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Abstract—The scientific problem of constructing the optimal 
spatial trajectory of the gripper relative to the fixed base of the 
manipulator strut is considered taking into account the obstacle 
bypass. A new hybrid ABI method has been developed for 
constructing the optimal trajectory of the manipulator's grip 
taking into account obstacle avoidance. The ABI hybrid method 
has six main steps. The method combines a finite element mesh 
approach, a graph model construction method, A * method for 
finding the minimum path for a graph, a B-spline interpolation 
method, polynomial approximation, and a matrix method. The 
practical construction of the optimal trajectory of the grip of the 
manipulator is taking into account the avoidance of obstacles. A 
theorem is presented that determines the relationship between 
the length of time the manipulator grip moves in equally 
accelerated and equally slow sections. The theorem is used for the 
subsequent optimization of the manipulator travel time in 
sections. 

I. INTRODUCTION 

Consider the task of constructing an optimal spatial 
trajectory of the movement of the grip relative to the fixed base 
of the arm of the manipulator, taking into account the 
circumvention of the obstacle. 

The problem of determining the optimal path of the 
manipulator grip when bypassing the obstacle is solved. It is 
assumed that the movement of the manipulator grip can be 
divided into three sections: equidistant, uniform at a constant 
speed and equidistant. We believe at the beginning of time the 
capture is at rest. The total time to move the grip to the 
endpoint depends on the acceleration time to the operating 
speed, the time to move at a constant operating speed, and the 
stopping time. The limited operating speed of the manipulator 
is determined by the technical parameters of the manipulator 
and is assumed to be maximumly permissible. We assume that 
the main passage time of the manipulator is the time of uniform 
movement at a constant operating speed. Minimize the total 
length of the manipulator grip path and determine the fastest 
path - the optimal trajectory along which the manipulator grip 
moves at the maximum operating speed. The path is defined in 
the manipulator work area and it is assumed that the 
manipulator can perform any path in the work area. In the work 
area, there is an obstacle object which bypasses the manipulator 
grip to avoid the collision. The path of the manipulator seizure 
obstacle is constructed on the Stage assuming that the 
manipulator can perform any movement on the Stage. 

It is assumed that the operating movement of the 
manipulator grip on the main section takes place at a constant 
speed and the obstacle bypass takes place on an even section of 
the grip motion. The assumption of uniform capture speed is 
necessary, for example, when the manipulator moves objects 
containing liquid fluid. Smoothing of movement path is 
necessary to satisfy uniform movement of manipulator grip at 
constant operating speed and to ensure continuity and smooth 
movement of grip. 

Considering that the operating speed of the manipulator grip 
on the main uniform section of the movement is constant, the 
optimization of the trajectory leads to the reduction of time of 
the manipulator operating stroke. 

II. RELATED WORKS

Many scientific papers are devoted to the methods of 
constructing trajectories for manipulators. 

In works [1-11] methods of construction of manipulators 
movement paths are investigated. 

In the study [1], higher-order inverse kinematics methods 
were proposed with time-optimal planning of the motion path 
for kinematically redundant manipulators. Kinematic 
redundancy is allowed and used in trajectory planning when 
solving higher-order inverse kinematics. Optimization results 
confirmed experimentally. 

In [2], a nonlinear dynamic optimization method is 
presented for planning the trajectory of the spatial parallel 
Stuart-Hoff manipulator. The planning method consists of 
minimizing the power consumption of the actuator of the 
manipulator and minimizing the error when positioning the grip 
of the manipulator. A numerical solution procedure based on 
the finite element method is applied. 

The study [3] presented a new approach for time-optimal 
planning of the trajectory of the redundant manipulator in 
three-dimensional workspaces. The proposed approach 
generates a trajectory for gripping the manipulator, taking into 
account both the kinematic limitations of the manipulator and 
the presence of obstacles. The task of optimizing the trajectory 
in time is solved using the genetic algorithm with multiple 
populations. 
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In [4], an optimal method for joint trajectory planning using 
the equations of direct kinematics of a freely floating space 
robot is presented. Bezier curves are used to describe joint 
paths. The differential evolution algorithm with the premature 
processing strategy is applied to find the optimal solution. 

