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Abstract—Orthogonal transformation of digital images can be
represented as a decomposition over basis matrices or basis
images. Grayscale and color basis images are introduced. For
particular case of DWT (Discrete Wavelet Transform) obtained
basis wavelet images have a block structure similar to frequency
bands of the the DWT coefficients. A steganographic scheme for
frequency domain watermarking based on this representation is
considered. Presented example of detection algorithm illustrates
how this representation can be used for frequency embedding
techniques.

I. INTRODUCTION

A digital image has various representations and some of

them are required by applications. Many useful representations

are produced by orthogonal transforms that are powerful tools

of image processing. Well known examples are JPEG and

JPEG2000 lossy compression formats based on DCT (Discrete

Cosine Transform) and DWT (Discrete Wavelet Transform).

For the image compression problem block based DCT and

DWT techniques are developed [1]–[4] and generalized to non-

separable transforms [5], [6] and irregular transforms [7]–[9].

Orthogonal transform produces scattering of digital data, a

process that redistributes pixel energy of transformed image. It

is useful for protection of hidden data in steganography, when

a message is embedded into image. Hidden data are scattered

among all digital cover image and become more robust to

lossy data compression and some statistical attacks [10], [11].

The orthogonal transform of images may be considered as

a decomposition over matrices known as basis matrices [12].

Being some kind of grayscale images, the basis matrices look

attractive and they are often reproduced by textbooks [13]. We

will also call these matrices basis images. In this paper we

focus on the following items: color and wavelet basis images,

orthogonal transform by matrix of basis images and their

quantum analogues. For color images the solution is directly

achieved by considering three-dimensional orthogonal trans-

form but for wavelets the solution is not so simple. The reason

is that in practice, DWT is calculated by algorithms using

signal processing techniques instead of orthogonal transforms.

Nevertheless these algorithms can be used to calculate wavelet

basis images. So it was found for various wavelets that the

basis has a block structure similar to DWT coefficients [14],

[15].

The watermarking schemes, which use wavelet orthogo-

nal transform, are also available. The technique uses two

orthogonal transformations, for example, DCT-SVD [16]–

[18]. SVD (Singular Value Decomposition) is conversion of

a rectangular matrix into a block-diagonal matrix. Embedding

can be performed using the coefficients of the orthogonal

SVD transform, which operates with frequency wavelet blocks

LL, LH, HL, HH. DWT transform is not necessarily one-

level [19], [20]. A useful calculation tool is IWT (Integer

Wavelet Transform) [21]. In this transform the accuracy of

calculations is limited, then the brightness values of the image

pixels and transform coefficients are recorded in the same

integer encoding. This eliminates the loss of rounding and

creates reversibility at least in part of integer encoding.

The paper is organized as follows. Firstly, the orthogonal

transformation and decomposition over the basis image are

considered. Then we introduce grayscale basis images par-

ticulary for wavelets and present an example of detection

algorithm for the case of DWT coefficient watermarking.

Finally, we discuss RGB basis images.

II. BASIS IMAGES

Orthogonal transform of digital image is performed with an

orthogonal matrix.

Orthogonal matrix

A matrix of real numbers is said to be orthogonal if (for

details see [22])

UUT = I,

where I is the identity matrix. It implies that

UTU = I.

Columns of this matrix um and rows uT
n are orthonormal

vectors

〈um, un〉 = δmn,

〈uT
m, uT

n 〉 = δmn,

where 〈x, y〉 denotes scalar product of two vectors x and y,

and δmn is the Kronecker symbol.
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Representation of matrix

Let F = {Fmn} be a real rectangular M × N matrix,

that corresponds to a grayscale image. We introduce two

orthogonal matrices U = {Umn} and V = {Vpk} of the size

M × M and N × N respectively. Then taking into account

that the matrix F = UUTFV V T , we find

F = UGV T ,

G = UTFV,
(1)

where G is a M ×N matrix.

Let us assume that F is an image in a spatial domain (that is

the image as we see it). Matrix G is usually called a frequency
representation of F or an image in frequency domain. The

frequency domain image may look senseless, however the

orthogonal transform is reversible and the original image can

always be retrieved.

