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Abstract—Usually automated programming systems consist of
two parts: source code analysis and source code generation. This
paper is focused on the first part. Automated source code analysis
can be useful for errors and vulnerabilities searching and for
representing source code snippets for further investigating. Also
gotten representations can be used for synthesizing source code
snippets of certain types.

I. INTRODUCTION

Automated programming systems are used everywhere as-
sisting software engineers with syntax and code style checking
(simple ones) and proposing of variables names and code
blocks (more complex ones). Usually such systems consist of
two big parts: source code analysis and source code generation.
This paper is focused on the first part.

Automated software analysis is a research area focused on
statically or dynamically processing software and its source
code for finding errors, vulnerabilities, bottlenecks in programs
and improving their quality and readability. Dynamic analysis
is applied during program execution and can find problems
appeared on specific hardware with concrete input data. On the
other hand static analysis is focused on source code processing,
and ones try to predict mistakes in code or better variable
names with its help. In this work we focus on the last type of
analysis.

There are a lot of works in static software source code
analysis area. Most of them are focused on bug detection and
program repair [1], [2], [3], [4].

In [1] authors use a memory neural network based model
for calculating the probability of potential buffer overrun error.
Their approach is similar to question answer systems, and the
question they ask is “Is there a buffer overrun in this line of
code?” Authors of [2] consider two approaches to bug detec-
tion: adapting natural language processing (NLP) approaches
(like Bag of Words and TextCNN) and augmented control
flow graph (CFG) analysis with random forest algorithm. Their
results show that adapted NLP approaches work better than
CFG analysis. An adapted NLP approach also was used in

[3]. Authors used a recurrent neural network based model
for predicting a probability of bug appearing in a function
represented with a sequence of lexems. Alternative approach
is proposed in [4]. Authors’ recurrent neural network based
model tries to replicate dynamic analysis for detecting potential
software bugs. Their results are slightly better than text-only
and abstract syntax tree (AST) only analysis.

On the other side there are some researches about software
and source code representation [5], [6], which can be used
for more accurate and interpretable software source code
generation. Program synthesis interpretablity can be important
for detecting potential malicious behaviour (and its reasons)
in automatically generated software. For example in [5] AST
and data flow graph (DFG) combination is proposed for more
correct source code representation, and in [6] authors calculate
attention vectors for each path in AST for detecting more
important ones.

For that reason in this paper we focus on such software
source code representation, which can be split with some hy-
perplane for logically dividing source code snippets to several
groups. If there is this type representation it is possible to
use simple linear models for classifying source code snippets.
Simple model usage increases interpretablity of classifiers, but
it should be mentioned that gotten representation must be
interpreted before.

That task can be decomposed to the following steps:

1) Mining software repositories. It is a data collection
step for forming training and test sets for developed
model.

2) Representing source code as graphs. On this step
raw source code transformed into more structural
representation.

3) Preprocessing graphs. Gotten graphs should be trans-
lated into the machine-friendly format for passing
them into the model.

4) Training an autoencoder to form latent representa-
tion. On this step the model is trained to approximate
transition functions between graph and latent spaces.

5) Clustering graph representation in latent space. Fi-
nally the latent space should be investigated for
checking possibilities of source code classification.

For the first two steps we use approach from [7] where
authors augmented source code snippet graph representation
proposed in [5] with additional back-edges. For the third and
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fourth steps we use graph neural network library proposed
in [8] and preprocess graphs as three-dimension tensors. For
the last step in our paper K-Means algorithm [9] is used.

Our experiments showed that a graph neural network based
autoencoder model can provide such graphs representation in
a latent space that software modules can be split to implemen-
tation and interface classes. The result can be used as a block
in other static source code analysis systems or for sampling
an additional feature for source code generation.

Our main contribution is in introducing the method for
unsupervised building source code representation for other
analysis tasks.

The structure of the paper is following: Section II describes
recent work in software source code analysis with neural
networks, Section III introduces background information about
autoencoders and graph neural networks, Section IV presents
our approach for classifying source code snippets, Section V
presents our experimental results, and Section VI concludes
the paper.

II. RECENT WORK

A. Software source code analysis

Software analysis can be static, dynamic, or combined.
When the talk is about source code analysis, static analysis
is meant. Static analysis can be rule-based or neural network
based.

