libvirt management daemon — a server side daemon
required to manage the virtualization capabilities.

• QEMU/KVM [6] — a hypervisor for hardware-
assisted virtualization.

• Virsh — a command line tool to manage and control
virtual machines and hypervisors.

Amazon Web Services (AWS) virtual machines have some
special requirements too: AWS CLI — another command line
interface that is needed to control AWS machines. This tool
also has its own requirements. Even worse fact is that AWS
CLI is a Python application and requires Python interpreter
to be installed. It is already quite long list of things to be
installed: 2 language interpreters, multiple command line tools,
virtualization tools.

Besides that, some additional packages that are essential
for compilation of main tools also must be installed. This,

combined with everything previously stated, leads to a signifi-
cant list of dependencies that every MDBCI user must provide
manually. To solve this problem steps to reduce the number of
dependencies for MDBCI have been taken.

B. Selection of dependencies for the removal

The first way to reduce the number of installed dependen-
cies on the machine was to reduce the number of sources that
these dependencies originate. By consolidating the package
sources we can reduce the number of possible errors and
provide better support for the remaining ones.

In the initial setup dependencies came from four different
sources: the specific Linux distribution packages, the Vagrant
distributions and it’s plugins, Ruby gems and Python pack-
ages. The use of the language-specific packages over the
conventional distribution packages was dictated by the absence
of some required libraries in target distributions. Another
reason was the library version variation across different Linux
distributions.

The MDBCI is written in Ruby and corresponding inter-
preter is the vital requirement for the tool execution. The list
of libraries is fixed across different distributions and managed
by the Bundler tool [7]. Therefore this source of dependencies
can not be restricted and on the contrary it can be used to
substitute packages from other sources.

The Vagrant tool and it’s plugins provide a lot of services
and they are the foundation of all MDBCI features and can
therefore can not be removed. The MDBCI interacts with
the Vagrant by generating the configuration file and executing
direct commands to it. The plugins are necessary to extend Va-
grant with the support for Libvirt and AWS virtual machines.
This set of dependencies can not be removed due to them
providing a core functionality needed by the MDBCI.

The only possible targets for removal are the virsh tool
and the AWS CLI that requires Python interpreter with custom
installed packages. Both selected tools provide stable CLI and
can be reliably used across different distributions. Both these
tools can be manually used by the end users to interact with the
corresponding subsystems to check the operation and status of
corresponding systems.

To use the virsh tool it is only required to install one
additional package along with other Libvirt packages. The
AWS CLI on the contrary requires the additional interpreter
and a set of Python packages to be installed. Therefore the
benefit for removing the first dependency is almost absent, but
it is high enough for the second one.

We have replaced this tool with the aws-sdk-ec2 Ruby
gem that allowed us to execute required commands to the AWS
from the MDBCI process itself. The new set of dependencies
is shown in Fig. 2. The modified components are shown
with dashed borders. This modification also allowed us to
consolidate the AWS configuration in the single configuration
file. The performed migration allowed to reduce the number
of required language interpreters for MDBCI to successfully
function.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 464 --

AWS Virtual Machines KVM/QEMU Virtual Machines

Ruby

Ruby gems

MDBCI

Vagrant virsh

AWS

Chef Solo vagrant-aws vagrant-libvirt

KVM/QEMU

AWS Instance 1AWS Instance 2 QEMU VM 1QEMU VM 2

Fig. 2 The reduced set of the MDBCI dependencies

MDBCI subsystems

AWS CLI

AWS CLI
configuration file

Core

Generate
command

Destroy
command

MDBCI
configuration file

Configuration
script

Fig. 3 The subsystems of MDBCI dependent on AWS CLI

C. Implementation of AWS client in MDBCI

In the earlier implementations MDBCI utilised AWS CLI
to control AWS VMs. Even though the tool is a convenient
way to manage AWS machines by itself, it is rather complex
for automation tools like MDBCI.

The main reason for that is interaction between MDBCI
and AWS CLI gose through command line. It means that all
requests and responses are in the text form. While forming a
command for AWS CLI is a simple task, but interpretations of
its response requires text parsing. Console commands output
is not guaranteed to be stable. Changes leads to MDBCI logic
breaking. It makes AWS CLI usage unreliable.