In [5], methods were proposed for solving the applied 
problem of planning a time-optimal path to prevent collisions 
of grinding manipulators. A method for planning a time-
optimal trajectory between any two points is proposed based on 
the trajectory estimation mechanism using an annealing 
simulation algorithm. The annealing simulation algorithm 
generates new solutions based on the combined stochastic 
perturbation method. 

The article [6] presents the methodology of synthetic 
optimal planning of the trajectory of robotic manipulators. The 
path is interpolated using a fifth-order B-spline and then 
optimized using a genetic algorithm. The fifth-order B-splines 
interpolation method allows you to limit the path in the 
kinematic limits of speed, acceleration, and jerk while 
satisfying jerk continuity. 

In [7], the problem of designing partially balanced plane-
symmetric parallel manipulators using optimal motion planning 
was considered. To solve the problem of balancing forces, 
redistribution of moving masses is applied, which reduces the 
variable dynamic loads for the manipulator. Balancing is 
accompanied by an increase in the mass of moving links, which 
negatively affects the torques. The study develops a balancing 
method without adding additional masses, based on minimizing 
the dynamic loads of the mechanical system of the manipulator 
by reducing the acceleration of its centre of mass. 

In the article [8], a new trajectory planning algorithm is 
presented, based on switching the search strategy depending on 
the context for manipulators working in limited workspaces. 
The presented algorithm monitors the progress of the search 
and uses different search strategies in different parts of the 
search space. This allows you to solve the problems of 
planning the trajectory of the manipulator for very limited 
workspaces. 

The article [9] considers the planning of the trajectory of an 
underwater excess manipulator in the presence of obstacles 
taking into account hydrodynamic effects. Trajectory planning 
is based on minimizing the energy needed to overcome 
hydrodynamic effects. The proposed method is used to plan the 
movement of a manipulator with three degrees of freedom, 
avoiding a point obstacle. 

In the study [10], a trajectory planning algorithm was 
proposed for a manipulator with six degrees of freedom. The 
polynomial trajectory planning algorithm provides continuous 
angular acceleration and stable engine operation. Trajectory 
planning is carried out in Cartesian space using the spatial arc 
interpolation algorithm. 

In [11], radial basis functions are used to create smooth 
trajectories of manipulator robots. Gaussian interpolation by 
radial basis functions is introduced taking into account the 
boundary conditions. The proposed approach is compared with 

classical trajectory planning methods based on polynomial and 
trigonometric models. 

In the above works [1-11] various methods of planning the 
path of manipulators movement are presented under the 
corresponding assumptions and limitations. In the presented 
hybrid method, in the sixth step, the B-spline interpolation is 
applied similarly to operation [6] to improve the trajectory 
quality and compared with the interpolation of the Bezier 
curves [4]. Unlike the above-mentioned works, the hybrid 
method uses a whole set of methods and approaches to 
determine the optimal trajectory. 

Let us introduce a new hybrid ABI method (Algorithm A * 
and B-spline Interpolation) for constructing the optimal 
trajectory of the manipulator's grip taking into account obstacle 
avoidance. The ABI hybrid method has six main steps. The 
method combines a finite element approach for constructing a 
mesh model taking into account an obstacle object, a graph 
model construction method, A * method for finding the 
minimum path for a graph, B-spline interpolation method, 
polynomial approximation, and matrix method. 

III. HYBRID METHOD ABI CONSTRUCTION OF TRAJECTORIES

GRABBED CONCERNING OBSTACLE AVOIDANCE

Consider the ABI hybrid method for constructing an 
optimal manipulator grip trajectory taking into account 
obstacle avoidance. 

