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Abstract—Nowadays, the use of Internet of Things (IoT) in 
various different fields has made significant progress, especially 
in the field of healthcare, where a myriad of heterogeneous 
medical data sources are in use. This fact has reinforced the 
vision of developing new communication technologies and finding 
new ways to synchronize and successfully manage all these data 
sources. However, this vision is accompanied by several related 
challenges. One of these challenges refers to the fact that since all 
the existing IoT medical data sources are usually characterized 
by a high degree of heterogeneity, they are expected to be 
recognized as reliable at different stages, thus providing data of 
different levels of reliability. To effectively tackle this challenge, 
the present paper proposes a mechanism for capturing the 
reliability levels of different IoT medical data sources, so as to 
automatically decide whether these will be considered as reliable 
or not, and thus their data will be kept for further analysis. In 
this context, in this mechanism three (3) discrete stages are 
implemented, facilitating both the data reliability and the 
availability estimation of these data sources, making finally 
feasible the manipulation of these sources and the estimation of 
their overall reliability levels. The prototype associated with this 
paper provides an example of this mechanism, demonstrating in 
detail each discrete stage. 

I. INTRODUCTION 
It is an undeniable fact that healthcare is one of the major 

areas of application of Internet of Things (IoT). In particular, in 
recent years technology has focused heavily on how medical 
devices and health monitoring devices, clinical laptops and 
remote controls can contribute to better patient health and more 
efficient healthcare that, in turn, can lead to better medical care 
systems [1]. Currently, healthcare is one of the fastest areas that 
adopt IoT technologies, offering better personalized services, 
reducing operating costs and improving patient care and quality 
of life [2]. For that reason, nowadays there is a large expansion 
of the IoT medical market, resulting in a multitude of 
heterogeneous devices connected to the health world. However, 
these devices are typically characterized by a high degree of 
heterogeneity [3], producing large amounts of heterogeneous 
health and fitness data [4]. Hundreds of healthcare 
organizations are daily dealing with challenges in extracting 
data from various types of medical devices, affecting both 
patient care and medical research [5].  

However, all of these healthcare organizations face many 
difficulties in successfully managing all this data, since this 
data may not only be heterogeneous but also have different 
levels of reliability [6]. Even if all of the data becomes 

interoperable, not all of it should be retained for reuse, as it is 
extremely critical since it leads medical decisions making [7]. 
Rather, it would be more prudent and effective to take into 
account the different levels of reliability that such data may 
have, thus analyzing only those data that have high levels of 
reliability. Therefore, the challenge lies in the difficulty of 
determining the reliability of these large amounts of data. 
However, appraisal of the reliability of the underlying medical 
data sources, as well as of their data output, are treated mainly 
as black boxes in the healthcare sector, and little attention is 
given to their reliability when integrated into larger systems. 
The use of these data sources without proper reliability 
assessments may have serious health implications, while the 
absence of their reliability could reduce the degree of 
successful interpretation and significance of the results and 
findings that are produced based on their output data [8]. 

There is no doubt that reliability has gained extremely high 
popularity. Perhaps this is due to medical errors that have 
immediate and possibly deadly effects on human affairs. We all 
know the stories of patients who received the wrong drug or the 
right medicine at the wrong dose because the wrong disease 
was diagnosed by medical staff with inadequate training in 
administering a specific test. Therefore, improving the 
reliability of medical systems is probably much more urgent 
than improving, for example, the quality of a video game. 
Patientcare, for example, in the field of nursing, is another 
extremely sensitive area where reliability has found a fertile 
ground [9]. Therefore, the reliability of technological systems 
is very important for medical engineering. Failure of medical 
systems and data sources may result in adverse effects that 
could be an injury or death of a patient, and may have serious 
legal consequences. This results in the challenge of using 
reliable medical devices and data sources or equipment that 
must have a high level of reliability. The intensity of failure 
increases with the age of medical equipment, thus requiring 
technological repair and monitoring of equipment. It is reported 
that up to 80,0% of medical equipment currently used in public 
health organizations is worn out or is outdated, making it 
difficult to guarantee not only the reliability and effectiveness 
but also the safety of medical equipment [10]. In the same 
notion, in another study [11] it is pointed out that data from 
various sources indicate that some hospitalized patients suffer 
from treatment-induced injuries, most of which are due to 
system/device failures. 
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To address all the aforementioned challenges, in this paper 
a solution is proposed for capturing the reliability of the 
heterogeneous IoT medical data sources that exist, of both 
known and unknown nature (i.e. data source type). To this end, 
a mechanism is proposed for assessing the reliability of these 
data sources, by facilitating the automatic estimation of both 
the data sources and their produced data reliability levels. More 
particularly, the mechanism by using as an input both the 
availability of the connected data sources and the reliability of 
their produced data, it calculates the reliability of each 
corresponding data source. Thus, it concludes whether the latter 
will be qualified as reliable or not, and thus its data will be 
obtained for further utilization and analysis. This mechanism 
has been evaluated through three (3) different experiments in 
order to assess its effectiveness for capturing the reliability of 
IoT medical data sources. 