Rule-based methods (e.g. [10] where authors use “bottom-
top” interprocedural static analysis of the whole program based
on CFG gotten from LLVM [11] intermediate representation)
are simple and interpretable but has poor generalization ability,
which is a main problem of this group of approaches (
Fig. 1 [12]). Rule-based analyzers can detect some known
bugs and problems, but unknown bugs are more important and
dangerous because they are not detected yet and there are no
available corrections for them.

These methods are implemented in such tools as Svace [13]
(an interprocedural static analysis tool for C, C++, and Java),
PVS-Studio [14] (a cross-platform static analysis tool for C,
C++, C#, and Java languages which uses symbolic execution
and data flow analysis along with classical pattern based
analysis), cppcheck [15] (a tool for C and C++ programs static
analysis focused on undefined behaviour detection), and others.

Neural network based approaches can be divided to two
groups: models adapted from NLP area, and models which
operates with software graph representation. In the first group
of approaches commonly RNN and CNN based solutions are
used [16]. Approaches of this type lost structural information
of source code and have a problem with potentially unbounded
vocabulary size. On the other size, graph neural-network based
approaches [5], [7] work with structure information about
source code. In the most cases graph-based approaches have
better results than NLP-based models. This type approaches
have better generalization ability but require bigger datasets to
train.

Our approach presented in the paper uses graph neural
networks to process software source code.

Constraint solver
23 unique issues

Fuzzer A
8 unique issues

Fuzzer B
21 unique issues

Fuzzer C
5 unique
issues

1 issue

1 issue

1 issue

Fig. 1. Overlapping between different analyzers. As shown, different analysis
tools have some common parts, but mainly each tool detects different types
of error, therefore a software engineer have to use several analysis tools if
maximum possible problems coverage is needed

B. Autoencoders

Firstly autoencoders were introduced in 2006 [17] and
they are started to use for different tasks like dimension
reduction, neural networks layers pretraining, and others. Also,
as mentioned in [17], autoencoders have capability to represent
data in latent space in such way, that they can be easily split
to different classes.

Autoencoders are widely used in neural machine translation
(NMT) tasks [18]. After their successful application for an
NMT tasks, autoencoders spreaded to other areas. In software
source code processing autoencoders are used for moving code
snippet from one programming language to another [19] or for
translating natural language to some source code [20].

In our knowledge there are no research for analysing source
code representation in a latent space, and we are focusing on
this aspect of autoencoders.

C. Graph neural networks

Graph neural networks are introduced in 2009 [21] as
a tool for processing graph representation of data (citations,
social networks, images, etc). After that graph convolutional
networks appeared as an evolution [22], [23]. Now they are
widely used for different tasks and most valuable approaches
are implemented in different frameworks [24].

One of the last works in that area is a Graph Nets library
published in 2018 [8]. In this work authors use approach based
on [21] and consider a graph neural network as a combination
of graph nodes, edges, and global state in such way that any
graph network block can be composed with any other (which
means that input and output of a graph network blocks have
the same structure). Our work is based on this approach to
graph processing.

III. BACKGROUND

A. Autoencoders

An autoencoder is a neural network consisted of three
part [17]: encoder, decoder, and latent representation (Fig. 2).
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Its main task is to reconstruct the input. For that reason mean
squared error (MSE) is a popular loss function for this kind
of models.

Encoder

latent space

Decoder

Fig. 2. The scheme of a simple autoencoder

An encoder part is a some neural network (multilayer
perceptron, convolutional or recurrent neural networks) which
encodes input data to some representation in a latent space. It
approximates a function Enc(x) : Rd1 → R

d2 , where d1 � d2,
in such way that Xenc = {xenc ∈ Rd2} can be split according
some input data features.

A decoder part also is a neural network which is usually
mirrored encoder network. E.g. if an encoder has two fully
connected layers where the first layer is FC1

enc : R
10 → R

5,
and the second layer is FC2

enc : R
5 → R

2, a decoder part also
will have two fully connected layers where the first layer is
FC1

dec : R
2 → R

5, and the second layer is FC2

dec : R
5 → R

10.

It is needed to keep in mind that the output of a decoder
must be as near as possible to an encoder input. For that
reason sometimes ones use shared weights between encoder
and decoder parts (Wdec = WT

enc). So if a fully connected layer
is defined as FC(x) = f(xW +b) where x is the input data,
W is the weight matrix, b is the bias vector, f is the activation
function, FCdec = f(xWdec + bdec) = f(xWT

enc + bdec).