Using the matrix form of the representation (1)

Fxy =
∑
k,p

UxkGkpV
T
py =

∑
k,p

(uk ⊗ vp)xyGkp,

we get a decomposition over tensor products of rows and

columns of the matrices U and V , denoted by ⊗. Thus,

if uk is column vector uk = (U1k, U2k, . . . , UMk)
T and

vp = (V1p, V2p, . . . , VNp)
T , then uk ⊗ vp := uk v

T
p and

(uk ⊗ vp)xy = Uxk Vyp.
Here and later we assume U = V and M = N , as this is

more interesting case. Then the decomposition produced by

the orthogonal transformation takes the form

F =
∑
k,p

(uk ⊗ up)Gkp,

G =
∑
x,y

(uT
x ⊗ uT

y )Fxy.
(2)

Grayscale basis images

We introduce the matrices

akp := uk ⊗ up,

dxy := uT
x ⊗ uT

y ,

that we call basis images. There are N2 basis images of size

N × N , every image pixel is a product of two items of the

orthogonal matrix U :

akp(x, y) = UxkUyp.

Properties of basis images

Being the tensor products of columns and rows of orthogo-

nal matrix, the basis images have properties that follow from

orthogonality. We focus on the basis images akp, as for U = V
the properties of dxy are the same.

1) The matrix product of two basis images is another basis

image

akp amn = aknδpm.

2) The scalar product

〈akp, amn〉 = δkmδpn,

where the scalar product of matrices is denoted by

〈A,B〉 := ∑
m,n

AmnBmn.

3) The sums of the diagonal elements are∑
k

akk = I,

∑
k

akk(x, y) = δxy,

∑
x

akp(x, x) = δkp.

Analyzing these properties we came to the conclusion that

the basis images are orthonormal. This observation allows

us to consider the orthogonal transform (2) as a standard

decomposition over the orthonormal basis. It is obvious that

the first equation in (2) takes the form

F =
∑
k,p

Gkp akp, (3)

where Gkp = 〈F, akp〉.
A. Generation of basis images

There are at least two ways to get basis images. The first is

to use its definitions. In this case the orthogonal matrix has to

be given. The second way follows from orthogonal transform

of the basis images.

Let us focus on the second approach. Let F = aab in the

representation (3). Then we find the basis image representation

of the form Gkp = δkaδpb. It means that the matrix G has one

non-zero pixel, it is equal to 1 and its position is (a, b). So,

the orthogonal transform of a basis image is a binary matrix

of unit brightness. We denote such unit matrix as

eab = {δkaδpb},
where k, p = 1, . . . , N . Then the following relations are valid

aab = UeabU
T ,

dab = UT eabU.
(4)

So together with the unit vectors ek the unit matrices eab
form a standard basis and the orthogonal transform of the

basis is a set of basis images aab. Indeed, with the help of the

standard basis any matrix can be presented in the following

form

G =
∑
k,p

Gkpekp.

Then we get the decomposition given by (3), using the

orthogonal transform and taking into account (4).

Example of WHT basis images

The 2 × 2 orthogonal Walsh-Hadamard Transform (WHT)

matrix known also as Hadamard matrix consists of +1 and

−1,

H =
1√
2

[
1 1
1 −1

]
.
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In optics this matrix describes so called 50% beam splitter,

a linear optical element often used in experiments to split the

beam into two parts. Four basis images akp, denoted as tensor

product of columns, have the following form

a11 =
1

2

[
1 1
1 1

]
, a12 =

1

2

[
1 −1
1 −1

]
,

a21 =
1

2

[
1 1

−1 −1

]
, a22 =

1

2

[
1 −1

−1 1

]
.

The determinant of every matrix equals to 0 and the matrices

are non invertible. The matrices can be generated from a unit

matrix by WHT:

H : e11 =

[
1 0
0 0

]
� 1

2

[
1 1
1 1

]
= a11.

This equation illustrates relations between the basis images

and the standard two-dimensional basis. But what is more

interesting, the equation demonstrates scattering of digital

data. So, a non-zero pixel of the unit matrix transforms into a

basis images of a matrix with only non-zero pixels.

As a result, basis images can be produced by transformation

of unit matrices.

The quantum analogue

The presented features allow us to consider basis images

as a representation of quantum operators. These operators

describe transitions of a physical system between its states or

levels. We use here the quantum mechanics notation, details

see in [23].