The rest of this paper is organized as follows. Section II 
describes the study of the related work regarding reliability and 
the existing reliability researches that have been implemented 
in the healthcare sector. Section III describes the proposed 
mechanism for capturing the reliability of heterogeneous IoT 
medical data sources, whereas in Section IV, it is described a 
representative use case of the proposed mechanism. Finally, 
Section V is analyzing our conclusions and plans. 

II. RELATED WORK

With the growing population and aging society in several 
countries, healthcare providers aim to enhance the quality of 
healthcare services, while balancing risk mitigation and service 
costs. As a result, various new information technologies and 
innovative communication methodologies have evolved to 
improve the healthcare sector. These technologies increase the 
quality of services, thus helping to reduce the cost of the 
healthcare systems and increase the quality of healthcare 
services. To measure and evaluate the reliability of systems, 
different reliability metrics exist, which are important for 
monitoring reliability growth, performing risk analysis, and 
decreasing warranty costs. In this context, reliability metrics 
assess the degree to which a software product consistently 
performs its intended function without failure (i.e. it assesses 
the probability of software failure or the rate at which software 
errors will occur). Therefore, reliability metrics are important 
for estimating reliability, as they provide quantitative indicators 
for reliability management, evaluation and validation, trade-off 
among cost, schedule, monitoring testing process, and 
interpretation of reliability behavior. In order to estimate 
reliability, the corresponding metrics may derive either from 
the failure occurrence expressions (i.e. software reliability) or 
from the derived data (i.e. data reliability). 

In this context, various methods of reliability have been 
proposed in the literature on the world of IoT, and more 
particularly in the healthcare sector. All these methods are 
attempting to measure the reliability of IoT medical data 
sources used for various health purposes, using either software 
reliability or data reliability metrics. In more detail, the authors 
in [12] discussed the reliability of Fitbit devices, assessing the 
reliability between Fitbit Flex devices and two (2) different 
other similar devices, recording their activity based on sitting 
time measurement, and the time spent at different intensities of 

activity, against a validated triaxial accelerometer. In the same 
context, the authors in [13] examined the reliability of ten (10) 
activity trackers for measuring steps in laboratory and free-
living conditions, by estimating the Intra-Class Correlation 
(ICC). In [14] the authors evaluated the reliability of two (2) 
criteria on two (2) different foot stiffness devices in different 
test approaches by measuring the Coefficient of Variation 
(CV), the ICC, as well and the Standard Error of Measurement 
(SEM) of these devices. In addition, the authors in [15] 
evaluated the reliability of a medical mobile application using a 
gravity strength test, recording the corresponding ICC and 
SEM of its produced data. In the same context, the authors in 
[16] recorded the ICC measurement to evaluate the intrinsic 
and interactive reliability of a device used by patients with 
diabetes, calculating both the ICC and the SEM of the data 
generated by this device. What is more, the purpose of the 
study in [17] was to determine the reliability of automated 
devices that measure systolic blood pressure of the foot and 
arm index of a patient, while the purpose of the study in [18] 
was to determine the internal reliability of a mobile device 
goniometer in the measurement of lumbar flexion. 
Furthermore, the goal of the study in [19] was to assess the 
validity and reliability of commonly used temperature devices 
compared with rectal temperature in individuals exercising in a 
controlled, high environmental temperature indoor setting, and 
then resting in a cool environment, by estimating the ICC, the 
SEM, and the CV. In addition to the above, in [20] the authors 
presented a simple method of decomposition that could be 
easily applied on complex medical systems, through which the 
effect of the subsystems or components on the reliability of the 
overall system could be easily calculated, estimating the 
metrics of Mean Time To Failure (MTTF), Mean Time To 
Repair (MTTR), and Availability. In addition, the authors in 
[21] analyzed a database of failures of many types of medical 
equipment, so as to study the dependence of failure rate on 
equipment age and on time since repair, whereas in the same 
notion, the authors in [22] presented various criteria and 
methods for evaluating the reliability of medical equipment. 
What is more, the authors in [23] presented a reliability 
analysis of a standby complex system in a dairy plant. Finally, 
the authors in [24] analyzed the field data for medical imaging 
systems during the warranty period, while the authors in [25] 
presented the results of the early reliability prediction for 
Philips medical systems based on field data. 

All the aforementioned approaches have implemented 
several features regarding the reliability estimation among 
heterogeneous IoT medical data sources. However, all these 
approaches lack of sufficient flexibility and adaptability to 
solve challenges arisen from dynamically gathering data from 
both known and unknown devices and automatically estimating 
their reliability levels. Apart from this, none of the existing 
approaches measures the reliability of the underlying data 
sources based upon both their software and their data 
reliability, an innovation that takes place in the proposed 
approach. For that reason, in our approach an innovative 
mechanism is proposed for automatically capturing the 
reliability levels of both known and unknown data sources, and 
finally decide whether they will be considered as reliable or 
not, and thus their data will be kept for further analysis. 