As a result of encoder and decoder parts co-training a latent
space may have such representation of input data that it can
be split with some its feature as shown in Section V.

B. Graph neural networks

The main purpose of graph neural networks introduced
in [21] is processing information structured with graphs. It
can be images, social networks, maps, etc. In such approaches
graph is considered as a system where each node depends on
its neighbours. Also nodes can contain some information (e.g.
type of a node) which is called label.

For processing graph with neural networks a vector repre-
sentation of each node must be. On the first step all vectors
(node states) are initialized with random values, and their
actual values are calculated as

xn = fw(ln, lco[n],xne[n], lne[n]),

on = gw(xn, ln),

where xn is the node state vector (which can be interpreted as
embedding), on is the node output vector (its final value), ln

is the node label, lco[n] is the adjoint edge labels, xne[n] is the
neighbour node states, lne[n] is the neighbour node labels, fw
is the local transition function uses a set of parameters w, and
gw is the local output function uses a set of parameters w.

In [8] that idea was developed and edge and global states
were introduced. Authors defined three “update” functions φ
and three “aggregation” functions ρ:

e′
k = φe(ek,vrk ,vsk ,u),

v′
i = φv(e′

i,vi,u),

u = φu(e′,v′,u),

e′
i = ρe→v(E′

i),

e′ = ρe→u(E′),
v′ = ρv→u(V ′),

where

E′
i = {(e′

k, rk, sk)}, rk = i, k = 1, . . . , |E|,
V ′ = {(v′

i)}, i = 1, . . . , |V |,
E′ =
⋃

i

E′
i = {(e′

k, rk, sk)}, k = 1, . . . , |E|,

vi is the node attributes vector, ei is the edge attributes vector,
u is the vector of the global attributes, sk is the sender node
index, rk is the receiver node index. Sender and receivers node
indexes were introduced for keeping an edges direction during
graph processing.

For our purposes we use a combination of all those
functions which is called “Full Graph Network Block” and
shown in Fig. 3.

E V u

φe

ρe→v ρe→u

φv

ρv→u

φu

E′ V ′ u′

Fig. 3. Full Graph Network Block configuration

As followed from the scheme a graph network outputs a
graph with the same structure and different attributes. It is
clear that the idea is related to autoencoders and these two
approaches can be combined.
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IV. THE MODEL

Previously we tried to use metrics-based approach for
classifying software source code [25], but it is good for
software evaluation and cannot be generalized to program
synthesis. So, as mentioned in the previous section our model
is based on combination of several full graph network blocks.
We use recurrent graph network architecture proposed in [8]
(Fig. 4).

Gin =
= (V0, E0, u0)

fenc
G′

in =
= (V ′

0 , E
′
0, u

′
0)

×10

fcore
G′

t =
= (V ′

t , E
′
t, u

′
t)

L

fdec
Gt =

= (Vt, Et, ut)

Gout

Fig. 4. Recurrent Graph Network architecture

Formally on each step a model takes encoded initial
graph and its latent representation and outputs a new latent
representation and a graph with updated attributes:

V ′
0
, E′

0
,u′

0
= fenc(V0, E0,u0),

Vt, Et,ut = fdec(V
′
t , E

′
t,u

′
t),

V ′
t+1

, E′
t+1

,u′
t+1

= fcore([V
′
0
, V ′

t ], [E
′
0
, E′

t], [u
′
0
,u′

t]),

where fenc is the encoder, fdec is the decoder, fcore is the
core processing graph network block.

The initial states V0, E0, and u0 are encoded as one-hot
vectors, and the output of fdec must be also one-hot vectors,
so we apply softmax function for each node, edge and global
attributes.

In this paper we use 10 steps in recurrent graph network
and analyze a latent representation after each one and the

following vector dimensions:

V ∈ Rn×77,

E ∈ Re×20,

u ∈ R1,

V ′ ∈ Rn×16,

E′ ∈ Re×16,

u′ ∈ R16.

V. EXPERIMENTS

A. Dataset

For our experiments we use a dataset introduced in [7],
[26]. It contains source code graph representation of 18 Java
projects. Each graph in the dataset represents a Java class with
augmented AST. There are 2754 graphs of Java classes in the
dataset which are split to training set (2341 graphs) and test
set (413 graphs).