Another issue is AWS CLI have to be configured outside
of MDBCI prior to its usage, which requires a separate
configuration file being filled by the end user. Structure the
MDCBI-AWS interaction at this point can be seen on Fig. 3.

MDBCI subsystems

Core

Generate
command

Destroy
command

AWS EC2
service

Configure
command

MDBCI
configuration file

Fig. 4 The subsystems of MDBCI using the Ruby gem

Ruby gem aws-sdk-ec2, a replacement of the AWS
CLI tool, provides the class Aws::EC2::Client. It has
the same capabilities as its precursor, but provides interface
in a form suitable to be used inside the application. Client
class is wrapped into another class that provides convenient
methods, the AWS Client. Main operations that are needed by
MDBCI are delegated to the wrapper’s methods, including key
pair generation, destruction and VM instance termination.

AWS Client first needs to be configured with proper AWS
credentials. To remove the need to manually create configura-
tion file for AWS API, configure command was introduced.
It requests AWS credentials from the user and then stores
them together with other MDBCI configuration files. Another
achievement was that this subsystem became optional and user
may opt out to use only Libvirt as the VM provider. Final
architecture can be seen on Fig. 4.

The removal of external dependency removed a whole set
of problems including the issues of setting up the external tool,
it’s environment and the issue of configuring both MDBCI and
AWS CLI separately.

III. PROVIDING MDBCI AS A SINGLE PACKAGE

A. The issue of installing dependencies

Even after reducing the number of required dependencies
the overall installation procedure remained quite complex. The
user would have to install the packages from their Linux
distribution package directory, Vagrant distribution and the
Ruby gems. Also the MDBCI itself was distributed from
the source code meaning that the user must also install and
maintain the correct source code base of the tool.

The use of external repositories for Vagrant and Ruby
gems was due to difficulty of supporting different versions

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 465 --

of dependencies across target distributions. The core issue
from the MDBCI development point of view is that different
versions of tools contain diverse set of issues that are needed
to be somehow bypassed.

Additional issues arise when installing Ruby gems into the
base operating system. In the naive way they are installed
system-wide for the installed interpreter. This approach in
some cases may break the execution of other tools written
in Ruby or the distribution upgrade may break the set of gems
that MDBCI relies upon.

The core idea behind packaging is to put everything into
a single package that can be easily distributed and easily used
by the end users and on the continuous integration servers.

B. Comparison of alternative packaging strategies

There are several strategies that can be used to package
and deliver the application for the use in Linux distributions.
The basic and classical one is to provide packages for each
target distribution. Another is to use distribution-agnostic tools
including AppImage, Flatpak or Snappy [8]. The least one is
to use containerization technology like Docker [9].

The use of classic approach of using distribution-oriented
packaging tools requires the developer to setup the repositories
for each target distribution and each release of it. When the
new version of the tool is released, it must be build for every
supported repository. This task may be automated, but the
initial investment is quite high.

In order to decrease the burden of supporting several
repositories for the end-user applications the distributions-
agnostic tools were developed. Along with ability to provide
applications to several distributions the upside for these tools
is support for running several versions of the application. This
feature is useful for the end-user when the tool have regressions
that take time to be resolved.

The AppImage approach to the application distribution is
to create the non-modifiable image that contains the target
application and all it’s dependencies. When executed, the
image is mounted in read-only mode to the filesystem using the
filesystem in the user space (FUSE) subsystem. Then the target
application is executed in the modified environment, so the
bundled libraries and executable would precede those installed
on the base operating system. In order to use the AppImage
the end user should download the software, set executable bit
for it and run.

The Flatpak and Snappy require user to install an al-
ternative package management software on top of the base
system. For the fully-supported distributions the installation
is streamlined, but for the most it would require user and
developers to perform similar steps as using the conventional
repositories, sometimes installing the new management tool
along. These tools are designed to protect the end user from the
malicious applications, therefore restricting the interaction of
the application with the base operating system. Being useful by
itself it acts as the entry barrier that requires more investment.

