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Abstract—The article addresses the issue of developing of 
software tools for manual segmentation of tomography images 
supporting radiologist’s personal content. Through an expert 
survey we have identified the requirements for such software 
tools from the doctors’ point of view as end users, as well as to the 
nomenclature and functionality of tools that implement these 
requirements. In order to meet the identified requirements, we 
have developed a solution based on a client-server architecture 
with a cloud access point. The nomenclature of tools for marking 
tomographic images implemented in the solution, as well as the 
methodology for working with them, fully complies with the 
identified requirements. The following functions have been 
developed and implemented: calculation of the volume of the 
region of interest, as well as three options for the semiautomatic 
segmentation of the image based on threshold, extreme points 
and neuron networks. All functions have customizable 
parameters and (or) implementation options, which provides 
flexibility in solving specific markup problems. Experimental 
studies have shown that the constructed service meets all the 
requirements put forward by radiologists and corresponds to the 
global level in terms of accuracy and speed (performance) of 
segmentation. 

I. INTRODUCTION 
The transition to personalized medicine highlights the 

diagnostic techniques that most accurately characterize a 
particular patient and best reflect the doctor’s opinion of that 
patient. Such techniques, unconditionally, include 
tomographic images. By tomography in medicine is meant any 
method that produces images of single tissue planes [1]. In 
reconstruction tomography, all images are processed by 
special computer program, and as a result, a three-dimensional 
image of the organ is modeled. 

One of the key stages of processing tomographic images is 
their segmentation. The quality of segmentation largely 
determines the final result of image analysis and the result of 
diagnostics in general.  

Segmentation is intended to highlight regions with certain 
properties on images, such regions usually corresponding to 
objects of interest or their fragments. Authors [2], [3] define 

image segmentation as the process dividing an image into 
regions with similar properties such as gray level, color, 
texture, brightness, and contrast.  

According to [4 6], the segmentation of medical images 
pursues the following goals:  

 Study anatomical structures of different organs 
 Identify region of interest, in particular, the separation of 

healthy and pathological areas (locating tumor, lesion and 
other abnormalities) 

 Measure tissue volume to assess the dynamics of tumor 
development (increase or decrease in size of tumor with 
treatment) 

 Help in treatment planning prior to radiation therapy; in 
radiation dose calculation 

In recent years, due to the widespread use of machine 
learning methods in medical images processing, another goal 
has been added to this list: creating a sample dataset for 
training neural networks designed to select objects of interest 
in automatic mode [7]. 

The problem of medical images segmentation has been 
known for a long time, so far various classification approaches 
to its solution have been proposed. For example, in [4] 
segmentation techniques are divided into two groups, namely 
gray level based and textural feature based techniques. [8] 
divides segmentation methods into three groups according to 
the increase in the algorithmic complexity of the applied 
algorithms. [5] classify segmentation methods in four 
categories: region-based methods, clustering methods, 
classifier methods, and hybrid methods. In [9] it was proposed 
to separate segmentation techniques into manual and 
computer-aided, the latter being, in turn, divided into 
automatic (unsupervised), interactive (semi-supervised), and 
supervised. A similar classification was proposed in [6]: 
supervised, unsupervised and interactive techniques stand out 
here, but manual segmentation is not even mentioned. The 
authors [10], [11] also take manual segmentation into account 
in their classification, namely: manual segmentation, intensity-
based methods, atlas-based methods, surface-based methods 
and hybrid segmentation methods.  
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Summarizing the aforementioned and other works, we can 
conclude that as the basis for the classification of medical 
image segmentation methods, individual image features (e.g., 
contrast, texture, etc.), or types of segmentation algorithms 
(e.g., clustering, active contour, etc.) are mainly used. At the 
same time, manual segmentation is based on a different 
principle. In this case, the expert physician first makes an 
integral assessment of the 3D image built in the viewer, and 
based on his own context (knowledge and personal 
experience) decides that a particular organ fragment to be 
segmented is an area of interest (for example, a tumor), and 
the image of this fragment is localized on certain slices. On 
each of the mentioned slices, the expert draws with the help of 
a computer drawing tool ("brush" or "pencil") around the 
contours of this zone of interest, and then saves the entire 
group of slices under the same name. 

The fundamental reliance of manual segmentation on 
personal context provides this method with undeniable 
advantages: it is believed to be the most accurate and reliable 
and thus used as “ground truth” and for quantitative evaluation 
of automated segmentation methods [11]. At the same time, 
this circumstance can entail different interpretations of the 
same image. For example, in [12] two independent experts 
carried out purely manual segmentation of 3D images of the 
complete human mandible. Only images with clear bone 
contours and anatomical structures without artifacts were used. 
Even in these idealized conditions, the discrepancy between 
both experts, measured through the Dice score coefficient, was 
up to 9%, and both segmentation results for each image were 
included as ground trooth in the generated dataset.   

For areas of interest with low contrast boundaries and, 
especially, for neoplasms and tumors, an even greater 
discrepancy is observed [13]. In these cases cases it is mostly 
important to identify and preserve the results of segmentation, 
reflecting the views of individual experts, especially for 
assessing the dynamics of the development of the area of 
interest, i.e. to detect small changes in the size or configuration 
of the neoplasm. 

Manual segmentation is not error free. An important source 
of errors is the presence of artifacts in the analyzed image [4, 
14]. A variety of algorithms have been proposed to combat 
artifacts. However, according to radiologists’ opinion, 
excessive suppression of artifacts can interfere with an 
adequate image assessment [15].  

A significant source of errors is also the tools present in the 
workspace of the radiologist. Insufficient, inadequate or 
excessive number of tools and options leads to a cognitive 
overload of the radiologist, especially in the situation of highly 
repetitive tasks having stringent requirements of accuracy and 
speed [16]. 