Define the main stages of the hybrid ABI method. 

The method uses the finite element mesh approach, the 
method of constructing a graph model, method A * of finding 
the minimum path for the graph, and the B-spline interpolation 
method. 

At the first stage, we perform the triangulation of the grip 
area of the manipulator and construct a spatial grid model with 
elements in the form of a tetrahedron. In the mesh model, 
exclude the nodes that are located inside the obstacle object. 

The Fig. 1 shows a spatial grid model in which an obstacle 
to walk around is represented by a cube. 

For a manipulator spatial workspace that also contains an 
obstacle object or multiple obstacles, a uniform mesh model is 
constructed with the same finite-element geometric primitives 
in the form of a tetrahedron. We exclude the area with the 
obstacle object from the grid model. Reducing the pitch of a 
uniform grid increases the accuracy of the trajectory, the 
number of nodes, and also significantly increases the 
computational cost of calculating the model. 

A cube is considered as an example of an obstacle object. 
The geometric shape of the obstacle object is not limited to the 
cube in question and may be of arbitrary shape. 

In the second stage, we will build a three-dimensional graph 
model based on the grid model Fig. 2. 

In the third stage, we apply the A * method for determining 
the shortest path in a graph model. 
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Fig. 3 shows the spatial trajectories constructed by the 
Dijkstra's algorithm (dashed line), Bellman-Ford algorithm, 
and the A * algorithm (black line). Algorithm A * uses a 
heuristic function - the Euclidean distance between nodes in 
three-dimensional space. 

Fig. 1. Spatial mesh model with obstruction 

Fig. 2. 3D graph model 

Dijkstra's algorithm works correctly only for graphs without 
edges with negative weight. The total running time of the 
algorithm is O(n^2+m) where n - is the number of vertices, m - 
is the number of edges. 

The Bellman-Ford algorithm works correctly for graphs with 
negative edge weight. 

Fig. 3. Spatial trajectories of obstacle avoidance 

The A * algorithm was developed in 1968 by P. E. Hart, N. J. 
Nilsson, B. Raphael based on Dijkstra's algorithm to increase 
productivity using a heuristic approach. As a heuristic function, 
we take the Euclidean distance between nodes in three-
dimensional space. Algorithm A * step-by-step looks through 
all the paths from the start node to the end, until it finds the 
minimum one. 

Note that applying different methods of finding the shortest 
path in the graph model represents different paths and total 
path length in connection with selecting a tetrahedron grid 
model with non-equal faces as the finite-element. 

Table I shows the vertices, and total path length for 
trajectories constructed by the Dijkstra, Bellman-Ford 
algorithm, and the A * algorithm. 

TABLE I. VERTICES, COORDINATES, AND TOTAL PATH LENGTH 

ALGORITHM VERTICES OF THE 
GRAPH 

TOTAL PATH 
LENGTH 

Dijkstra {1, 140, 131, 94, 39, 206, 
99, 46, 7} 

13.695 

Bellman - Ford {1, 162, 130, 94, 134, 205, 
25, 46, 7} 

13.496 

A* {1, 140, 131, 94, 39, 206, 
99, 145, 7} 

13.295 

Table I shows that for all three methods, the shortest path 
contains the same number of vertices. 

Table I shows that the A * algorithm reduces the total path 
length by 0.4 compared to the Dijkstra algorithm and by 0.2 
compared to the Bellman-Ford algorithm. 

Fig. 4 shows the broken path of an obstacle bypass with a 
grip of a manipulator, constructed by means of algorithm A *.  
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Fig. 4. Spatial broken path of obstacle avoidance. 

For the considered problem of determining the optimal 
trajectory of the grip of the manipulator, the use of the 
algorithm A * reduces the total length of the grip path and, 
therefore, the travel time of the path. 