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 212 ----------------------------------------------------------------------------



III. PROPOSED APPROACH

In our approach, an innovative mechanism is proposed for 
capturing the reliability of heterogeneous IoT medical data 
sources of both known and unknown nature (i.e. data source 
type), in order to finally collect data only from the reliable 
ones. In more detail, based on the proposed mechanism, the 
reliability estimation of the connected data sources in 
combination with their data takes place. This process is of 
major importance, as it is not sufficient to keep all the derived 
data and use it for further analysis, as many of it may have 
derived either from unreliable data sources, or from reliable 
data sources that are faulty and error prone. For that reason, it 
is necessary to measure and evaluate the reliability of all the 
produced data, so as to finally keep only the reliable data that 
comes from only reliable data sources. In order to achieve that, 
it is more effective to estimate both the data sources’ reliability 
themselves, and the reliability of their produced data. For that 
purpose, the mechanism implements three (3) discrete stages: 
(i) Data Sources Availability, (ii) Data Reliability, and (iii) 
Overall Reliability, as depicted in Fig. 1. In short, in the first 
stage the calculation of the data sources’ availability occurs, 
followed by the second stage, where the calculation of the 
reliability of the produced data of the corresponding data 
sources takes place. Finally, in the third stage the combination 
of the results of the two (2) aforementioned stages occurs, so as 
to calculate the overall reliability levels of each connected data 
source based upon both its availability levels and the reliability 
levels of its produced data. Consequently, the final result is 
made available, representing whether each connected data 
source is considered as reliable or not and its data will be kept 
for further analysis. 

It should be noted that the proposed mechanism requires as 
an input the connection of the available IoT medical data 
sources, as well as the available data sources’ produced data, so 
as to furtherly use it for calculating the corresponding 
reliability levels. In order to achieve that, the current 
mechanism exploits the approach proposed in [26]. Since the 
current mechanism requires an input from the mechanism 
proposed in [26], it has to take into consideration the same 
requirements. For that reason, it must consider that the 
available IoT medical data sources must be Bluetooth-enabled, 
whereas they must always contain open Application 
Programming Interfaces (APIs), so as to be able to be 
connected to the mechanism and offer their data. 

Fig. 1. Architecture of the mechanism 

A. Data Sources Availability 
In the first stage, the availability of the connected data 

sources is evaluated, where the mechanism calculates the 
reliability levels of the connected data sources. Although the 
research in [27] outlines that there exists a wide range of metrics 
for capturing the data sources’ reliability, this mechanism, in 
order to calculate each different connected data source’s 
reliability, measures only the metric of the availability (or 
mission capable rate) of them, as it is the most representative 
metric [28]. To this context, a wide range of availability 
classifications and definitions exist [29], however in this 
mechanism the most suitable one that is going to be measured is 
the operational availability. Operational availability (i.e. 
Availability) represents the ratio of the system uptime to total 
time, given mathematically by the equation (1), where the 
Operating_Cycle is the overall time period of operation being 
investigated, and Uptime is the total time in which the system 
was functioning during the specific Operating_Cycle. 

Therefore, the mechanism calculates the availability of each 
connected data source, calculating the corresponding values, 
setting a timer to record how often each data source 
communicates with the mechanism and provides its data. 

B. Data Reliability 
However, as mentioned above, it is not sufficient enough to 

measure only the data sources’ availability for deciding 
whether the latter is considered as reliable or not, but it is more 
effective to measure also the reliability of these data sources’ 
data. For this reason, the mechanism applies the second stage, 
where it records the reliability measurements [30] of each 
different collected dataset. More specifically, among the 
different types that exist for measuring data reliability [31], in 
the current mechanism the Test-Retest Reliability (TRR) is 
used, since it is the most suitable one. Therefore, based on the 
basic features of TRR [31], the measurements are taken by a 
single person on the same item (i.e. type of data source), under 
the same conditions, and in a short period, evaluating the 
reliability across this period. In order to calculate the TRR of 
the connected data sources’ data, the SPSS library [32] is used, 
calculating the corresponding ICC measurement, since the 
data may contain either interval or ratio data [33]. More 
specifically, the method of two-way random effects, absolute 
agreement, and single rater/measurement (i.e. ICC (2,1)) is 
implemented, obeying the corresponding conditions [31]. 