Besides, manual segmentation is extremely slow and 
tedious, and an expert physician can make mistakes due to 
fatigue. To solve this problem, interactive segmentation 
methods [9] can be used. In this case, the rough segmentation 
results obtained using automatic algorithms are iteratively 
refined by the intervention of human experts. Obviously, the 
effectiveness of these methods depends not only on the 

automatic segmentation algorithm used, but also on the 
organization of the iterative procedure, i.e. on the method of 
taking into account the expert opinion. 

Although so far a lot of software tools for manual 
segmentation have been proposed (their brief review is given 
in the next section), the urgent problem is to take into account 
the needs of the doctor as much as possible, i.e. provide him 
with a tool for adequate implementing and maintaining his 
own context and at the same time for preventing segmentation 
errors. This is especially important in conditions of 
personalized medicine and in the rapid assessment of the 
dynamics of diseases. 

II. BACKGROUND AND RELATED WORKS 
In modern clinical practice, three main technologies for 

obtaining tomographic images dominate – computer 
tomography (CT), positron emission tomography (PET) and 
magnetic resonance imaging (MRI).  

With CT, using X-ray radiation, a sequence of two-
dimensional slices of the examined area of the body is formed, 
from which, using a specialized computer program, a pseudo-
3D image of the structure of organs is formed. PET is a 
radioisotope research method when a radiopharm drug is 
incerted intravenously, which is distributed throughout the 
body and selectively accumulates in the organ that is affected 
by the disease; three-dimensional image of radiopharm drug 
concentration within the body is then constructed by computer 
analysis similar to CT. In MRI, a strong magnetic field is used 
and the picture of its gradients in different parts of the 
patient’s body is fixed on a sequence of slices; then a pseudo-
3D image of the volumetric structure of organs is constructed 
of them. 

Thus, from a technical point of view, the tomographic  
images being obtained are very close and the differences in the 
methodology for their segmentation are associated mainly with 
the specifics of the organs and zones of interest under study. 
As clinical practice shows, the most complex and at the same 
time mostly demanded diagnostically are the tasks of 
segmentation of CT images of the lungs and MRI images of 
the brain. 

For example, on CT images of lung cancer, the malignant 
nodes are usually small and slightly different from the benign 
in most features which can be objectively registered [17]. MRI 
images of the brain are performed simultaneously in four 
modalities:  T1-weighted MRI, T2-weighted MRI, FLAIR and 
FLAIR with contrast enhancement [18]. During segmentation, 
the expert physician analyzes all the images in the complex, 
and the segmentation efficiency is largely determined by the 
analysis pipeline developed by himself. In addition, diseases 
of these organs can develop very quickly, and the vital task is 
to control small – up to 5–10% – changes in areas of interest. 

As the basic tools for manual segmentation of medical 
images workstations are traditionally used. Workstations are 
stationary software and hardware complexes, aggregating 
visualization tools for any medical images (not only 
tomographic), as well as means of communication, storage, 
etc. Widespread workstations include General Electric 
Advantage Workstation 
(https://www.gehealthcare.com/education/advantage-
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workstation-for-diagnostic-imaging), Philips MR Extended 
WorkSpace 
(https://www.learningconnection.philips.com/en/course/ 
extended-mr-workspace-r2631-overview), OsiriX MD [19]. 
As a rule, workstations include powerful stationary computers 
and several specialized monitors. For example, using OsiriX 
requires certified monitors for medical imaging. 

However, in recent years, in addition to such "heavy" 
decisions, more and more manual segmentation support 
applications appear in clinical practice. These are "light", 
portable solutions for the operational support of the work of a 
radiologist, specialized for imaging of specific types (in 
particular, tomographic). They are presented both in the form 
of standalone applications, and in the form of services. Most 
of these applications are presented as open-source solutions.  

The zoo of such applications is already quite wide. In 
particular, as the most common programs specialized for 
segmentation and estimation of the size of volumetric brain 
formations can be mentioned the following: Horos [20], Slicer 
3D (https://slicer.readthedocs.io), medinria 
(http://med.inria.fr/), MRICRON 
(https://www.nitrc.org/projects/mricron), MITK 
(http://mitk.org/wiki/The_Medical_Imaging_Interaction_ 
Toolkit_(MITK)) . Their detailed usability analysis is provided 
in Section III.  

In connection with the development of machine learning 
and pattern recognition algorithms, new applications and add-
ons to them are constantly appearing. As a rule, they are 
associated with the inclusion of additional semi-automated 
algorithms in the segmentation process. 

For example, in [21] an open-source extension for the 
Slicer 3D application named DeepInfer was proposed, which 
provides the possibility of automatic integration into Slicer 3D 
using a docker, which implements a neural network. The 
extension uses pre-trained deep learning networks to segment 
specific medical objects of interest. Docker stores ready-made 
models on the cloud. DeepInfer allows you to select a model, 
send it data for processing, and see the result. However, the 
solution is quite "heavy": the calculations take place on the 
client side, for efficient use discrete graphics is needed. 

Another extension for Slicer3D called TOMAAT [22] 
implements volumetric medical image analysis as a cloud 
service. It also uses pre-trained deep learning networks, but the 
calculations take place on the cloud. TOMAAT allows you to 
configure the “infrastructure” of the neural network, set the 
interface (which inputs, which outputs), configure the 
activation function. Obviously, such things require special 
qualifications and cannot be performed by a doctor.  