Let us assume that {|k〉} and {|q〉} are two basis of a single

particle Hilbert space ∑
k

|k〉〈k| = 1,

∑
q

|q〉〈q| = 1,

where k ∈ Z = {1, 2, . . . }, q ∈ Q = {x, y, . . . }. Let the

overlapping integrals be real

〈k|q〉∗ = 〈q|k〉. (5)

Then we find a real matrix Ũqk = 〈q|k〉 that is orthogonal,

because Z and Q are complete basis.

The following operator

|k〉〈p| = âkp, (6)

where k, p ∈ Z, describes transition from the state or level |p〉
into level |k〉. If k = p, this operator is known as projection

operator.

Using Q, the introduced operator (6) can be represented as

a real matrix

〈x|âkp|y〉 = akp(x, y),

where x, y ∈ Q. It is not difficult to understand, that these

matrices are basis images, considered above.

Using Z, we can present any single particle operator F̂ as

follows

F̂ =
∑
k,p

|k〉〈p|〈k|F̂ |p〉.

Operator F̂ can be written as a matrix, using Q and (5),

then the right part of this equation takes the form (3). As a

result we find that some of representations of single particle

operators can be considered as basis grayscale images.

III. WAVELET BASIS IMAGES

Basis images can be generated by DWT. In calculation the

DWT techniques do not use matrix methods and the basis

wavelet images can be achieved by transform of standard basis.

Wavelet coefficients

The DWT coefficients have a block structure due to orthogo-

nality of N × N matrix U . In case of single level transform

this matrix consists of two parts, L and H , known as low and

high frequency blocks.

Let G be a frequency representation of a N ×N grayscale

image

F = UGUT ,

G = UTFU.

Applying the MATLAB notation, we write DWT as follows

G = dwt(F ) =

[
cA cH
cV cD

]
, (7)

F = idwt(cA, cH, cV, cD).

The introduced blocks cA, cH , cV , and cD are approxi-

mation coefficients, horizontal, vertical and diagonal details

or LL, LH , HL, and HH frequency bands. Four coefficient

blocks are denoted by L and H frequency bands. Let assume

that UT is concatenated of these items that are N × N/2
matrices

UT = [L,H].

Then we find that

cA = LFLT ,

cH = LFHT ,

cV = HFLT ,

cD = HFHT .

It results in the hierarchic decomposition of F as approxi-

mation and details

F = LT (cA)L+ LT (cH)H +HT (cV )L+HT (cD)H.

The DWT coefficient matrix G can be considered as a three-

dimensional array G = {Gkpz} of size N/2 × N/2 × 4.

Index z = 1, 2, 3, 4 labels the cA, cH , cV and cD blocks

respectively, for example, Gkp1 = cAkp.
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Block structure of basis

To calculate basis images we use equation (4)

akp = UekpU
T .

According to (7) indexes (k, p) belong to one of the blocks

cA, cH , cV or cD. Let (k, p) ∈ cD, so there is a set of basis

items

a(kpD) = idwt(O,O,O, ekp), (8)

where O is a N/2 × N/2 matrix of zeros. Here the upper

indexes are in brackets to label number of the matrices instead

of indicating the pixel position. In other words, we perform

an orthogonal transformation of the unit block matrix

a(kpD) �
[
O O
O ekp

]
.

The total number of basis images {a(kpD)} is N2/4, every

image is a N ×N matrix.

It is important to note that the equation (4) gives solution

by MATLAB functions dwt and idwt. The reason is that

in practice the DWT calculations are often based on the filter

function techniques [24]. These techniques were developed for

signal processing without referring to the orthogonal matrix U .

Usually wavelets are introduced numerically or by recurrent

equations so the calculation of U is a problem except, for

example, the Haar wavelet.

Using the block coefficients cD and a(kpD) we can get an

approximation of original image

D =
∑
k,p

cDkpa(kpD).

This image has diagonal details only.

The wavelet coefficient structure results in basis of four

blocks. The blocks refer to cA, cH , cV , and cD similarly to

(8) {
{a(kpA)}, {a(kpH)}, {a(kpV )}, {a(kpD)}

}
.