C. Overall Reliability 
As a result of all the above, in the final stage, the overall 

reliability of the collected data is calculated. Thus, as soon as the 
ICC of each different dataset is calculated, its results are 
combined with the results of the availability (i.e. Availability) 
that derived upon the corresponding data source, so as to finally 
decide whether each data source, and as a result its derived data, 
are considered as of high quality or not. To this end, it should be 
noted that in order to consider the final results (i.e. 
Overall_Reliability) as trustful and reliable, these must exceed 
the set threshold of 90,0%. In more detail, Overall Reliability is 

Availability = Uptime / (Operating_Cycle) (1) 
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calculated mathematically by equation (2), where it equals with 
the sum of the data source’s Availability that is multiplied with a 
weight of 0.5, and the corresponding ICC of the data of this data 
source that is multiplied with a weight of 0.5. With regards to the 
set weights, these were chosen based upon the research results 
that were acquired during relevant experiments that were 
performed in the past. These results revealed that both the 
Availability and the ICC should have the same weights, since 
they were considered to be the same characteristic and decisive 
for the calculation of the Overall_Reliability results. 

Based on the calculated results of the Overall_Reliability, all the 
data whose reliability exceeds the predefined threshold are 
retained in the mechanism for further exploitation and use. On 
the contrary, all the data whose reliability does not exceed the 
predefined threshold are rejected by the mechanism. 

IV. EXPERIMENTAL RESULTS

A. Evaluation Environment 
The proposed mechanism was developed in Java SE using 

the NetBeans IDE v8.0.2 [34], and used a processing 
environment with 16GB RAM, Intel i7-4790 @ 3.60 GHz x 8 
CPU Cores, 2TB Storage, and Windows 10 operating system. 
Concerning the results of the mechanism, these are depicted 
below, following the three (3) stages explained in Section III. 
What is more, in order to store all the data that is produced by 
the mechanism, the latter used the Derby Database [35]. 

B. Evaluation Dataset 
In order to perform a complete testing and evaluation of 

the proposed mechanism, three (3) IoT medical data sources 
were chosen, being able to communicate through Bluetooth 
with the mechanism, and offering open APIs for accessing 
their data. In deeper detail, two (2) of these data sources were 
activity trackers, whereas one (1) of these was a body weight 
scale, as they are depicted in Table I.  

TABLE I.  EVALUATION DATASET 

# Name Vendor Type
1 Fitbit Aria Fitbit Body weight scale 
2 Misfit Path Misfit Activity tracker 
3 Polar A370 Polar Activity tracker 

C. Evaluation Results 
1) With regards to Fitbit Aria, using the mechanism from

[26], once the device was connected, the mechanism found out 
that the connected device already existed in its private registry, 
and thus it was characterized as a device of a known type (i.e. 
known device). As a result, the overall process of evaluating 
its reliability levels was bypassed, since as a known device, it 
was already known that it is a quite reliable data source. 

2) With regards to Misfit Path, using the mechanism from
[26], once the device was connected, the mechanism found out 
that the connected device did not exist in the mechanism’s 
private registry. Consequently, the coupled device was 

characterized as an unknown device. Using the same 
mechanism, the current mechanism retrieved the data from the 
connected device, aiming at estimating its reliability levels. As 
soon as all the data of the connected device was successfully 
collected, the overall reliability of the collected data of this 
device was calculated. Thus, its availability measurements 
were combined with the reliability measurements of its 
collected data, applying the first and the second stages of the 
mechanism that were described in Section III. More 
specifically, in terms of availability measurements, the 
mechanism recorded the device’s operating time through the 
frequency of data transmission to the device over a total 
period of 30 days. Thus, during the 30 days of the experiment, 
the mechanism recorded the availability of the connected 
device, using equation (1) of Section III, assuming that the 
device is fully available (i.e. 100,0% availability) when it 
sends 288 measurements per 24 hours. This assumption was 
based on the fact that a device that sends a single measurement 
per minute, for a whole day (i.e. 60 measurements per hour, 
for 24 hours) is considered as of high-reliability and 
availability, according to the mean of the overall 
measurements that were provided during the aforementioned 
operation period of 30 days, in combination with the derived 
results of other relevant experiments that were made in the 
past.  

However, as mentioned in Section III, along with the 
availability of the device, the reliability of the collected data of 
the device was also recorded. For that purpose, the ICC of this 
data was calculated by using the SPSS library, in order to 
calculate the final degree of reliability of the connected device, 
and as a result the degree of reliability of its generated data. 
When this procedure got complete, the mechanism produced 
the results of Table II, which depicts the results that were 
collected after performing the same experiment for 30 days. In 
more detail, Table II summarizes the mechanism’s results 
including: (i) the data frequency of the connected device’s 
transmitted data, in terms of how many measurements were 
gathered per day, (ii) the percentage of the data availability of 
this device (i.e. Availability), considering the data availability 
of the aforementioned fully available device, (iii) the 
percentage of the data reliability (i.e. ICC) that resulted from 
the collected data, and (iv) the percentage of the overall 
reliability calculated based on the results of the device’s 
availability and its data reliability, applying the equation (2) of 
Section III. 