The open-source standalone solution of RIL-Contour [23] 
uses a simple but interesting method of iterative annotation. 
The doctor first marks out a small part of the dataset on which 
the “rough” network is trained. This network marks the next 
piece of dataset. The images marked by the network are 
corrected by the doctor. On an enlarged dataset, the network is 
retrained, and so on until the entire dataset is covered. Each 
iteration, obviously, requires the doctor to adjust the network 
prediction less and less.  

The solution RIL-Contour has several advantages in terms 
of usability: it is possible to associate files with external 
medical databases; several doctors can simultaneously work 
with one dataset, while the results of each remain 
personalized; version control system MIRMAID is supported. 
The solution has built-in statistical functions, as well as 
calculating the volume, area and linear dimensions of the 
largest objects. However, it also has fundamental 
shortcomings: it is not possible to display a 3D model, instead, 
only 2d slices are processed, and for them there is no 
coordinate reference. The technical disadvantages include the 
following: local installation is required; only one wrapper 
format of the Neuroimaging Informatics Technology Initiative 
(NIfTI) is used. 

In addition to the completed applications, start-ups are of 
great interest, which offer various tools that implement the 
basic requirements for manual segmentation systems.  

For example, the authors [24] propose a set of tools for 
manual segmentation of medical images that should be 
implemented in a virtual laboratory SPINE 
(https://spinevirtuallab.org/public/#/index). As the most 
common manual segmentation tools, authors name Paint 
brush, Bezier curves (control points) and  Fill closed contour, 
and as the most perspective methods of semi-automatic they 
use Active contours 2D and 3D.  

In [25] the tool for semi-automatic and manual editing of 
lesion masks is presented. The peculiarity of the tool is that the 
doctor creates a clipping mask, and then, when editing it, 
marks false-positive and false-negatives points. Then the tool 
automatically adds or removes fragments of lesions mask on 
the marked coordinates. 

The idea of using individual image points set by an expert 
for semi-automatic mask construction is also being 
implemented in other works. For example, in [26] it is 
proposed to retrain a deep neural network based on two types 
of points that the expert notes: ”foreground clicks”, which 
should be placed within the zone of interest, and “background 
clicks” that are not in this  zone.  For smoothing, a Gaussian 
filter is used, which, according to the authors of the work, 
increases the accuracy and speed of retraining. However, the 
proposed architecture is implemented on only one selected 
area, which increases the overall setup time of the algorithm.  

In [27], an algorithm for segmenting images by extreme 
points of an object of interest is proposed. The user marks 4 
extreme points (top, bottom, left-most, right-most) of the 
segmented object, the algorithm cuts a rectangular area with 
sides passing along these points, with a small gap to capture 
the context. Then, the pre-trained network resnet101 is used to 
refine the segmentation. The authors report high accuracy and 
speed of the algorithm, however, the experiments in the work 
were performed on a general type dataset (PASCAL), and not 
on medical images. 

The above analysis shows a wide variety of existing and 
proposed tools and algorithms to support the segmentation of 
medical images, and in many ways they duplicate each other. 
In the vast majority of cases, the authors evaluate them from a 
technical point of view, and not from the point of view of 
expert doctors as end users of the proposed developments. 
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At the same time, in the Introduction the leading role of 
clinical experience and the knowledge of the physician in the 
segmentation of tomographic images is justified. In order for 
doctors to make the best use of them, segmentation support 
programs must meet certain usability requirements, primarily 
in terms of achieving specified goals [28], namely increasing 
the productivity and the quality of the segmentation.  

Various aspects of the usability of systems to support 
manual segmentation of medical images are discussed in the 
literature [29]. Ergonomic requirements are mainly 
considered, such as the doctor’s posture for analysis, the 
quality and nomenclature of monitors [30], the use of other 
visual means - touchscreens, holographic, kinetic sensors and 
eye tracking, holographic display and augmented reality [31]. 
At the same time, [31] notes that the mouse and keyboard 
remain the most utilized user interfaces for radiologists. 

Various sequences of actions for segmentation [16] are 
also studied with the goal of developing an optimal scenario. 
[16] proposed a sequence of Stage actions, which in 
experiments showed an average of 37% reduction in the 
interpretation errors, and improved user satisfaction. But here 
it is noted that the effectiveness of the application of such a 
scenario very much depends on the individual preferences and 
experience of the radiologist. 

A number of works [32], 33] formulated requirements 
for tools for segmenting medical images. However, they 
are focused only on workstations and are not so much 
functional as ergonomic in nature, for example: fast and easy 
availability of image data, simple postprocessing etc.  At the 
same time, as follows from the above review, the functional 
requirements for workstations and applications for 
segmentation of medical images vary significantly, and 
the range of tools that can implement the same 
functionality expands very quickly. Unfortunately, in the 
available literature we were unable to find works that 
would analyze the requirements for applications for 
segmentation of tomographic medical images from the point 
of view of doctors as end users. 

Thus, the authors of this article set themselves the 
following tasks: 

1. to identify the applications requirements for the
segmentation of tomographic medical images from the 
doctors’ point of view of as end users, as well as to the 
nomenclature and functionality of tools that implement these 
requirements; 

2. to consider the possibility of implementing the identified
requirements; 

3. to conduct experimental studies of the main
functionalities of the developed service in terms of meeting the 
identified requirements. 

III. REVEALING OF USABILITY REQUIREMENTS FOR MANUAL 
SEGMENTATION OF TOMOGRAPHY IMAGES

To create a list of usability requirements for tomographic 
image segmentation support applications, we used the 
following methodology. 

1. We analyzed the tools for manual segmentation and
highlighted the characteristics of their usability. For analysis, 
we selected programs that are commonly used in clinical 

practice, as well as the most promising startups (a brief review 
is given in the previous part of the article). In total, 20 
different programs were analyzed. 