Every block has N2/4 basis N ×N images. As a result the

representation over the wavelet basis images takes the form

F =
∑
k,p

(
cAkpa(kpA) + cHkpa(kpH) +

cVkpa(kpV ) + cDkpa(kpD)

)
. (9)

The Fig. 1 shows basis images, N = 6, for the wavelet db6,

i. e. the orthogonal Daubechies wavelet [25]. The basis set

has four blocks, the blocks refer to approximation, horizontal,

vertical and diagonal details. The first items of these blocks

a11A, a11H , a11V , and a11D are presented in the Fig. 1.

Fig. 1. Block structure of basis image for wavelet db6. There are four 6×6
matrices a11A, a11H , a11V and a11D. They belong to blocks that refer to
approximation coefficients, horizontal, vertical and diagonal details

Basis image blocks structure

Indeed, the considered above function dwt can produce

another basis. For this case in accordance with (7) every basis

images has a block structure

dkp = dwt(exy) =

[
d(kpA) d(kpH)

d(kpV ) kp(kpD)

]
.

Fig. 2 shows set of 36 images dkp, k, p = 1, . . . , 6, for

wavelet db6. Every image has a block structure that corres-

ponds to approximation, horizontal, vertical, and diagonal

details.

Fig. 3 illustrates role of the blocks of items dkp. At the top

two images d55 and e55 are connected by DWT, wavelet db6.

Image d55 has block structure shown at Fig. 2. A block of

approximation, horizontal, vertical, and diagonal coefficients

is discarded and original is retrieved. The original cannot be

retrieved perfectly because of the discarded coefficients. Then

there are artifacts that indicate which block was omitted. This

is an illustration of role of blocks in visual perception.

A watermarking scheme

Orthogonality of basis images may be used for blind detec-

tion algorithm in watermarking techniques.

Consider an example based on representation (9). Let a

message M be embedded into DWT coefficients, e. g. in cVkp.

The standard scheme has the following steps.

1) Select using secrete key two set of pixels Y1 and

Y2, brightness of which will be changed or not after

embedding.
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Fig. 2. Block structure of basis images dkp for wavelet db6, N = 6. a )T h e
set of 36 items, every item has block structure. b) and c) Four blocks of

coefficients of image d55

2) Embed the message into Y1 with the chosen algorithm

YM ← embed(M,Y1,K), where K is a set of embed-

ding parameters including the secrete key.

3) Extract data from frequency domain by detection algo-

rithm.

New feature is that our detection algorithm is blind and

it does not require the image in frequency domain. It works

as follows. After embedding, the image FM has a term∑
k,p

YMkpa(kpV ), that contains message. Detection algorithm

does not need the initial image, it can extract the data using

the equation YMkp = 〈FM , a(kpV )〉.

IV. COLOR BASIS IMAGES

Digital color image is a three dimensional array that pro-

vides decomposition over basis images.

Orthogonal transformation of three-dimensional array

To transform a three-dimensional array T of size M×N×Z,

it needs three orthogonal matrices U , V, and W of size M×M ,

N × N, and Z × Z. Similarly to two-dimensional case (2)

the transformation can be presented as a decomposition over

Fig. 3. Properties of the coefficient blocks for basis image. a) Image d55 is
transformed from original image e55. b) The retrieved original after removing
from d55 one of the blocks: approximation coefficients, horizontal, vertical and
diagonal details

tensor products of the matrix columns

T =
∑
k,p,s

tkps uk ⊗ vp ⊗ ws,

where a set of three-dimensional arrays

akps = uk ⊗ vp ⊗ ws,

is an orthonormal basis. In accordance with general properties

the set can be achieved from the standard basis

U, V,W : ekps � akps,

where ekps is a three-dimensional array, that has one non-zero

element equal to 1 at position (k, p, s). Every item ekps is a

product of unit vectors

ekps = ek ⊗ ep ⊗ es.

If Z = 3 the three dimensional array can describe a color

image. The next observation is valid. Any tensor product of a

matrix and a vector of three components has the form

A⊗ w = cat(3, Aw1, Aw2, Aw3), (10)
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where cat is concatenation of matrices along dimension d = 3.

