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Abstract—In the current study, we investigate the possibility 
of constructing sensors based on chaotic circuits with memristors. 
The study involves different memristor models, both simple and 
more physically realistic. We demonstrate that changes in the 
inductance cause notable changes in the behavior of memristive 
chaotic circuits, which can be detected and converted into a 
measuring signal. Thus, memristors can serve as the physical 
basis for the creation of highly sensitive sensors of a new 
generation, extremely compact and with ultra-low power 
consumption. 

I. INTRODUCTION 

Sensors exploiting dynamical chaos could have several 
advantages over convenient sensors, such as a higher 
sensitivity, exceeded selectivity, simpler design and less power 
consumption. However, for a long time, studies in this area 
were mostly academic, and only recently significant practical 
results have been achieved. Fiderer and Brown successfully 
used chaos to enhance integrable quantum sensors [1]. The 
authors’ magnetometer demonstrated near twofold 
improvement of sensitivity. Chaotic sensors of simple 
construction also gain researchers’ interest. Korneta et al. [2] 
showed that a well-known Chua circuit can operate as a 
bistable sensor with an almost linear transfer function, which is 
suitable for many practical applications. With that, issues of 
chaotic circuits design using innovative electronic components 
have been so far little addressed. For example, there is a 
possibility of constructing simple chaotic circuits using 
memristors – passive elements suitable for creating systems 
with complex behavior and ultra-low power consumption, 
tenfold lower than its transistor-based counterparts 
consume [3]. Memristor production technology is being 
enhanced from year to year, and the first commercial 
memristors are already available. Some simple chaotic circuits 
with the theoretical memristor and the model based on titanium 
oxide memristor were proposed recently [4–6]. Thus, following 
the idea of [2], it becomes possible to investigate these circuits 
for their sensitivity to external signals or intrinsic parameters 
changes. Besides memristors, all of these circuits contain 
inductive elements and thus can serve as inductive sensors. 
Circuit designs developed in [4], [5] and [6] are presented 
in Fig. 1, as well as their attractors.  

The paper is organized as follows. In section II, chaotic 
circuits with memristors under investigation are presented. In 
section III, analysis methods are listed. Section IV describes the 
results and discusses the advantages of chaotic circuits over 
harmonic oscillators. Section V concludes the paper. 

II. CHAOTIC CIRCUITS WITH MEMRISTORS

A. Memristor concept 

Memristor (an acronym for “memory resistor”) is an 
electronic component that changes its resistance in dependence 
on the charge flowing through it. Whereas a resistor can be 
characterized by the equation 

Riv  , 

a memristor is defined by Leon Chua as [4] 
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where )(xR  is a memristance, a function of internal state x , 
and ),,(),( tqxfixf   is an internal state function providing 
memory effect. In an ideal memristor 
definition, ))(()( tRxR   states the relationship between 
current and flux. Here we may note that some researchers 
emphasize the absence of magnetic flux in all physical 
implementations of memristors and thus deny that 
contemporary physical devices called memristors are those 
ideal memristors predicted by Chua [7]. Nevertheless, Chua’s 
concept is useful for characterizing the processes occurring in 
the TiO2 memristors of HP lab and other physical 
implementations. 

B. Three-element chaotic circuit 

In work [4], the simplest chaotic electric circuit with a 
memristor is proposed, see Fig. 1 (a). It consists of only three 
components, one of which is an active memristor. Various 
memristor models may be used. Two elements, capacitor and 
inductance, form the first two lines of equation, and the last 
equation defines the internal state of a charge-controlled 
memristor. The circuit is described by equation: 
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The parameter values are 1C , 3L , 2..1  and 

6.0 . 
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Fig. 1. Chaotic circuits and attractors: the simplest chaotic circuit with memristor by Muthuswamy and Chua [4] (a) and its attractor (b), Chua circuit with 
memristor by Muthuswamy [5] (c) and its attractor (d), Chua circuit with antiparallel HP memristors by Buscarino et. al. [6] (e) and its attractor (f)

For this particular case, we select )1()( 2  xxR  , 

ixxiixf  ),( . Value 7.1  provides chaos. The 

attractor is shown is Fig. 1 (b). 