2. We interviewed ten expert radiologists, each of whom
independently described his own pipeline being used in 
segmentation of lung and brain tomographic images, and the 
usability characteristics that are desirable for its effective 
implementation. The experience of the involved radiologists 
ranged from 3 years to 21 years, with the average 8.4 years. 

3. We combined the lists obtained in clauses 1 and 2 into a
common list containing 27 requirements. 

4. We invited each radiologist to select five most
significant usability characteristics from the list constructed in 
clause 3 (see Table I). The characteristics with 3 or more votes 
were included in the resulting list.. 

TABLE I.  SELECTION OF THE MOST SIGNIFICANT CHARACTERISTICS  
OF USABILITY 

Characteristics Radiologists
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

hoice of the number of windows + 
XLS-segmented data upload  + 
3 D point  +   + + 
Multiformat support  +   +  + 
Quick screenshot   + 
File manager  + 
Function navigator + 
Quick access to segmentation 
volume calculation 

+   + + 

Subtraction of contrasting images + 
Density determination by HU  + 
Image inversion  + 
Change segment transparency + 
Report window (report template)  + 
Neural network segmentation   + + + 
Corporate chat in a separate 
window 

 + 

Standard interface (toolbar) + + + + + + + + 
Segmentation smoothing tool  + 
Scissors tool   + 
Possibility of multimodal 
segmentation 

 +   +  + 

Semi-automatic threshold 
segmentation 

+ +   +   +  + 

Anatomical segmentation + 
Adding filters  + 
Extreme point segmentation  +  +  +  
Thresholding algorithm selection + 
Image registration + 
Setting pixels to 0 + 
Missing ROI points generation + 

Thus, the final list of requirements was formed, consisting 
of 8 items: 

(1). A set of tools for visual adjustment, including scrolling 
slices with the mouse wheel, quick adjustment of the left 
and right mouse buttons, toolbar (contrast, offset, zoom, 
ruler). 

(2). Ability to import and export images in standard formats 
including: DICOM, mgh.gz, Mgh, Nii, Nii.gz, VTK, 
Nrrd, MRML, Seg.nrrd, Nrrd, ROi, mha. 

(3). Introducing a common reference point on all modalities. 
(4). Support for multimodal segmentation.  
(5). Possibility to quickly estimate the volume of a region of 

interest. 
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(6). Availability of threshold-based semiautomatic 
segmentation. 

(7). Availability of semi-automatic segmentation based on 
extreme points and  neuron networks. 

(8). Availability of semiautomatic segmentation based on 
neuron networks. 

Thus, the physician should obtain convenient graphical 
tools (requirement (1)). Requirement (2) provides the doctor 
with the opportunity to quickly compare any available graphic 
materials, without being distracted by converting formats. 
Requirements (3) and (4) mean that the doctor has the ability 
to compare MRI images made in different modalities, not only 
integrally, but also by matching images of identical zones, 
which is especially important for a detailed analysis of the 
configuration of the area of interest. Requirements (5)–(8) 
provide the doctor with preliminary estimates of the most 
important parameters of the segmented image areas, namely 
the volume and configuration, which he can refine during 
manual segmentation. 

Note that all experts chose the threshold contrast value and 
extreme points on the contour as the base for semi-automatic 
segmentation. Although these parameters do not provide the 
best quality of segmentation, they are physically clear to the 
expert and do not contradict their own context. At the same 
time, neural networks, as a tool for semi-automatic 
segmentation, although they demonstrate the highest 
segmentation accuracy, remain a black box for the expert; 
apparently, therefore, requirements (6)–(8) are stated in the list 
of requirements together, as a set. 

The radiologists involved in the work carried out an 
experimental study of the applications most often used in 
clinical practice for segmentation and volumetry of volumetric 
brain formations from the point of view of fulfilling 
requirements (1)–(8). The results of the study are presented in 
Table II. A question mark indicates a function that could not 
be experimentally evaluated. It should be noted that part of the 
programs for segmentation announced on the market are not 
included in the comparison, since they either caused 
installation errors or are add-ons to other software. 

TABLE II. EXPERT ASSESSMENT OF COMPLIANCE OF EXISTING APPLICATIONS 
AND SELECTED REQUIREMENTS 

Requirement Application 
horos 3d sclicer medinria MRICRON MITK 

(1) + - + - - 
(2) - + - - - 
(3) - - - - - 
(4) - + + - + 
(5) + + - - - 
(6) + + + - + 
(7) - - - - + 
(8) - - - - + 

 
Thus, expert assessments made it possible to identify the 

requirements for applications for the segmentation of 
tomographic medical images from the point of view of doctors 
as end users, and also showed that existing programs on the 
market for facilitating the marking of tomographic images do 
not satisfy the set of identified requirements. Thus, the 
relevance of the ongoing development was confirmed. 

IV. SERVICE STRUCTURE AND REALIZATION 

A. Service architecture 
To meet all of the mentioned requirement criteria, we 

propose an architecture in a fashion "application as a service" 
[34]. Since the application shall be easily accessible from any 
device, the core of design is  based on web-technologies. 
Client-side is responsible for user interactions such as data 
representation, data segmentation as well as import/export 
features. Server-side consists of two main parts: rest handler 
from the client’s request and a module with DL-module for 
performing segmentation algorithms.  

Figure 1 shows the architecture of the application at the 
service level using a deployment diagram. Use of the service is 
carried out through any modern web browser. The client part 
uses Angular.js and can be run on a separate virtual machine 
on ServerNode. The server part can be run on a separate 
virtual machine and uses the Falcon webframe framework, 
sharpened for powerful applications in REST architecture in 
Python. The MongoDB database is also deployed there. In the 
presented implementation, client and server are designated as a 
single node, however this is not obligatory. 