At the fourth stage, for the broken path, we apply 
interpolation with third and fourth-order B-splines. 
Schoenberg introduced the concept of B-spline as an 
abbreviation for the base spline. B-spline interpolation differs 
from conventional spline interpolation in the definition of an 
auxiliary function for spline coefficients. When interpolating 
with B-splines, stitching is performed not at nodes, but control 
points. For an arbitrary curve, interpolation by cubic 
polynomials provides conjugation at the boundary points of 
the segments. Interpolation with B-splines guarantees the 
equality of the first and second derivatives when joining 
segments. 

When interpolating polynomials of the order above the 
third, undulations appear. The interpolation by B-splines is 
characterized by a mismatch between the curve and the 
approximated points. If the number of nodes matches the 
degree of a spline, then the B-spline becomes a Bezier curve. 
Bezier curves were proposed in 1962 by Pierre Bezier of 
Renault for the design of car bodies. The Bezier curve is a 
special case of Bernstein polynomials. In the Bezier method, 
approximation by Bernstein polynomials is used. Bernstein's 
basis is a special case for basic B-spline functions. 

Approximation by B-splines provides a more accurate 
approximation than approximation by Bernstein polynomials. 
For the Bezier method, the coordinates of each point of the 
curve are affected by all the vertices of the broken Bezier. To 
increase the order of the Bezier curve, it is necessary to 
increase the number of vertices of the broken Bezier. 

To ensure that after the B-spline interpolation, the resulting 
trajectory does not enter the obstacle object, control points are 
selected during spline cross-linking, which are behind the 
obstacle by a given controlled distance.  

Fig. 5 shows the interpolation for a broken path (grey line) 
of the gripper of the manipulator with B-splines of the third 
and fourth degrees (black line). 

Fig. 5. Interpolations for the motion path of B-splines. 

Fig. 6 shows the optimal spatial trajectory of the grip of the 
manipulator when avoiding an obstacle, constructed using B-
spline interpolation. 

Fig. 6. Optimal spatial path of obstacle avoidance.

The length of the obstacle avoidance path constructed by 
interpolation by fourth-degree B-splines is 11.98. 

In the fifth step, we apply the quadratic approximation of 
the trajectory constructed by interpolation with B-splines. 

The approximation of the trajectory of avoiding the obstacle 
by polynomials of the second order is performed taking into 
account the boundary conditions, the exact coincidence of the 
starting and ending points of the trajectory. The parametric 
equations for the optimal trajectory of the grip of the 
manipulator of the form are defined: 

ሻݐሺݔܲ ൌ ݐ12.397 െ   ଶݐ6.397
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ሻݐሺݕܲ ൌ ݐ1.145 ൅ 	ଶݐ4.855

ሻݐሺݖܲ ൌ ݐ7.892 െ   	ଶݐ1.892

Fig. 7 shows the spatial trajectory of the grip of the 
manipulator when avoiding an obstacle, constructed according 
to the equations for ܲݔሺݐሻ, ,ሻݐሺݕܲ  .ሻݐሺݖܲ

Fig. 7. The spatial trajectory of evading obstacles. 

The length of the obstacle avoidance trajectory, constructed 
according to the equations, is 11.358. 

The approximation of the trajectory by a polynomial of the 
second degree satisfies the equally variable motion of the grip 
of the manipulator. In this case, the manipulator's grip 
movement consists of three parts: uniformly accelerated, 
uniform and equally slow motion. 

In the section of the uniformly accelerated movement, the 
grip of the manipulator is accelerated with constant positive 
acceleration from the initial state of the rest of the 
manipulator. 

In the area of uniform motion, the grip of the manipulator 
moves at a constant working speed without acceleration. 

In the area of equally slow motion, the manipulator grip is 
moved to the endpoint of the trajectory with constant negative 
acceleration. At the endpoint of the trajectory, the grip speed 
of the manipulator is zero. 