As stated in Section III, in order to consider the final 
results (i.e. Overall Reliability) of the connected device’s data 
as trustful and reliable, and thus keep it for further utilization, 
this must exceed the set threshold of 90,0%. Thus, based upon 
the results of Table II, it can be observed that all the data that 
was collected everyday was of high levels of reliability, as all 
of it exceeded the set threshold. As a result, the Misfit Path 
was considered as a device of high levels of reliability, and its 
data could be kept in the mechanism, in order to be exploited 
and used from the corresponding platforms that will use the 
mechanism. 

Overall_Reliability = (Availability * 0.5) + (ICC * 0.5) (2) 

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 214 ----------------------------------------------------------------------------



Fig. 2, Fig. 3, and Fig. 4 visualize the results of Table II, 
depicting the percentages of overall availability, overall data 
reliability, and overall reliability, correspondingly, for each 
one of the 30 days of the experiment upon the Misfit Path 
device. 

TABLE II. MISFIT PATH RELIABILITY MEASUREMENTS 

Day 
Data 

Frequency 
Data Source 
Availability 

(%) 

Data 
Reliability 

(%) 

Overall 
Reliability 

(%) 
1st   280 97,2 95,2 96,2 
2nd   281 97,5 93,1 95,3 
3rd  280 97,2 96,0 96,6 
4th   276 95,8 94,2 95,0 
5th   280 97,2 96,3 96,7 
6th   276 95,8 89,2 97,0 
7th   279 96,8 85,6 91,2 
8th   280 97,2 96,3 96,9 
9th   281 97,5 98,1 97,8 
10th   280 97,2 87,2 92,2 
11th   279 96,8 88,5 92,6 
12th   280 97,2 95,7 96,4 
13th   280 97,2 96,3 96,7 
14th   278 96,5 90,5 93,5 
15th   281 97,5 98,1 97,8 
16th   280 97,2 87,2 92,2 
17th   280 97,2 96,3 96,7 
18th   280 97,2 95,7 96,4 
19th   279 96,8 94,0 95,4 
20th   281 97,5 98,1 97,8 
21st  280 97,2 95,7 96,4 
22nd   280 97,2 96,3 96,7 
23rd  280 97,2 95,4 96,3 
24th   275 95,4 95,1 95,2 
25th   280 97,2 87,2 92,2 
26th   279 96,8 89,5 93,1 
27th   279 96,8 90,2 93,5 
28th   280 97,2 87,2 92,2 
29th   281 97,5 93,9 95,7 
30th   280 97,2 95,5 96,3 

Fig. 2. Overall Misfit Path availability results 

Fig. 3. Overall Misfit Path data reliability results 

Fig. 4. Overall Misfit Path overall reliability results 

3) With regards to Polar A370, using the mechanism from
[26], once the device was connected, the mechanism found out 
that the connected device did not exist in the mechanism’s 
private registry. Consequently, the coupled device was 
characterized as an unknown device. Following the same 
procedure as in the previous example, as soon as all the data of 
the connected device was successfully collected, the overall 
reliability of the collected data of this device was calculated, 
combining its availability measurements with the reliability 
measurements of its collected data. In more detail, in terms of 
availability measurements, the mechanism recorded the 
device’s operating time through the frequency of data 
transmission to the device over a total period of 30 days. 
Therefore, during the 30 days of the experiment the 
mechanism recorded the availability of the connected device, 
using equation (1) of Section III, assuming as in the previous 
example, that the device is fully available (i.e. 100,0% 
availability) when it sends 288 measurements per 24 hours.  

In sequel, along with the availability of the device, the 
reliability of the collected data of the device was also 
recorded. For that purpose, the ICC of this data was calculated 
by using the SPSS library, in order to calculate the final degree 
of reliability of the connected device, and as a result the 
degree of reliability of its generated data. When this procedure 
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got complete, the mechanism produced the results of Table III 
that depicts the results that were collected, after performing 
the same experiment for 30 days. In more detail, Table III 
summarizes the mechanism’s results including: (i) the data 
frequency of the connected recognized device’s transmitted 
data, in terms of how many measurements were gathered per 
day, (ii) the percentage of the data availability of this device 
(i.e. Availability), considering the data availability of the 
aforementioned fully available device, (iii) the percentage of 
the data reliability (i.e. ICC) that resulted from the collected 
data, and (iv) the percentage of the overall reliability 
calculated based on the results of the device’s availability and 
its data reliability, applying the equation (2) of Section III. 