A component diagram of the service is shown in Fig. 1. 
The high-level contributor to the client’s architecture is an 
Angular.js-based application with an integration of a third-
party library for performing graphics manipulations by the 
means of X Tool Kit library. From a client’s structure stand-
point, the application is organised according to the Model-
View-Controller pattern, whereas Model is functionating as 
storage, View is responsible for User Interface and its 
interactions, Controller stands for handling application’s logic.  

Server’s architecture is divided into the request handler 
based on Python web-framework Falcon and DL-module 
designed upon the Pytorch library. Moreover, the server-side 
is also shall be regarded as a container for all the user content 
being uploaded as well as the user’s info. As a database 
provider, a NoSQL MongoDB is chosen for the design. In the 
diagram presented, the server part is described on one physical 
node, although this is not mandatory. 

In order to fully satisfy the list of requirements, we use the 
design pattern approach [35], which is illustrated by the class 
diagrams (Fig. 2, 3). Fig. 2 shows a class diagram of the client 
side, on which all the main classes involved in user interaction 
are highlighted. In order not to overload it, it shows only how 
events between Tool class and Project class are synchronized. 
A separate diagram (Fig. 3) shows the structure of all child 
(non-abstract) classes inherited from the Tool class, which 
explains the fulfillment of requirement (5). 

Consider components of the proposed architecture (see Fig. 
1 3) meeting the requirements of the above list. 

To distinguish different regions of interest, the Region class 
is used, which contains information about the extreme points of 
the region, color, and the selected region itself - Area. The 
volume of the selected area is calculated  the server both 
pointwise and with accordance with an algorithm for meshed 
objects (see algorithm description below), the result is 
transferred to the client and immediately displayed. The 
Comments class is responsible for comments, which contains 
the text of the comment and the date it was created. The Scetch 
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class is responsible for storing drawn objects - it essentially 
stores the line drawn with one click of the mouse button. 

Interaction with selected regions and comments is carried 
out through the Project class, which serves as an aggregator of 
all additional information implemented using tools, as well as 

responsible for updating displayed objects. The Tool class is 
an abstract class from which other classes are inherited 
responsible for inserting additional information to the project, 
namely: marking points for regions, adding a comment, 
debugging, changing the color of regions. 

Fig. 1. Component diagram of the service 
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Fig. 2. Class diagram of the service  

 

Fig. 3. Detailed class diagram of all Tools of the service 

 
For introducing a common reference point on all 

modalities we use a window system, each of which is a section 
of the planes XY, XZ, YZ, as well as a 3D data model 
respectively. The Camera2D class is defined for displaying 2D 
planes, the Camera3D class – for 3D images, both classes 

being responsible for displaying a rendered object. In order to 
synchronize all changes, we use the Observer pattern with two 
interfaces. Namely, we implement the Observer interface for 
Project class and the Subject interface for all children of the 
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abstract Tool class. Thus, when adding information using 
Tools, new objects will be rendered. 

To implement the individual tools mentioned in 
requirement (1), we use the Team pattern and create classes 
inherited from the class Tool (see Figure 3): 

 ChangeColorFillOfRegionTool – change the fill color of 
the area 

 PointTool – control of setting of fixed points and 
segmentation 

 CursorTool – cursor control, selection of objects, their 
movement 

 RulerTool – a tool for creating objects of the Ruler class, 
which calculates the distance between two points 

 ZoomTool – camera zoom for a specific window 
 PointTool – setting points for segmentation 
 PencilTool – pencil tool 
 ContrastTool – manipulation with the contrast of a 

specific window 
 ThresholdSegmentationMethod – modifier for segmenting 

by error-based algorithm 
 CommentTool – allow user to manipulate with comments 

in the project 

Thus, due to the selected architectural solutions of the 
service, the fulfillment of the requirements (1), (3) and (4) is 
ensured. 

B. Estimation of the volume of region of interest 
According to requirement (5), the service should provide 

the doctor with the opportunity to quickly assess the volume of 
the allocated area of interest. Information about the selected 
area is stored either as an array of pseudo-three-dimensional 
pixels (voxels) (voxel representation), or as an array of 
triangles bounding the surface of the selected area (polygonal 
representation). Besides, in Region class we store meta-
information, including the coordinates of the six boundary 
points of the selected area, its color coordinates, etc.  

The estimation of the volume of the selected area in the 
voxel representation can be done by counting the number of 
voxels in the array, however, this estimation is performed 
much faster in the polygonal representation. For this purpose 
the service uses the approach [36] based on the polygonal 
mesh, with relatively little computational complexity. 
Considering the region to consist of elementary tetrahedrons, 
we calculate each elementary volume and then add them up in 
accordance with the expression (1): 

3 2 1 2 3 1 3 1 2 1 3 2 2 1 3 1 2 3
1
6aV x y z x y z x y z x y z x y z x y z , (1) 

where xi, yj, zk are the coordinates of vertices of elementary 
tetrahedrons.  The pseudo-code of the algorithm  is presented 
below: 

Algorithm 1 Volume estimation 
def countV olume(Mesh m) : 
sum = 0 
for triangle in m.triangles : 

var p1 = triangle. point1 
var p2 = triangle. point2 
var p3 = triangle. point3 

sum += 1/6(  p3. x * p2.y * p1.z + p2.x * p3.y * p1.z + 
p3.x * p1.y * p2.z  p1.x * p3.y * p2.z  p2.x * p3.y * 
p3.y + p1.x * p2.y * p3.z) 

return sum 

Both types of volume assessment are provided in the service; 
the doctor selects a specific option through the user interface. 