C. Chua circuit with theoretical memristor 

The paper by [5] proposes an analog realization of a flux-
controlled memristor and a chaotic circuit based on it, 
see Fig. 1 (c). The design is based on Chua’s circuit and 
replaces Chua diode with a flux-controlled memristor. The 
memductance in this circuit is selected based on the cubic 
nonlinearity, which can be used to create chaos in the Chua 
circuit [5]: 
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Overall circuit equation can be derived using Kirchhoff’s 
laws and is the following: 
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The circuit is designed using realistic values: 18L  mH, 
8.61 C nF, 682 C nF, 5.2R kΩ, while the chaotic mode 

is obtained in 2R  kΩ. 
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For 310667.0  , 310029.0  . The parameter ζ is 
the rescaling factor to set realistic of voltages in the circuit. It is 

chosen as 910478200  nF.  Attractor is shown 
in Fig. 1 (d). 

D. Chua circuit with HP memristor 

In previously mentioned works ideal memristors are 
considered. Assuming that physical memristors will have 
characteristics similar to those of the memristor created in HP 
laboratory in 2008, Buscarino and coauthors proposed the 
circuit based on Chua’s design that involves this type of 
memristors, see Fig. 1 (e) [6]. HP memristors are passive non-
symmetrical elements having a nonlinearity different from 
cubic or peace-wise linear. HP memristor model, known as the 
linear drift model, is described by the following equations: 
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Typical values are 100ONR Ω, 10OFFR kΩ, 
1410v  cm2s

-1v-1, 910D nm. Memristor internal state 

variable x  is strictly limited to 1..0 . To incorporate this into 
the model, a window function is introduced, for example, 
Biolek window: 

p
B istpxixF 2))((1),(  . 

Parameter p  is usually set to 1. Note that the HP memristor 
model provides asymmetrical nonlinearity. Connecting two 
memristors in antiparallel, i.e. parallel with one memristor 
having negative polarity, we can obtain symmetrical 
characteristics required for chaos to emerge in this circuit. The 
full equation of the circuit is the following 
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where the memristors’ currents are 
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The parameters providing chaotic behavior are the 

following: 7141  GRG Ω, 6.1L H, 251 C μF, 

332 C μF. Resistor GR  is actually a negative resistor, i.e. a 
negative impedance converter which powers the circuit. 
Attractor of the circuit is presented in Fig. 1 (e). 

III. CHAOTIC CIRCUITS RESPONSE TO INDUCTANCE 

CHANGES 

In order \to study the presented circuits, we created their 
computer models first. The simulation was performed in 
MATLAB environment. We used custom ODE solver 
implementing the semi-implicit composition numerical 
method that is well suited for simulating memristive 
systems [8]. Classic fast solvers, such as Runge-Kutta 2 
method, could lead to false results [9]. During the main part of 
the study, the values of inductances in the considered models 
were varied near the nominal value ( nomLLL / ). We used 
four methods of analysis, presented in Fig. 2 and Fig. 3. 

1) To visualize dynamics changes in the time domain, a 
standard nonlinear dynamics tool was used, namely the 
bifurcation diagram (BD). 

2) Another type of plot was used to analyze changes in the 
frequency domain. We called it a bifurcation 
spectrogram (BS). Unlike conventional spectrograms used to 
analyze non-stationary signals, in this type of diagrams a 
bifurcation parameter (inductance) is plotted along the 
horizontal axis instead of conventional time. Also, BS can 
reveal useful properties of the system. As in ordinary 
bifurcation diagrams, BS clearly shows chaotic and periodic 
regimes of systems in dependence on the bifurcation parameter. 

3) Geometric parameters analysis. As was shown in [10], 
the geometric parameters of the attractor depend directly on 
the L  and thus by calculating the distance between the 
attractor  external points relative to one of the state variables 
provides valuable information about sensor response. 

4) Mean and median frequency analysis. Algorithms can be 
found in [11]. 

Mean frequency is calculated from the frequencies of the 
power spectra by the equation:  
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where N  is the number of points of Fourier transform, nf  

is the frequency n  and nP  is the power of frequency n . 

IV. RESULTS AND DISCUSSION 

The analysis shows that the dynamics of all three systems 
changes significantly with the inductance change. It was 
discovered that the geometric parameters of the three-element 
chaotic circuit attractor are monotonically related to 
inductance, in contrast to the other two systems, on the plots of 
which there both monotonic and strongly non-linear sections 
exist. In the frequency domain, high monotonicity is found in 
Chua systems. The change of mode from chaotic to periodic
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Fig. 2. Bifurcation diagrams (left) and bifurcation spectrograms (right) of the proposed systems: three-element chaotic circuit (a), (b), Chua circuit with 
theoretical memristor (c), (d), Chua circuit with HP memristor (e), (f). When the inductance L changes from 0.5 to 1.5 of its nominal value, the systems regime 
changes, including sections of periodic and chaotic oscillations. On the bifurcation spectrograms, the frequency maxima can be seen (light blurred strips), as well 
as regions of periodic behavior (light distinct strips over darker background). 
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Fig. 3. Geometrical parameters analysis (left) and frequency analysis (right) of the proposed systems: three-element chaotic circuit (a), (b), Chua circuit with 
theoretical memristor (c), (d), Chua circuit with HP memristor (e), (f)

and vice versa can either affect the indicated parameters or not, 
see the bifurcation diagrams. 