The Docker containerization platform is the de facto stan-
dard for execution of server-side applications, but not limited
to running such applications. It allows developers to provide

the full-featured application without the need to install it’s
dependencies on the host machine. For the case of running
MDBCI the Docker containers are too restricted: by default
they do not allow to access the resources of the host machine
and they do not allow to store state inside the container.
These restrictions require deep modification to the way how
MDBCI uses resources of the host machine and MDBCI usage
scenarios.

By analyzing the possible solutions we have decided not
to provide conventional packages as it would require to build
the complex infrastructure. The use of Docker containers
would require to heavily modify the existing CI processes and
revamp the MDBCI tool itself. By comparing the distribution-
agnostic tools the AppImage approach was chosen as it has the
lowest requirements to the base operating system and imposed
restrictions for the application being shipped and executed.

C. Packaging MDBCI into the AppImage

The AppImage project provides a tool called
pkg2appimage [10] that automates creation of AppImage
packages from the traditional packages. Another convenient
tool is the linuxdeployqt [11], it allows to create such
packages for the application compiled with the QMake or
CMake build systems. The MDBCI tool does not fall for any
of these categories, therefore the packaging process have been
implemented on the low level.

The low level AppImage packaging process includes fol-
lowing steps:

1) Create the directory that will form the resulting
image, we will call this target directory.

2) Compile the application, so it will use relative paths
to the required resources and therefore could be
relocated in the file system. The compiled application
is installed into the target directory.

3) Copy all the necessary libraries that the application
depends on into the target directory.

4) Put all other dependencies into the target directory.
5) Put the description of the application in form of the

icon and the desktop file.
6) Provide the launcher for the AppImage package.
7) Pack the contents of the target directory into the

AppImage package.

The proposed process is quite complex and requires devel-
oper to understand each step in order to achieve the desired
outcome. At the time of the development there was only one
publicly available tooling to bundle the ruby into the AppImage
package [12]. The main downside for this approach was the
inability to correctly execute installed Ruby gems. Another
problem was the inability to use the proposed solution as it
did not provide any extension points requiring us to copy it
and modify it to our needs.

D. The tooling to create the AppImages based on Ruby inter-
preter

Having limitations of existing tools we have developed the
tooling that allows us to create the MDBCI package and that
could be re-used by other applications that are based on Ruby

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 466 --

Docker builder

Dockerfile AppImage builder

Application builder Application assets

Fig. 5 The components of AppImage creation tooling

interpreter. The principle structure of the tooling is shown in
Fig. 5.

The tooling provides two scripts: the Docker builder and
the AppImage builder. The purpose of the first one is to
launch the second one in the controlled environment. This en-
vironment allows to separate the build machine from affecting
the resulting build process and create the binary executable
files that depend on the oldest possible implementation of the
standard libraries. It allows to execute the created binaries on
the variety of available distributions.

The Docker environment is build on top Ubuntu 14.04
distribution. It includes all the standard libraries that are
required to compile the resent releases of Ruby interpreter and
commonly used Ruby gems. The environment also uses the
GCC 8 compiler instead of provided GCC 4.8. It allows to
have support for the older base library releases and the newer
optimizations available in recent release of the compiler.

The AppImage builder performs all the necessary steps
to create the AppImage that were described in the previous
section. On top of that it compiles the Ruby interpreter and
installs it to the target directory. If no application is specified to
be built, the resulting package will only include the interpreter.

If the application was specified as the parameter for the
AppImage builder, then the corresponding builder script will be
called. The purpose of this script is to install all dependencies
that are required for the application and the application code
itself. The AppImage builder will also use the assets provided
by the application developer. They consist of the desktop file
and the icon file.

If another Ruby developer would like to use the developed
tooling one must provide only the application building script
and the corresponding assets. The use of Docker build environ-
ment is not mandatory, but it definitely increase the stability
of the result.