TABLE III. POLAR A370 RELIABILITY MEASUREMENTS 

Day 
Data 

Frequency 
Data Source 
Availability 

(%) 

Data 
Reliability 

(%) 

Overall 
Reliability 

(%) 
1st   230 79,8 93,8 86,8 
2nd    240 83,3 92,6 87,9 
3rd   242 84,0 91,2 87,6 
4th   240 83,3 92,2 87,7 
5th   241 83,6 89,2 86,4 
6th   238 82,6 91,5 87,0 
7th   231 80,2 90,0 85,1 
8th   230 79,8 92,6 86,2 
9th   240 83,3 90,2 86,7 
10th   232 80,5 91,1 85,8 
11th   230 79,8 90,3 85,0 
12th   240 83,3 90,2 86,7 
13th   242 84,0 91,2 87,6 
14th   242 84,0 90,2 87,1 
15th   242 84,0 92,3 88,1 
16th   230 79,8 93,5 86,6 
17th   240 83,3 90,7 87,0 
18th   241 83,6 91,6 87,6 
19th   240 83,3 92,6 87,9 
20th   231 80,2 95,5 87,8 
21st  242 84,0 92,6 88,3 
22nd   230 79,8 93,8 86,8 
23rd  230 79,8 92,3 86,0 
24th   245 85,0 93,7 89,3 
25th   240 83,3 91,4 87,3 
26th   231 80,2 90,2 85,2 
27th   231 80,2 89,5 84,8 
28th   230 79,8 92,4 86,1 
29th   231 80,2 93,3 86,7 
30th   240 83,3 93,7 88,5 
 

As stated in Section III, in order to consider the final 
results (i.e. Overall Reliability) of the connected device’s data 
as trustful and reliable, and thus keep it for further utilization, 
these must exceed the set threshold of 90,0%. However, based 
upon the results of Table III, it can be observed that most of 
the data that was collected everyday did not exceed this 
threshold for a little percentage, whereas there were some days 
that the device’s reliability was satisfying the set threshold. As 
a result, even if the threshold was not reached due to a small 
degree of difference, the Polar A370 would not be considered 
as a device of high levels of reliability, and its data would not 
be kept in the mechanism. Therefore, this device’s data were 
totally erased by the mechanism. 

 

Fig. 5, Fig. 6, and Fig. 7 visualize the results of Table III, 
depicting the percentages of overall availability, overall data 
reliability, and overall reliability, correspondingly, for each 
one of the 30 days of the experiment upon the Polar A370 
device. 

 

Fig. 5. Overall Polar A370 availability results 

 

Fig. 6. Overall Polar A370 data reliability results 

 

Fig. 7. Overall Polar A370 overall reliability results 

______________________________________________________PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 216 ----------------------------------------------------------------------------



D. Discussion Of Results 
Concerning the final results of the 1st experiment (i.e. using 

the Fitbit Aria device), it can be argued that the mechanism 
can easily identify the reliability levels of a known device as it 
is already known that it is a reliable device, since the 
mechanism has already recognized it as a reliable device. 
However, the key innovation of the mechanism lies in the fact 
that it can easily assess the reliability levels of connected 
unknown devices, concluding that they can be either reliable 
or unreliable devices. This fact can be verified by the 2nd 
experiment (i.e. using the Misfit Path device) and the 3rd 

experiment (i.e. using the Polar A370 device). More 
particularly, through the 2nd experiment, the mechanism 
successfully evaluated the reliability levels of the connected 
unknown device, recognizing that it was a reliable device, 
thereby collecting and maintaining its data for reuse. However, 
through the 3rd experiment, even though the collected data of 
the connected device was found to have a very high degree of 
reliability, the availability of the device itself was not very 
high. As a result, the overall reliability of the device was 
affected, making it an inadequate device for the mechanism. 
Irrespectively of the final result, in all the experiments the 
reliability assessment was successful, as shown in the results 
of Tables II and III, where the mechanism in all the cases 
successfully calculated the overall reliability percentages of 
the connected devices. In deeper detail, based on the results 
that were recorded over the 30 days of the experiments, Table 
IV depicts the average (i) of the data transmission frequency 
values from the connected unknown devices to the 
mechanism, (ii) the rate of availability of the data, (iii) the 
percentage of data reliability derived from the collected data 
from those devices, and (iv) the percentage of the overall 
reliability calculated based on the results of the device 
availability and the reliability of the data. 

TABLE IV. RESULTS OF MEASURED OVERALL RELIABILITIES 

Mean 
Data 

Frequency 

Mean 
Data Source 
Availability 

(%) 

Mean 
Data 

Reliability 
(%) 

Mean 
Overall 

Reliability 
(%) 

2nd Experiment [Misfit Path] 
279 97,0 93,2 95,2 

3rd Experiment [Polar A370] 
236 82,0 91,8 86,9 

 

More specifically, for the 2nd experiment, based on the 
results of Table IV, it is observed that during the 30 days of 
the experiment, the average availability of the Misfit Path 
device was 97,0%, with more than half a day reaching almost 
the percentage of 98,0%. This proved that the Misfit Path 
device was almost always available, sending all of its data to 
the mechanism. The latter can be verified by the frequency of 
data that was sent by the device, where the average data rate 
was 279 measurements per day, reaching almost 100,0% of the 
perfect sending frequency of 288 measurements. In addition, 
based on the percentage of corresponding reliability of data 
retrieved daily from the device, it is observed that there were 
some days when the calculated percentage of reliability of the 
device data was not very high (~ 89,0%), indicating that the 

data that was collected contained some incorrect values. On 
the contrary, some other days the device produced quite 
reliable results, since the reliability of the collected data was 
extremely high (~ 96,0%). However, since the overall 
reliability was calculated based on both the availability of the 
Misfit Path device and the reliability of its collected data, it 
can be seen that the average reliability of the device is above 
the set threshold of 90,0%. More concretely, it has an average 
overall reliability of 95,2% (Table IV), which indicates that 
Misfit Path was a device with high levels of reliability. 