For uniformly accelerated motion, the expressions for the 
velocities V, accelerations a, and the distance travelled S are 
valid: 

௫ܸ ൌ ௫ܸ଴ ൅ ܽ௫ݐ,	 ௬ܸ ൌ уܸ଴ ൅ ܽуݐ, ௭ܸ ൌ ௭ܸ଴ ൅ ܽ௭ݐ, 

ܽ ൌ ,ݐݏ݊݋ܿ ܽ௫ ൐ 0, ܽ௬ ൐ 0, ܽ௭ ൐ 0, ܸ ൌ ඥ ௫ܸ
ଶ ൅ ௬ܸ

ଶ ൅ ௭ܸ
ଶ, 

ܽ ൌ ඥܽ௫ଶ ൅ ܽ௬ଶ ൅ ܽ௭ଶ, 

ܵ௫ ൌ ௫ܸ଴ݐ ൅
௔ೣ
ଶ
ଶ, ܵ௬ݐ ൌ ௬ܸ଴ݐ ൅

௔೤
ଶ
ଶ, ܵ௭ݐ ൌ ௭ܸ଴ݐ ൅

௔೥
ଶ
 ,ଶݐ

For uniform motion, the expressions for the velocities V, 
accelerations a and the distance travelled S are valid: 

ܸ ൌ ,ݐݏ݊݋ܿ ܽ ൌ 0, ܸ ൌ ඥ ௫ܸ
ଶ ൅ ௬ܸ

ଶ ൅ ௭ܸ
ଶ,  

ܵ௫ ൌ ௫ܸ଴ݐ, ܵ௬ ൌ ௬ܸ଴ݐ, ܵ௭ ൌ ௭ܸ଴ݐ, 

For equally slow motion, the expressions for the velocities 
V, accelerations a, and the distance travelled S are valid: 

௫ܸ ൌ ௫ܸ଴ െ ܽ௫ݐ,	 ௬ܸ ൌ уܸ଴ െ ܽуݐ, ௭ܸ ൌ ௭ܸ଴ െ ܽ௭ݐ, 

ܽ ൌ ,ݐݏ݊݋ܿ ܽ௫ ൐ 0, ܽ௬ ൐ 0, ܽ௭ ൐ 0, ܸ ൌ ඥ ௫ܸ
ଶ ൅ ௬ܸ

ଶ ൅ ௭ܸ
ଶ, 

ܽ ൌ ඥܽ௫ଶ ൅ ܽ௬ଶ ൅ ܽ௭ଶ, 

ܵ௫ ൌ ௫ܸ଴ݐ െ
௔ೣ
ଶ
ଶ, ܵ௬ݐ ൌ ௬ܸ଴ݐ െ

௔೤
ଶ
ଶ, ܵ௭ݐ ൌ ௭ܸ଴ݐ െ

௔೥
ଶ
 ,ଶݐ

Fig. 8 shows the dependence ௫ܸሺݐሻ	in the areas of 

uniformly accelerated, uniform and equally slow motion of 
the manipulator grip. 

Fig. 8. Sections of uniformly accelerated, uniform and equally slow motion of 
the manipulator grip. 

Imagine a theorem that defines the relationship between the 
length of time the manipulator grip moves in equally 
accelerated and equally slow sections. 

Theorem 1. When the manipulator moves with sections of 
uniformly accelerated, uniform and equally slow motion of the 
grip, the travel time of the equally accelerated and equally 
slow section of the path is directly proportional with a 
proportionality coefficient equal to the modulus of the ratio of 
total accelerations in these sections 

Proof of the theorem. 

Let us denote the transit time of the first uniformly 
accelerated section for ݐଵ, the second uniform section for ݐଶ, 
and the third equally slowed section for ݐଵ. 

Proportionality required to be proved ݐଵ ൌ ଷݐ ቚ
௔య
௔భ
ቚ 

Here ܽଵ and ܽଷ	are constant accelerations on an equally 
accelerated and equally slow section of the path. 