E. Installation of external dependencies

During the packaging we came with issues of providing all
the required tools inside the AppImage package. The overview

AppImage package

Host system tools

User environment tools

AWS Virtual MachinesKVM/QEMU Virtual Machines

Ruby

Ruby gems

MDBCI

Vagrantvirsh

AWS

vagrant-awsvagrant-libvirt

KVM/QEMU

AWS Instance 1AWS Instance 2QEMU VM 1QEMU VM 2

Fig. 6 The final structure of MDBCI dependencies after split into the
AppImage package and the host packages

of the final dependencies structure is shown in Fig. 6. Due
to this issue we needed a way to correctly setup the host
environment in which the MDBCI will run. Therefore we
introduced the setup-dependencies MDBCI command
that is responsible for the dependencies installation. The point
of this command is to get rid of a need to manually install
dependencies and configure environment from the end user.

Now when Ruby and all of its gems are packed into the
AppImage package, the only dependencies that are left to
be installed are the virtualization tools. However they may
differ on each Linux distribution. The installation procedure
may also differ based on the package managers and reposito-
ries available for a specific distribution. So the idea behind
setup-dependencies command is to keep the whole
process unified but break down steps that relies on package
manager into two groups based on Linux distribution: for
RPM-based and DEB-based distributions.

General setup process consist of 5 steps:

1) Dependencies installation using built-in package
manager.

2) Addition of current user to the Libvirt group.
3) Installation of Vagrant plugins.
4) Creation of domain for Libvirt virtual machines.
5) Export of environmental variables.

Dependencies installation step is done differently among
supported Linux distributions. Currently there are three differ-
ent groups of installation instructions: for CentOS and RHEL,
for Debian, for Ubuntu. The only difference between Debian
and Ubuntu installation is the list of packages that needs to
be installed. Other steps are pretty much the same. RPM
installation is a bit different in that it uses different package
manager, but the process is still the same. First, packages that
are available through the package manager are installed, then
Vagrant is updated to the target version. It’s important to note
that after installing Libvirt daemon Libvirt service must be
started manually in order to use Libvirt.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 467 --

After packages have been successfully installed, current
user must be added to the relevant Libvirt groups to be able to
utilize Libvirt VMs. In our case user is added to every available
Libvirt group just to be sure. There is nothing more in this step
as it quite simple.

Vagrant-libvirt and vagrant-aws are the only
plugins that are installed on the machine during the third step.
There is nothing special about it except for one thing: on the
newest version of RPM-based distributions that use Gnu C
Compiler (GCC) version 8 and above (like CentOS 8, Fedora
29) there was a bug during vagrant-libvirt installation
where Bundler (tool that Vagrant uses to install its plugins)
was unable to locate Libvirt development library. So we had
to run this step with explicit defining of the path to the Libvirt
library if it failed at the regular installation.

After the installation is completed, a domain is created
for the Libvirt virtual machines. Since Vagrant only supports
virtual machines that are located on a system bus, domain
itself must be created on a system level. However this leads
to normal user being unable to view machines created with
Vagrant without the root privilege. To solve this issue envi-
ronmental variable LIBVIRT_DEFAULT_URI is imported to
the command line interpreter configuration file (.bashrc)
which enables system as a default source of virtual machines.
This concludes the setup process. After that user is required
to restart the PC in order to apply changes.

setup-dependencies command also has two options.
The first one is the --reinstall options that tells MDBCI
to delete previously installed dependencies before performing
installation. The second one is called --force-distro

which causes setup-dependencies to use installation
process for one of the four supported distributions. This can be
useful on distributions that are not supported by the command
but share the same package manager and same packages sets
as the supported ones.

We were able to successfully support the several RPM-
based and DEB-based distributions including CentOS 7, 8;
RHEL 7; Fedora 27, 28, 29; Ubuntu 16.04, 18.04; Debian
Jessie, Stretch; Mint 18, 19.

F. Execution of applications outside AppImage package

Packaging application into AppImage package comes with
a problem. When executed, the application uses the internal
environment of the package, not only forcing internal libraries
of the package over the system ones, but preventing access to
the external environment. This breaks the execution of most
external applications.