Here we also use MATLAB notation. Operation cat is not

commutative, in accordance with its definition. The three

concatenated matrix array has the first matrix Aw1, the second

and the third Aw2 and Aw3 respectively. The representation

(10) is valid if the product is replaced with the sum of products

A⊗ w →
∑
u

Au ⊗ wu,

where all matrices have equal dimension and vector has three

components. Equation (10) allows us to consider any three-

dimensional array M ×N × 3 as a color image.

Color images

Digital color image of RGB type can be described by three

matrices R, G, and B often named Red, Green, and Blue

channels. The matrices have equal size and consist of a three-

dimensional array of size M ×N × 3

C = cat(3, R,G,B).

From the definition it follows that the Red channel of the

image C is the first matrix, Cmn1 = Rmn, the Green and Blue

channel is Cmn2 = Gmn and Cmn3 = Bmn respectively.

The color channel controls the display pixels brightness to

visualize image. From (10) it follows that digital array A×w
can be considered as a color image, which Red, Green, and

Blue channels are Aw1, Aw2, and Aw3.

Color of basis images

Consider an array of unit vectors from standard basis

ekps = ekp ⊗ es,

where ekp = ek ⊗ ep is a unit matrix and s = 1, 2, 3. These

items can be represented as a color RGB images

ekps = cat(3, ekpδs1, ekpδs2, ekpδs3).

The color can be find by the next procedure. For s = 1 we

have

ekp1 = cat(3, ekp, 0, 0).

It means that the color image ekp1 has a Red channel only.

This is matrix ekp, that has a non-zero pixel at position (k, p).
Taking into account, that in RGB model the color (0, 0, 0)
is black, so image ekp1 looks as a one red pixel on a black

background. Similarly, ekp2 and ekp3 look as one green and

blue pixel on a black background.

Orthogonal transform of standard basis of unit vectors

allows us to create another basis, for example,

akps = akp ⊗ es,

where s = 1, 2, 3. The obtained items can also be considered

as color images

akps = cat(3, akpδs1, akpδs2, akpδs3).

Therefore, for s = 1 we have

akp1 = cat(3, akp, 0, 0).

It follows that the item has a Red channel, it presented

by matrix akp. From the image processing point of view,

this matrix is a grayscale image and it does not have color.

However, if the grayscale image is in Red channel only, it will

be colored in shades of the red.

The considered colorizing can illustrate the pixel energy

redistribution in orthogonal transform. That is one of the

attractive properties for applications. In the case of basis sets

ekp and akp the next map is valid

cat(3, ekp, 0, 0) → cat(3, akp, 0, 0).

It means that a red pixel is transformed into an image in

red shades and vise versa. Then we find two processes of the

pixel energy scattering and concentration.

As a result, we find the decomposition of the RGB image

over the orthonormal set of color basis images

C = cat(3, R,G,B) =∑
k,p,s

σkpscat(3, akpδs1, akpδs2, akpδs3) =

∑
k,p

(
cat(3, akp, 0, 0)σkp 1 + cat(3, 0, akp, 0)σkp 2+

cat(3, 0, 0, akp)σkp 3

)
.

V. CONCLUSIONS

Orthogonal transformation has many attractive features for

applications. Orthogonal transformation of digital images can

be represented as a decomposition over basis matrices or basis

images. We introduce grayscale and color basis images. For

particular case of DWT found basis wavelet images have

a block structure. We construct an example of detection

algorithm for frequency embedding techniques. Moreover,

introduced block representation leads to effective algorithms

of block parallelization.

VI. ACKNOWLEDGMENTS

The reported study was funded by a grant of the President

of the Russian Federation (MD-2242.2019.9). The conference

participation was partially funded by a travel grant of St.

Petersburg State University, Saint-Petersburg, Russia.

REFERENCES

[1] T.L.T. da Silveira, F.M. Bayer, R.J. Cintra, S. Kulasekera, A.
Madanayake, A.J. Kozakevicius, “An orthogonal 16-point approximate
DCT for image and video compression”, Multidimens. Syst. Signal
Process. 27(1), 87–104 (2016).

[2] M. Perera, K. Sirani, “Signal Processing based on Stable radix-2 DCT I-
IV Algorithms having Orthogonal Factors”, Electronic Journal of Linear
Algebra, Vol. 31, pp. 362–380, 2016.