. Organization of the threshold-based segmentation 
procedure 

In order to provide the threshold-based semiautomatic 
segmentation (the  requirement (6)) we formed a three-stage 
pipeline: 

 search for potential boundaries of objects of interest in the 
original tomographic image 

 morphological transformation 
 formation of the resulting contour  

In the first stage, we use an algorithm Canny [37] 
consisting of the following steps: 

 The original image is smoothed by 5 5 Gaussian filter. 
 Gradients are searched by filtering with the Sobel kernel 

in horizontal and vertical directions. 
 Only local maxima are marked as boundaries. To do this, 

each pixel is tested for a local maximum in its vicinity in 
the direction of the gradient 

 Potential boundaries are determined by the threshold 
values defined by the user. 

For software implementation, the Canny () method of the 
OpenCV library was used, which accepts the following 
parameters: image  input 8-bit image, treshold1  lower 
threshold threshold, treshold2  upper threshold threshold. 

In the second stage, the morphological transformation is 
performed, which allows you to close the contours. In the 
developed service, a closing operation is applied, in which the 
resulting pixel takes the value 1 only if all the pixels of the 
original image under the core are 1, otherwise it will be reset 
to zero. The implementation uses a 3x3 kernel and two 
iterations of the passage of the kernel through the image. 

At the final stage, the actual contour search based on the 
algorithm [38i] is performed. For software implementation, we 
use the findContours () method of the OpenCV library, which 
allows not only to find contours, but also to build them in a 
hierarchy. The following parameters are accepted at the 
method input: image  8-bit single-channel image, mode - 
contour search mode, method  contour approximation 
method. In the developed system, the loop search mode 
cv.RETR_TREE is used, which restores the full hierarchy. As 
an approximation method, cv.CHAIN_APPROX_SIMPLE is 
used, which compresses vertical, diagonal and horizontal 
segments, leaving only their end points. 

The pseudo-code of the pipeline developed is as follows: 

Algorithm 2 Threshold-based segmentation 
edges =OpenCV.Canny(input_image, treshold1=tr1, 
treshold2=tr2) 
kernel =  
OpenCV.getStructuringElement(OpenCV.MORPH_ELLIPSE,(3,3)) 
closed = OpenCV.morphologyEx(edges, 
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OpenCV.MORPH_CLOSE, kernel, iterations=2) 
contours, hierarchy = OpenCV.findContours(closed, 
OpenCV.RETR_TREE,  
OpenCV.CHAIN_APPROX_SIMPLE) 

To carry out the developed pipeline in the general structure 
of the service, a separate tool is implemented, selected as the 
ThresholdSegmentationTool class in the tools class diagram 
(fig.2). The tool has a slider on which a doctor can specify the 
interval for threshold brightness values for segment selection. 
The image changes dynamically when the sliders change (see 
examples of images in Fig. 4). 

D. Choice of  neural network architectures  
for semi- automatic segmentation 

As mentioned in section I and stated by the radiologists in 
the requirement (7) and (8), the semi-automatic approach is 
extremely relevant in simplifying segmentation. Several 
suggested solutions in non-medical applications are described 
in section II. To highlight the solution that is most suitable for 
our task, we compared two approaches  of semi-automatic 
segmentation of tomography images based on neural 
networks. The first, interactive approach assumes that the user 
will perform some preliminary steps (provide the network with 
information about each segment to be segmented), which 
reduces the time to refine the results (due to the higher quality 
of such segmentation). The second, non-interactive approach 
does not need preliminary additional actions made by user. 
This is implemented as follows: the user selects the raw image, 
then the network segmentes all areas of interest (lesions, 
plaques), after which the user updates the segmentation results 
with standard drawing tools if necessary. 

First approach is interactive and is implemented by using 
DEXTR [27] method of interactive segmentation, which 
suggests that the user provides the four extreme points (top, 
bottom, leftmost, rightmost) of the pursued region into the 
neural network. The network then fulfills a semantic 
segmentation of the proposed region and returns a mask of the 
region. The process continues iteratively until all the desired 
regions are segmented by the network, and at each iteration, the 
user puts the four extreme points on the desired region. At the 
final stage, the radiologist is invited to correct the results of 
segmentation of the neural network with standard drawing tools.  

Albeit DEXTR method shows an remarkable results, it uses 
Deeplab-v2 [39] architecture with pre-trained resnet101 
backbone, which is a rather heavyweight and resource-intensive 
solution. On the other hand, we use the network only for 
facilitating segmentation, that is  the network fulfilles only the 
preliminary segmentation, followed by refining results by 
radiologist based on his own context about the subject area (for 
example, knowledge of the features of plaque multiple sclerosis 
or lesions of a brain tumor). So, this approach provides rather 
small inference time. But the total time spent by a radiologist on 
segmentating  one image depends on the context (in particular, 
on the number of zones of interest, which he must mark with 
points) and can reach tens of seconds. For an experimental 

assessment of the effectiveness of the interactive approach, we 
selected several images with a different number of lesions on 
each, and measured the Dice coefficient after all regions of the 
lesion were segmented, and the time to work with each image 
(including the time for placing points and the inference time for 
calculating the segmentation). 

A non-interactive approach conduct pre-segmentation of the 
scan with the network without forcing user to provide 
preliminary information about the region of interest. The user 
simply selects the desired image and makes a request to the 
system to do preliminary segmentation. Then the user provides 
refining of the results, if necessary, with standard drawing tools, 
and the process continues iteratively down to the desired result.  