The solution to this problem is to save the environment
of the OS where the AppImage package was built and use
it on a target PC. During the start of the application, old
environmental variables are saved by the launcher with the
special prefix which helps us to recognize them later on. Some
of the old variables are saved with their original names but
modified values.

During the call for the external application, old environ-
mental variables are extracted and passed to the pipe process
with their prefix removed. This way we are able to use original

environmental variables without modifying internal AppImage
package environment.

G. Results of application packaging efforts

Removal of the external AWS CLI tool allowed us to
completely get rid of the Python interpreter requirement which
further lead to ability to package the whole MDBCI application
into a single executable file. Packaging MDBCI into the
AppImage serves as a great time saver in the sense that its
removes the need for the end-user to install and manage Ruby
versions. This also creates the added benefit of the easier
MDBCI distribution.

Addition of the setup-dependencies command re-
sulted in the significant reduction in the number of steps that
needs to be performed by the user to properly set up MDBCI.
What previously took on average 7 to 10 commands depending
on the distribution, now can be done with a single build-in
command. Overall installation process of MBDCI is much
easier now, which should potentially lead to a better adaptation
by the end-users.

The examined approach provides benefits for both the de-
velopers of the tooling and the target audience. The developers
are guaranteed to have a stable execution environment that can
be easily enriched with the new libraries to perform specific
tasks, the very base - the version of the interpreter - also
becomes stable. The end users are no longer need to install
a development environment for the application, they can just
get the executable and proceed with their task.

IV. CONFIGURING VIRTUAL MACHINE FLEET IN

PARALLEL

A. The issues of using Vagrant build-in chef client

As described in the previous paper we are using the Vagrant
to setup machines on different platforms and Chef to configure
instances to the required role [13]. The Vagrant itself supports
the Chef as a provisioning tool. We came across the issues
with such provisioning in case of running several machines at
the same time:

• The machines were not brought up correctly with the
Vagrant essentially breaking the configuration.

• The implementation of the Vagrant client for the Chef
have several issues that may especially arise with the
supporting the latest distributive releases.

• The output of the Vagrant is hard to debug, i.e. all
information is dumped into the standard output out
of all Chef clients running at the same time. It is
almost impossible to debug the issues of configuring
the machines.

The first issue was mitigated by doing several attempts of
VM configuration. The idea and implementation details can be
found in our previous paper.

The second and the third issues have lead us to create
the internal component that allows to configure the created
VMs. After introduction of this tool the interaction between
the Vagrant and the MDBCI has changed. Now the Vagrant is
only responsible for starting VMs and providing information

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 468 --

on how to connect to them. The created component then uses
this data to connect to running VM and perform configuration.

B. Implementing the parallel configuring of Virtual Machines

Typical test setup consists of two sets of MariaDB servers
with two different replication configuration: one classical
MariaDB/MySQL Master/Slave replication and another —
synchronous replication based on Galera library. Finally, there
are machines running MaxScale itself. Everything previously
mentioned forms configuration with 10 separate machines that
needs to be brought up and properly configured. This process
done on a single thread can take a long time slowing down
the actual testing. One way to solve this issue is to spread
configuration process among multiple CPU threads.

Originally, when everything was done on a single thread,
the process looked like this:

1) Old machines were destroyed.
2) Whole configuration was brought up with a single

vagrant up which utilized the Vagrant innate par-
allelism.

3) Individual machines were configured one by one.
4) Additional attempts are made to configure machines

that weren’t configured on the previous step.
5) Machines that aren’t still configured are destroyed

and created again to be configured from the scratch.

After transition to the parallel configuration order of steps
remained the same, but now every step is individual to each
machine. That means that when we select machines for config-
uration, each machine is brought up, configured and possibly
fixed separately on its own thread. We doesn’t rely on Vagrant
bringing them up in parallel anymore. Final order of operation
for bringing up single VM can be seen on Fig. 7.