[3] A. G. Shoberg, K. A. Shoberg, “Influence of execution of orthogonal
block transform types and results of comparison”, Conf. Series: Journal
of Physics, 2018, 1015, 032130, 5 p.

[4] A.G. Shoberg, S.V. Sai, K.A. Shoberg, “The transform performing
algorithm for frequency domain search”, IOP Conf. Series: Journal of
Physics, Conf. Series, 2017, 803, 012147, 4 p.

[5] G. Fracastoro, E. Magli, “Steerable discrete cosine transform”, Proc.
IEEE Int. Workshop Multimedia Signal Process., pp. 1–6, Oct. 2015.

[6] F.A. Binti Hamzah, S. Minewaki, T. Yoshida, M. J.Iwahashi, Image
Video Proc. (2018) 2018:36.

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 114 ----------------------------------------------------------------------------



[7] A. A. Makarov, “On wavelet decomposition of spaces of first order
splines”, J. Math. Sci., 156:4, 2009, 617–631.

[8] A. A. Makarov, “Algorithms of Wavelet Compression of Linear Spline
Spaces”, Vestnik St. Petersburg University: Mathematics, 45:2, 2012,
82–92.

[9] A. A. Makarov, “On Two Algorithms of Wavelet Decomposition for
Spaces of Linear Splines”, J. Math. Sci., 232:6, 2018, 926–937.

[10] B.C. Nguyen, S.M. Yoon, H.K. Lee, “Multi Bit Plane Image Steganog-
raphy”, In: Y.Q. Shi , B. Jeon (eds) Digital Watermarking. IWDW 2006.
Lecture Notes in Computer Science, Vol. 4283, pp. 61–70, 2006.

[11] V.N. Gorbachev, E.M. Kainarova, L.A. Denisov, “Embedding of binary
image in the Gray planes”, Computer Optics, 37(3), pp. 385–90, 2013.

[12] W.K. Pratt, Digital Image Processing, John Wiley & Sons, Inc., New
York, NY, 2001.

[13] D. Salomon, Data Compression: The Complete Reference, Springer-
Verlag, Berlin, Heidelberg, 2000.

[14] V. Gorbachev, E. Kaynarova, A. Makarov, E. Yakovleva, “Digital image
watermarking using DWT basis matrices”, 21th Conference of Open
Innovations Association (FRUCT), 2017, pp. 127–133.

[15] V. Gorbachev, E. Kaynarova, A. Makarov, E. Yakovleva, “On Block
Representations in Image Processing Problems”, 23rd Conference of
Open Innovations Association (FRUCT), 2018, pp. 128–134.

[16] F. Huang, Z.H. Guan, “A hybrid SVD-DCT watermarking method based
on LPSNR”, Pattern Recognition Letters, 2004, pp. 1769–1775.

[17] S. J. Horng, D. Rosiyadi, P. Fan, X. Wang, M. K. Khan, “An adaptive
watermarking scheme for e-government document images”, Multimedia
Tools and Applications, 2014, pp. 3085–3103.

[18] K. Ji, J. Lin, H. Li, A. Wang, T. Tang, “A DCT And SVD Based Water-
marking Technique To Identify Tag”, arXiv preprint arXiv:1502.02969,
2015.

[19] V. S. Jabade, S. R. Gengaje, “Logo based image copyright protection
using discrete wavelet transform and fuzzy inference system”, Interna-
tional Journal of Computer Applications, 2012, Vol. 58, Iss. 10, pp.
22–28.

[20] M. Hamghalam, S. Mirzakuchaki, M. A. Akhaee, “Geometric modeling
of the wavelet coefficients for image watermarking using optimum
detector”, IET Image Processing, 2014, V. 8, N. 3, pp. 162–172.

[21] S. Shantam, “Robust lossless image watermarking in integer wavelet
domain using SVD”, International Journal for Research in Applied
Science & Engineering Technology (IJRASET), 2017, Vol. 5, Iss. VI,
pp. 2462–2467.

[22] G. Strang, Linear Algebra and its Applications, Thomson Learning, Inc.,
2006.

[23] P.A.M. Dirac, The Principles of Quantum Mechanics, Clarendon Press,
Oxford, 1930.

[24] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.
[25] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 115 ----------------------------------------------------------------------------