In order to optimize this method, we compared several 
appropriate network architectures in the inference time and 
segmentation quality. Namely, we compared several 
lightweight CNN architectures designed for semantic 
segmentation: UNet [40], FPN [41] and PSPNet [42] with 
resnet50 backbone. In solving the compromise between the 
segmentation speed and the resulting quality of the prediction 
mask, we adhere to the idea that the proposed tool should 
work quickly without long delays on the side of the backend 
network to provide user a smooth experience in interacting 
with the tool. However, worse predictions lead to an increase 
in the overall annotation time. To find the balance, we 
conducted an experiment in which we compared the 
aforementioned networks in terms of inference time and 
segmentation quality in accordance with the Dice coefficient.  

In the experiment we used the dataset from the BRATS 
2018 challenge [43] containing scans of glioblastoma and 
lower-grade glioma in the brain. For the experiment we take a 
random 20 patients and  conducted the dataset augmentation 
with random crop, random flip and random rotation 
techniques, which resulted in the total 975 scans in the training 
set and 311 scans in the validation set. As a loss function we 
used a custom function (2) composed of BCELoss (3) and 
DSC coefficient (4), which in practice shows better 
segmentation results at the edges.  

1 , log ,pred true pred trueL BCELoss y y Dice y y (2) 

0

1 log 1 log 1
N

n n n n nBCELoss w y x y x
N

(3)

2 X Y
DSC

X Y
.  (4) 

IV. RESULTS AND DISCUSSION

A. Results 
The fulfillment of requirements (1), (3) (5), logically 

justified in Sections III.A and III.B, was successfully tested 
directly on the software implementation.  
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Threshold 
interval 

Initial image Application of the 
Canny algorithm 

Application of 
morphological 
transformations 

Search for contours Result of neoplasm 
selection 

t1= 27 
t2= 55 

  

t1= 23 
t2= 45 

  
Fig. 4. Transformations of the original image with the threshold-based segmentation  

To verify compliance with requirement (6), an experimental 
study of the developed pipeline for the threshold-based 
segmentation (see Section III.C) was carried out.  Obviously, 
the key parameters here are the threshold values. Depending on 
them, we get a different selection of borders. Transformations of 
the original image obtained during the pipeline at different 
thresholds are illustrated in Fig. 4, and the accuracy values of 
the allocation of areas of interest at different threshold values, 
measured by the Dice coefficient, are presented in table III. 

TABLE III. THE ACCURACY OF THE CONTOURING OF THE ZONE OF INTEREST 
BY THE THRESHOLD METHOD FOR DIFFERENT THRESHOLD VALUES 

 Treshold values, t1 / t2 
25 / 50 23 / 45 27 / 55 24 / 49 26 / 53 

Accuracy 83.28047 76.6675 88.00937 80.58909 85.50029 

In order to verify compliance with requirements (7) and (8), 
we have fulfilled the experimental procedure described of in 
Section III.D.  The results are presented in the table IV for non-
interactive approach and in Table V for interactive one. 

Based on a comparison of the results of Table IV, the FPN 
with resnet34 backbone architecture was chosen to implement a 
non-interactive approach in the developed service. 

TABLE IV. COMPARISON OF CNN ARCHITECTURES  
FOR A NON-INTERACTIVE APPROACH 

Accuracy Average Dice metric 
for validation subset  

Inference time, ms 

UNet 0.865 ~ 7.6 
FPN 0.958 ~ 5.8 

PSPNet 0.961 ~ 6.9 

The architectures proposed in the Table IV are the 
alternatives for implementing the second non-interactive 
approach. Based on the obtained values, we decided to choose 
an FPN with a resnet34 backbone as the network architecture 
for a non-interactive approach, as this is the best compromise 
between average quality and inference time. It should be noted 
once again that the results of such segmentation require more 

time for manual post-processing correction than the results of 
an interactive approach which could bee seen in Fig. 5. 

 
Fig. 5. Sample of human groumdtruth segmentation (left), segmentation 
results by interactive (center) and non-interactive approach (right)  

The drawback of the interactive approach (based on 
DEXTR), in turn, requires a few seconds for the user to put 
dots in the picture, and for the network to work. 

In order to show the approximate values of the speed and 
quality of the interactive approach as compared with the non-
interactive one, we selected several images and pre-segmented 
each image in accordance with each approach. 

In the case of non-interactive segmentation, the user should 
just upload a snapshot and start the network. For interactive 
segmentation, extreme points were plotted in accordance with 
the extreme lesion points on the groundtruth markup. 

After all lesion regions were segmented, we measured the 
Dice coefficient for each result and the time to work with each 
image (including the time to set up the points and the time for 
segmentation inference) for interactive and non-interactive 
approaches. It should be noted that in each case only 
segmentation was performed without manually adjusting the 
segmentation results. The quantity results of the experiments 
are presented in Table V. 

Such a considerable difference in inference time is 
explained by the fact that in some images there were several 
objects for selection, and this meant the user needed to spend 
more time – on each of them. In the case of a non-interactive 
approach, the network worked out each time in about 7.8 ms. 
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TABLE V. INTERACTIVE VS NON-INTERACTIVE APPROACH COMPARISON 

Name of 
sample image 
(last 3 digits – 
slice number) 

Dice coefficient for 
segmentation results Inference time 

Interacive 
(DEXTR) 

Non-
interactiv
e (FPN) 

Interactive
, s 

Non-
interacti
ve time, 

ms 
Brats18_2013_

4_1_100 0,8499 0,7219 30 

~ 5.8 

Brats18_2013_
4_1_101 0,8188 0,8229 25 

Brats18_2013_
4_1_102 0,8635 0,8333 14 

Brats18_2013_
4_1_103 0,8945 0,8272 15 

Brats18_2013_
4_1_104 0,9104 0,7640 15 

Brats18_2013_
4_1_110 0,8394 0,8043 28 

Brats18_2013_
4_1_111 0,8589 0,7079 30 

According to Table V, both approaches: interactive (based 
on DEXTR) and non-interactive (based on FPN with resnet34 
backbone) have their own drawbacks and benefits. For 
example, in case there is a large number of objects of interest, 
it may be faster for the radiologist to use preliminary 

segmentation running the non-interactive method, and when 
the objects of interest are more obvious and few, then it could 
be more accurate and faster to segment them using the 
interactive approach, which allows user to get more accurate 
results at the stage of preliminary segmentation and spend less 
time on post-processing images.  