The important task to keep track of when transitioning
to the parallel configuration is to preserve MDBCI output
clean and organized. On a single thread journal is printed
successively for each step. But with multiple configurations
running at once output stream turns into a one giant mess.
The best solution to this problem that we come up with
was to store journal independently for each machine without
printing it to the output stream. To keep user in tact with
the general progress notification about execution state are still
shown at the beginning and the end of each step. However this
doesn’t clutter output stream like the whole log would. When
configuration is done the journal printed to the output stream
in chunks, where each chunk is the execution journal for a
single machine.

C. Controlling the level of parallelism

To further customize level of parallelism the new option
--threads was introduced for up command. It allows to
set maximum number of threads used by the mdbci up

command. The time it takes to bring up a configuration will
depend on the number of threads used.

We were able to measure amount time required to bring up
configuration consisting of 10 virtual machines: 4 machines
running MariaDB server, 4 Galera nodes, 2 MaxScale nodes.
Measurement was done on a server with 3.7 GHz Intel Xeon

Number of
attempts

speci ed?

noyes
attempts = 5

iteration < attempts?
no

yes

'--recreate' option
passed?

Report failure

yes
Destroy machine

no

Bring up machine

attempts =
number of attempts

Machine running?

Con gure

yes

Machine con gured?

iteration =
iteration + 1

no

no

Report success

yes

Fig. 7 Virtual machine configuration order of operations

E5 CPU with 8 cores and 64GB of RAM. 10 measurements
were made for each number of threads, up to 8 available
threads. Average and median time were calculated based on
gathered data. Results are present of Fig. 8.

The most noticeable jump is from 1 thread to 2 threads.
Median time with 2 threads is almost 2 times smaller than
with 1 thread with average time being one and a half minutes
behind median time. This jump is explained by a two-fold
decrease in a number of machines handled a single thread. So
with 2 threads each thread has to go through half as much
cycles compared to a single thread setup. Although next VM
in the queue is distributed as soon as the worker is released,

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 469 --

Fig. 8 Required time to bring up configurations of 10 virtual machines on the
server

Fig. 9 Required time to bring up configurations of 10 virtual machines on the
notebook

the time required to bring up a each individual machine is
relatively comparable, so we can still call a batch of machine
whose configuration is done at the same time a “cycle”.

Time decrease for 3, 4 and 5 threads follows the same
trend as spotted in the transition from 1 to 2 threads, where
reduction in the amount of cycles leads to the lesser execution
time. For 3, 4, 5 threads the amount of cycles needed is 4, 3
and 2 respectively. There is a noticeable spike in the average
time with 4 threads, which is the result of 2 out of 10 runs
resulting in a need for MDBCI to fix virtual machines. Median
value still holds in line with the general trend.

Values for 6, 7, and 8 threads lies in approximately similar
range, with the time for 7 threads being slightly higher due to
a server load. It takes 2 cycles to finish bringing up machines
with each of those number of threads, so the time shouldn’t
differ much.

Same measurement were made on a regular notebook with
Intel Core i7-7500u CPU and SSD that can represent a PC
used by a regular developer. Results are shown on Fig. 9 As we
can see, values follows the same trend as shown on a previous
diagram, but the average and median time is expectedly higher.

D. Performance analysis

The presented results clearly indicate that the use of several
threads allows to decrease the overall configuration time by
60 percent on both configuration. The minor difference of the
overall configuration time between the server and the notebook
can be explained in that the resources of the server were not
fully utilized during the configuration process.

The results also state that the use of more than 4 threads
on both configurations provide little or no effect at all. For the
notebook this seems to be a ceiling as it does not have only 2
physical processors working in the hyper-threading mode.

The inability to efficiently scale past 3 threads for the server
can be seen in the input-output limitations. The process of the
machine configuration requires vast amount of resources to
be fetched from the Internet. They mostly come in the form
of different distribution packages. In order to further speed-
up the configuration process the caching proxy server can be
employed.

Another possible bottleneck could be in the performance
of the hard drive input output. For each machine the space
is allocated on the hard drive and that space is then actively
accessed.

In order to proceed further with the performance testing
of the tool the measurement of the more parameters must be
included in the process. They include the load of the CPU,
memory, hard drives and the networking activity. This would
lay the basis for finding and fixing the bottlenecks in the VM
configuration process.