The plots of mean and median 
frequencies (Fig. 3 (b), 3 (d), 3(f)) also present a comparison of 
memristor chaotic circuits sensitivity with the harmonic 
oscillator sensitivity. The frequency of the harmonic oscillator 
is calculated by the equation: 

  1
2


 LCf  

It leads to the expression for calculating the Lf   curve: 

0
0 L

L
ff x

x 


 

where ),( 00 fL  is the reference point in the inductance-

frequency plane, and xf  is the frequency at xL . Sections of 
these curves are presented in Fig. 3 (b), 3 (d), 3 (f). It can be 
seen that all three circuits have the steeper Lf   curves and 
thus are more sensitive in the sense of frequency response. 

The determination of the measured parameter (i.e. 
inductance) from chaotic oscillations can be performed from 
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the bifurcation diagram or spectrogram, geometric or frequency 
properties of the oscillations. The last two are of the greatest 
interest due to the simplicity of their calculation and can 
provide a high accuracy of measurements [10]. To calculate the 
distance from inductance one may use expressions for the 
specific coil. For the planar PCB coil from [12]: 

4
7

10231.1
10764.2
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d

dL  H, 

 where d is the distance to the metal plate, m. The inverse 
formula is: 
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where Lδ  is the relative inductance change from the 
nominal value. Consider that the circuit by Buscarino et. al. [6] 
is rescaled so as the value 1.1230 L  μH is observed when no 
target is detected. A simple technique of circuit rescaling is 
proposed, for example, in [12] and [13]. According to the plot 
in Fig. 3e and the expression (1), we may find the following 
distances, see Table 1. Individually, geometric dimensions are 
not the monotonic functions from inductance but Lδ  can be 
reliably determined by a combination of these two metrics. An 
example of the frequency-based range estimation for the same 
circuit according to Fig. 3f is given in Table II. Note that 
median and mean frequencies change much faster in the 
chaotic circuit than in the harmonic oscillator when inductance 
changes. 

TABLE I.  ESTIMATED RANGE TO THE TARGET USING GEOMETRIC ANALYSIS 

OF THE ATTRACTOR OF CHUA CIRCUIT WITH HP MEMRISTORS 

x1, V iL, A δL Range, m 
0.866 0.19 0.99 0.22 
0,857 0.144 0.95 0.044 
0.856 0.153 0.9 0.022 
0.852 0.138 0.8 0.011 
0.848 0.133 0.7 0.008 

TABLE II. ESTIMATED RANGE TO THE TARGET USING FREQUENCY ANALYSIS 

OF THE OSCILLATIONS IN CHUA CIRCUIT WITH HP MEMRISTORS 

Mean. freq., Hz Med. freq., Hz δL Range, m 
33 39 0.99 0.22

31.8 40 0.95 0.044
32.7 42 0.9 0.022
34.5 44.4 0.8 0.011
37.8 47.7 0.7 0.008

V. CONCLUSIONS 

In this paper, we show the fundamental possibility of 
chaotic circuits with memristors to serve as inductive sensors, 
i.e. sensors detecting the changes in inductance. The use of 
memristors as components may result in extremely low-
consumption devices that are of practical interest for various 
sensing applications. 

Three chaotic circuits with memristors are considered, 
including a circuit with the realistic HP memristor model. We 
show that the sensitivity of all circuits is higher than the 
sensitivity of a harmonic oscillator. Determination of the 

inductance by oscillations signal processing can be performed 
by calculating the geometric parameters of the attractor or the 
average (median) oscillation frequency. An example of range 
estimation using these techniques is given, considering that the 
chaotic circuit serves as a proximity sensor. 

The limitation of this work is that memristors are still 
poorly accessible for engineering applications, thus, presented 
results are not yet practically applicable. 

In further studies, we will implement an inductive sensor 
based on memristor emulators. Other chaotic circuits with 
memristors will be considered and developed. Nonlinear 
models of the considered memristive sensor circuits will be 
used as the test nonlinear systems with complicated phase and 
fractal properties for studying numerical ODE solvers. 
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