Thus, the user has a choice of two alternative semi-
automatic layout tools, and is free to choose the most 
convenient for each specific situation.Project materials 
regarding the neural network architectures are available at 
https://github.com/toshiks/dextr3d. 

Fulfillment of requirement (2) encounters fundamental 
difficulties. As a detailed analysis of the structure of various 
tomographic image storage formats showed, the Raw format is 
common to all, but all of them differ significantly in stored 
metadata, which imposes restrictions on the possibility of 
mutual conversion between them without loss.  

In this regard, an experimental study of the effectiveness of 
using individual formats both when importing into a 
developed service, and when exporting from it, has been 
conducted. The study used the XTK library, which has native 
support for some formats of interest. The results of the study 
are presented in able VI. 

TABLE VI. CHARACTERISTICS OF TOMOGRAPHIC IMAGE STORAGE FORMATS 

 Format Acronym Specialisation Software/Company Suitable Parsers

dcm, dicom 
Digital Imaging and 
Communications in 

Medicine 
A standard for a 2D image 

The medical industry standard for creating, storing, 
transmitting and visualizing digital medical images 

and documents of examined patients 
medPy, xtk 

nii, nii.gz NIfTI-1 Data Format A common format for working with  
volumentric 3D images Neuroimaging Informatics Technology Initiative medPy, xtk 

vtk Visualization Toolkit An unified visualization format for a 
software product vtk VTK/Kitware medPy, xtk

nrrd Nearly raw raster data 
A format and a library for 

manupalating with n-dimensional 
raster data 

Open-source library / teem project medPy, xtk 

mha ITK MetaImage Designed for 3D images ITK/Kitware. medPy 

seg.nrrd Segmentation .nrrd 
Designed to add information about 
segmented region directly into the 

.nrrd format 
Slicer Internal part of 

Slicer 

mrml Medical Reality 
Markup Language 

A format being used to visualise and 
operate with graphical scenes within 

the application 
Slicer Internal part of 

Slicer 

roi Region of Interest Stands out as a separate part of an 
image data - Is not distinguished 

as a separate format 

mgh, mgh.gz - 

High-resolution structural data is 
designed by Center to satisfy its 

internal need in operating with high-
quality images 

FreeSurfer / NMR Center (at Massachusetts General 
Hospital) 

Needed to be 
implemented 

manually / mrtrix 

Based on the results of the study we have indentified 
formats for which adequate use in the developed service can 
be guaranteed - these are DCM, Nii, Nii.gz, Nrrd, VTK and 
mha. Formats which conversion cannot be provided with 
readily available means should be considered separately. 
Namely, the formats mgh, mgh.gz can be integrated 
individually with their own implementation of parsers based 
on the existing specification or using the existing rmatrix 
library, however, their connection will increase the load on the 
server. The roi format is not specified as a standalone format, 
and its use is conditionally provided. The seg.nrrd and mrml 

formats, due to the lack of specification and focus on the 
internal needs of specific software, are not recommended for 
use. 

Service development is implemented as an open source 
project. Project materials regarding the service are available at 
https://github.com/nikolay-egorov/DEXTR3D-Service 

B. Discussion 
As the results of testing and experimental studies of the 

developed service components have shown, the adopted 
architectural and algorithmic solutions satisfy the requirements 
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of the radiologist for software tools for manual segmentation 
of tomography images highlighting potential areas of interest.  

In addition, the architectural and functional advantages of 
the proposed solution solution are identified. 

The use of a client-server architecture with a cloud access 
point eliminates the need for binding to a stationary 
workstation and does not require an expensive and heavy 
software and hardware complex. This fact significantly 
increases the efficiency of the use of working time by a 
radiologist and improves ergonomic features of the service.  

The functional advantages include the following: 
 performance when implementing requirements (5) (8); 
 the availability of alternative methods for implementing 

requirements (5) and (8); 
 accuracy in the implementation of requirements (6)  (8): 

all methods for identifying a zone of interest have shown 
results at a convencional  level that are quite comparable 
with the world average results (in their classes of 
approaches). 

V. CONCLUSION 
The article addressed the issue of developing of software 

tools for manual segmentation of tomography images 
supporting radiologist’s personal context.  

With the involvement of the expert community of 
radiologists, we have identified the requirements for such 
software tools from the doctors’ point of view of as end users, 
as well as to the nomenclature and functionality of tools that 
implement these requirements. In order to meet the identified 
requirements, we have developed a solution based on a client-
server architecture with a cloud access point. The 
nomenclature of tools for marking tomographic images 
implemented in the solution, as well as the methodology for 
working with them, fully complies with the identified 
requirements.  

The following functions were developed and implemented: 
calculation of the volume of the region of interest, as well as 
three options for the semiautomatic segmentation of the image 
based on threshold, extreme points and neuron networks. All 
functions have customizable parameters and (or) 
implementation options, which provides flexibility in solving 
specific markup problems. 

Experimental studies have shown that the constructed 
service meets all the requirements put forward by radiologists 
and corresponds to the global level in terms of accuracy and 
speed (performance) of segmentation. 
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