V. CONCLUSION

Development of the continuous integration support tools
for any project may lead to an increased internal complexity
and to use of various overlapping technologies. As we have
seen in MDBCI this leads to the poor adoption of such tools
and to increased cost of supporting existing sparse installation
base. In order to mitigate this issue such tools should be
developed as other end user application having elaborate plans
on how the tool will be delivered to the end users, how it will
be maintained up to date and how the found issues will be
resolved.

For the MDBCI tool case it was found that modern
distribution agnostic tools provide the most value due to the
reasonable balance between the efforts required to maintain the
package and the ability to seamlessly execute the application in
different GNU/Linux distributions. Particularly the AppImage
approach to packaging seems to be the best when dealing with
tools that heavily interact with the applications and store state
on the host system.

During the packaging effort we have developed the spe-
cialized tooling that can be used out of the box by Ruby
application developers who are trying to create the portable
package of their application. In order to use it one must only
develop a placement strategy for the application, leaving the
whole process of packaging to the tooling.

The effort of initiating the fleet configuration in parallel
allowed us to speed up the whole time by a factor of three.
This will not only allow for a better resource utilization and

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 470 --

faster feedback from the continuous integration processed, but
also for a deeper use of the tooling throughout developers.

The possible future directions for the improvement of the
MDBCI tooling include the support for setting up parts of
the fleet by label and it’s deeper integration with MaxScale
system test. This would allow test to have more reliable
recover procedure and to have the targeted results faster as only
required VMs will be initiated. Another research direction is
to find and eliminate other bottle necks in VM configuration
process.

VI. ACKNOWLEDGMENT

This project was done with financial support of MariaDB
Corporation.

REFERENCES

[1] S. Balandin, T. Turenko, A. Vasilyev, M. Kosterin, E. Vlasov,
and R. Vlasov, MariaDB continuous integration infrastructure
(MDBCI), 2019 (accessed February 9, 2019). [Online]. Available:
https://github.com/mariadb-corporation/mdbci

[2] H. D. Chirammal, P. Mukhedkar, and A. Vettathu, Mastering KVM
Virtualization. Packt Publishing Ltd, 2016.

[3] M. Wittig and A. Wittig, Amazon web services in action. Manning,
2016.

[4] M. W. Navin Sabharwal, Automation through Chef Opscode. Apress,
Berkeley, CA, 2014.

[5] J. Ewart, M. Marschall, and E. Waud, Chef: Powerful Infrastructure
Automation. Packt Publishing Ltd, 2017.

[6] G. S. K. A. Binu, Virtualization Techniques: A Methodical Review of
XEN and KVM. Springer Berlin Heidelberg, 2011.

[7] S. Wintermeyer, “Bundler and gems,” in Learn Rails 5.2. Springer,
2018, pp. 243–255.

[8] S. Paulus, T. Smits, T. Becht, and S. Kol, “Ubiquitous learning applied
to coding: A set of tools and services to deliver code-intensive learning
contexts to student devices,” in Proceedings of the 3rd European
Conference of Software Engineering Education. ACM, 2018, pp. 87–
92.

[9] I. Miell and A. H. Sayers, Docker in practice. Manning Publications
Co., 2016.

[10] P. Simon, pkg2appimage GitHub repository, 2019 (accessed February 9,
2019). [Online]. Available: https://github.com/AppImage/pkg2appimage

[11] ——, linuxdeployqt GitHub repository, 2019 (accessed February 9,
2019). [Online]. Available: https://github.com/AppImage/pkg2appimage

[12] Y. Tokunaga, ruby.appimage GitHub repository, 2018 (accessed
February 9, 2019). [Online]. Available: https://github.com/yuntan/ruby.
appimage

[13] M. Zaslavskiy, A. Kaluzhniy, T. Berlenko, I. Kinyaev, K. Krinkin,
and T. Turenko, “Full automated continuous integration and testing
infrastructure for MaxScale and MariaDB,” in Proceedings of the 19th
Conference of Open Innovations Association FRUCT. FRUCT Oy,

2016, p. 36.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 471 --