Each node in graphs is described with 7 fields: node num-
ber, text, type, parent type, identifier, reference, and modifier.
Each edge is described with 3 fields: type, sender node number,
and receiver node number. We keep all fields for edges and
use only number and type fields for nodes. There are 20 edge
types and 77 node types in the dataset.

B. Training process

For training our model we use the standard dataset split.
Both training and test parts were shuffled. We train our model
as an autoencoder, so the goal is to minimize cross entropy
between the input and predicted graph representations on each
step. More formally:

L(G0, Gt) =

=
1

T

∑

t∈T
(−
∑

vt∈Vt
(v0 log vt)−

∑

et∈Et
(e0 log et))→ min,

where G0 is the initial graph, Gt is the predicted graph on
T steps, T is the number of steps (10 in our case), Vt is the
set of nodes for the t-th graph, Et is the set of edges for the
t-th graph, v0 is the attributes of a node in the initial graph,
vt is the attributes of a node in the predicted t-th graph, e0
is the attributes of an edge in the initial graph, and et is the
attributes of an edge in the predicted t-th graph.

Training process for 5000 iterations takes 3 days on one
NVidia 1050ti GPU. We save metrics values for training and
test sets each 5 minutes during training. The loss function and
accuracy behaviour is shown on Fig. 5.

It could be seen from the graphics that the model suc-
cessfully learned to reconstruct initial graphs during encoder-
process-decoder pipeline. Loss function is exponentially de-
creases during training, but there are some outlier values. Both
train and test loss values aim to 0 which shows stable training
process without overfitting. The rate of nodes, edges, and entire
graphs predicted correctly aims to 1, which shows the capa-
bility to reconstruct graphs from their latent representation.
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Fig. 5. Behaviour of loss function (top), correct nodes/edges accuracy
(center), and solved graphs accuracy (bottom) during training process

C. Results

We apply K-Means algorithm to a graphs latent represen-
tation after each recurrent step in our model (Fig. 6). TSNE
algorithm [27] is used for clear figures. After 10 recurrent steps
two classes can be split with a linear model.

We calculated a mean vector of all nodes in graph, and a
mean vector of all edges, after that both mean vectors were
concatenated with global attributes vector, and a result vector
was used for next processing:

v(c) =
1

|V |
|V |∑

i=1

v
(c)
i , c = 1, . . . , C, v ∈ RC ,

e(c) =
1

|E|
|E|∑

i=1

e
(c)
i , c = 1, . . . , C, e ∈ RC ,

l = (v, e,u), l ∈ R3C ,

where C is the number of components in vectors (16 in our
case), v is the mean node vector, e is the mean edge vector,
l is the vector for graph representation in a latent space.

Fig. 6. The results of applying K-Means algorithm to graph representation
in a latent space after each recurrent step in the model.

We find that two picked out with K-Means algorithm
classes are corresponded to two separated graph types (Fig. 7).
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The first group (which is bigger) contains graphs with large
number of nodes and edges. The second part (which is smaller)
contains graphs with small number of nodes and edges. More-
over graphs of the first type represents classes with some
business logic implementation, and graphs of the second type
represents interfaces and small utility classes.

Fig. 7. The examples of graphs from black (top) and light grey (bottom)
classes gotten after 10 processing steps.

VI. CONCLUSION

In this paper the approach to unsupervised classifying
software source code is proposed, In its bounds we trained a
graph neural network based autoencoder which can transform
an initial augmented AST of classes into a representation in
a latent space so they can be linearly split. Our experiments
showed that the model can separate interface and small utility
classes from classes with some business logic implementation.

Those results shows that the model can be used as a part
of program synthesis and software source code static analysis
systems. It is possible to use an obtained latent space for
generating augmented ASTs as a step of program synthesis
process, or to get an additional feature vector for source code
snippets which will characterize its type.

The further work can be done in several directions. Firstly,
it is possible to change a classical autoencoder to a varia-
tional autoencoder (VAE) and its modifications [28], [29]. As
followed from their definition groups of data can be more
clearly separated in a latent space because they consider a point
neighbourhood on a decoder step, not a point itself. Secondly,
taking in account note text can bring to a model additional
information about parts of source code because constants,
variable, function, and class names have own meaning which
can characterize the analyzed source code snippet. And the
third step is more deeply analysis of a gotten latent space for
clustering classes according their implemented business logic.
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