Regarding the 3rd experiment, based on the results of Table 
IV, it is observed that during the 30 days of the experiment, 
the average availability of the Polar A370 was 82,0%, with no 
day availability exceeding the set threshold of 90,0%. This 
proved that this device was not always available, thus not 
sending to the mechanism all of its collected data, as the 
average frequency of its sent data was 236 measurements, a 
number far below the 100,0% of the perfect sending frequency 
of the 288 measurements. As a result, given the perfect 
conditions that the Polar A370 should send 288 measurements, 
and since in the current experiment it sent on average only 236 
measurements per day for a total period of 30 days, this 
indicates that many measurements were not sent to the 
mechanism due to the fact that the device was not available. 
However, even if the daily measurements were less than 
expected, the estimated reliability of these measurements was 
extremely high, exceeding the percentage of 90,0%. Therefore, 
it can be observed that all the data that was collected by the 
Polar A370 device was extremely reliable, with an average 
reliability of 91,8% (Table IV). However, since the overall 
reliability was calculated based on both the availability of the 
Polar A370 device and the reliability of its daily collected 
data, it can be seen that even if the collected data was very 
reliable, the availability of the device was not as high as 
expected. This fact indicated that several measurements were 
lost, due to the fact that even if the measurements were 
recorded by the device, they were never sent to the 
mechanism. Thus, the overall reliability was not as high as 
expected, as it did not exceed the set threshold of the 90,0%, 
having as an average overall reliability 86,9% (Table IV). This 
suggests that the Polar A370 was not a device of high 
reliability. However, one could assume that since the data that 
was collected was fairly reliable, the portion of data that was 
not sent, due to the lack of device availability, would also be 
sufficiently reliable. This would lead to a higher overall 
reliability, indicating that Polar A370 would be a device of 
high reliability. However, since the mechanism is the one that 
ultimately decides the final results based on its outputs, and 
since this hypothesis could not be verified by it, the 
mechanism correctly predicted based on the available data that 
the Polar A370 was not a reliable device. 

Based on all the aforementioned, it becomes clear that 
based on the collected data, the current mechanism provided 
quite reliable results, as all the outputs were also calculated 
manually and compared with the above results, verifying this 
fact. In particular, both the availability of the connected 
devices (i.e. Misfit Path and Polar A370), as well as the 
reliability of their collected data, and as a result the overall 
reliability of these devices, were manually calculated on a 
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daily basis for 30 days, so as to compare these results with the 
results of the proposed mechanism. This was the main reason 
why the same number of days was chosen for the evaluation of 
the mechanism, in order to perform an objective comparison 
of the results. More particularly, with regards to the manual 
results, these are assumed to be of high precision, regarded as 
reference points, as these indicate the results that the proposed 
mechanism should produce (ideally) based on its overall 
application. Table V depicts the results of the manual 
calculation (i.e. manual results), compared with the results of 
the proposed mechanism (i.e. automatic results). 

TABLE V. MANUAL AND AUTOMATIC OVERALL RELIABILITY RESULTS 

Mean 
Data 

Frequency 

Mean 
Data Source 
Availability 

(%) 

Mean 
Data 

Reliability 
(%) 

Mean 
Overall 

Reliability 
(%) 

Manual results 
2nd Experiment [Misfit Path] 

280 97,2 93,2 95,2 
3rd Experiment [Polar A370] 

288 100,0 97,0 97,5 
Automatic results 

2nd Experiment [Misfit Path] 
279 97,0 93,2 95,2 

3rd Experiment [Polar A370] 
236 82,0 91,8 86,9 

 

In more detail, Table V shows the manually recorded 
reliability results of the 2nd and the 3rd experiments (i.e. the 
Misfit Path and the Polar A370) in combination with the 
corresponding automatic results of the proposed mechanism.  

As for the Misfit Path, as shown in Table V, the manually 
calculated availability rate (97,2%) shows a minimal 
difference of 0,2% with the corresponding automatic rate of 
the mechanism (97,0%), thus not affecting the overall 
reliability of the Misfit Path device at all. This difference in 
the 0,2 degrees of percentage is due to the fact that the 
mechanism mistakenly rejected a measurement that should not 
have been rejected, thus affecting the total number of the 
recorded measurements. In addition, in terms of data reliability 
rates, as the mechanism used the SPSS tool for their 
calculation, and the same tool was used in the manual results, 
the calculated results were identical. Thus, as the calculation 
of the overall reliability depended on all of the aforementioned 
measurements, the manually calculated final values were not 
differentiated, as illustrated in Table V, since the Misfit Path 
device’s overall reliability results were the same (95,2%).  

As for the Polar A370, as shown in Table V, the manually 
calculated availability rate (100,0%) has a large difference rate 
(18,0%) with the corresponding availability rate calculated by 
the mechanism (82,0%). Therefore, due to this wide 
divergence, the overall reliability of the Polar A370 is 
affected, as in the first case (manual results) the Polar A370 is 
considered to have high reliability, while in the second case 
(automatic results) it is considered to be a device with low 
levels of reliability. This is because the mechanism was not 
able to connect to the device many times, even though it was 
always available, thus affecting the total number of 
measurements collected from it. On the contrary, in the 

manual results it was observed that the device had collected 
and sent to the mechanism all the measurements that it was 
expected to collect (i.e. 288 measurements), thus providing 
100,0% availability. In addition, regarding the reliability of the 
data, it is observed that the manual results (97,0%) and the 
automatic results of the mechanism (91,8%) differ. However, 
this is reasonable, since 288 measurements were collected 
from the device during the manual results, while 236 
measurements were collected from the same device during the 
automatic results. As a result, the reliability of the data for 
each case was calculated on the basis of the different number 
of measurements collected, yielding the expected results in 
both cases. Therefore, since the calculation of the overall 
reliability depends on all the above measurements, the manual 
results show that the Polar A370 is considered as a high 
reliability device, producing a very high overall reliability 
percentage (97,5%), well above the set threshold of 90,0%. On 
the contrary, in the automatic results, due to the limited 
availability of the device, the mechanism had concluded that 
the device was of low reliability. Therefore, additional 
experiments should be carried out in order to obtain a broader 
and more comprehensive view of calculating the overall 
reliability of the devices, by applying different degrees of 
weights between the availability and the data reliability. 
However, based on all the outputs, it can be concluded that 
through the provided mechanism it is effective to decide 
whether a connected device is considered reliable or not, by 
combining (i) the results of its availability and the number of 
the collected measurements, and (ii) the corresponding 
reliability of the collected data.  

On the basis of all the aforementioned results, it is observed 
that the proposed mechanism has produced quite accurate and 
reliable results, validating its purpose for estimating the 
reliability levels of both known and unknow IoT medical data 
sources, and thus keeping only the reliable data that comes 
from only reliable data sources. Based on the three (3) 
different experiments that were analyzed in this Section, it has 
been demonstrated that the mechanism is capable of operating 
equally efficiently and effectively in the three (3) different 
possible scenarios of an incoming data source. Therefore, the 
mechanism is able to easily and automatically identify the 
reliability of: (i) a known data source, proving that if the type 
of the data source is known in advance, it can very easily 
estimate its reliability levels, (ii) an unknown data source, 
proving that although the type of the data source is not known 
in advance, it can easily estimate its reliability levels, and 
finally collect its data if it considers it to be a reliable data 
source, and (iii) an unknown data source, proving that 
although the type of the data source is not known in advance, 
it can easily assess its reliability levels, but do not collect its 
data if it considers it as an unreliable data source. 

V. Conclusions 
In this paper, a mechanism was proposed for capturing the 

reliability of heterogeneous IoT medical data sources of both 
known and unknown nature. Shortly, through this mechanism 
a 3-stepped approach was implemented for coping with this 
challenge. Initially, the calculation of the data sources’ 
availability occurred, followed by the reliability calculation of 
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the produced data of the corresponding data sources. Finally, 
the combination of the results of the two (2) aforementioned 
stages occurred, so as to calculate the overall reliability levels 
of each available data source, calculating whether each one of 
these would be considered as reliable or not, and its retrieved 
data would be kept for further analysis. This mechanism was 
evaluated through a specific experiment, concluding that it 
was sufficient enough for assessing data sources’ reliability. 

A key aim of our future work is to improve the current 
mechanism so as to be able to calculate the overall reliability 
of a data source by following a more global approach, taking 
into account not only its availability and the reliability of its 
input, but also the reliability of its output. In particular, data 
reliability will be purified so as to determine the quality of the 
data, in order to identify any errors related to compliance with 
specific constraints, ensuring that the collected data comply 
with certain predefined rules or constraints (e.g. compliance 
with specific types of data, compliance with values’ 
representation, etc.), thus eliminating the corresponding errors 
by applying corrective actions to the detected incorrect data. 
By combining the results of these operations with the 
corresponding results of the reliability of this data and their 
data sources’ availability, the overall reliability of the data 
sources will be predicted in a maximum degree. Moreover, an 
update of the mechanism relies on the way in which the 
reliability procedure concludes to the final results, by 
dynamically adjusting the value of the set threshold. In more 
detail, in each scenario where the mechanism is implemented, 
the overall slope of the data source reliability measurements 
(e.g. exponential, linear, etc.) will be recorded to dynamically 
adjust the set threshold according to each different scenario. 
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