Determine the full path by completing the addition of three 
sections. 

ܵ௫ ൌ
௔ೣభ
ଶ
ଵଶݐ ൅ ௫ܸଶݐଶ ൅ ௫ܸଶݐଷ െ

௔ೣయ
ଶ
  ଷଶݐ

ܵ௬ ൌ
௔೤భ
ଶ
ଵଶݐ ൅ ௬ܸଶݐଶ ൅ ௬ܸଶݐଷ െ

௔೤య
ଶ
  ଷଶݐ

ܵ௫ ൌ
௔೥భ
ଶ
ଵଶݐ ൅ ௭ܸଶݐଶ ൅ ௭ܸଶݐଷ െ

௔೥య
ଶ
  ଷଶݐ

Fig. 9 shows that the full path is equal to the area of the 
trapezoid. 

Define the area of the trapezoid: 

ܵ௫ ൌ
ଵ

ଶ
ሺݐଵ ൅ ଶݐ2 ൅ ଷሻݐ ௫ܸଶ, 
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ܵ௬ ൌ
ଵ

ଶ
ሺݐଵ ൅ ଶݐ2 ൅ ଷሻݐ ௬ܸଶ, 

ܵ௭ ൌ
ଵ

ଶ
ሺݐଵ ൅ ଶݐ2 ൅ ଷሻݐ ௭ܸଶ, 

For the projection of speed on the second uniform section 
of motion, we write the equalities: 

௫ܸଶ ൌ ܽ௫ଵݐଵ , ௬ܸଶ ൌ ܽ௬ଵݐଵ , ௭ܸଶ ൌ ܽ௭ଵݐଵ 

Given the equalities, we equate the path to the areas of the 
trapezoid, we obtain a system of square algebraic equations: 

ଵ

ଶ
ܽ௫ଵݐଵଶ ൅ ܽ௫ଵݐଵݐଶ ൅ ܽ௫ଵݐଵݐଷ െ

ଵ

ଶ
ܽ௫ଷݐଷ

ଶ ൌ

ଵ

ଶ
ሺݐଵ ൅ ଶݐ2 ൅   ,ଵݐଷሻܽ௫ଵݐ

ଵ

ଶ
ܽ௬ଵݐଵଶ ൅ ܽ௬ଵݐଵݐଶ ൅ ܽ௬ଵݐଵݐଷ െ

ଵ

ଶ
ܽ௬ଷݐଷଶ ൌ

ଵ

ଶ
ሺݐଵ ൅ ଶݐ2 ൅   ,ଵݐଷሻܽ௬ଵݐ

ଵ

ଶ
ܽ௭ଵݐଵଶ ൅ ܽ௭ଵݐଵݐଶ ൅ ܽ௭ଵݐଵݐଷ െ

ଵ

ଶ
ܽ௭ଷݐଷଶ ൌ

ଵ

ଶ
ሺݐଵ ൅ ଶݐ2 ൅   ,ଵݐଷሻܽ௭ଵݐ

Simplify the system 
ଵ

ଶ
ܽ௫ଵݐଵݐଷ െ

ଵ

ଶ
ܽ௫ଷݐଷଶ ൌ 0, 

ଵ

ଶ
ܽ௬ଵݐଵݐଷ െ

ଵ

ଶ
ܽ௬ଷݐଷଶ ൌ 0, 

ଵ

ଶ
ܽ௭ଵݐଵݐଷ െ

ଵ

ଶ
ܽ௭ଷݐଷଶ ൌ 0, 

Solving the system define 

ܽ௫ଵ ൌ
௧య
௧భ
ܽ௫ଷ , ܽ௬ଵ ൌ

௧య
௧భ
ܽ௬ଷ, ܽ௭ଵ ൌ

௧య
௧భ
ܽ௭ଷ 

Define the square of the full acceleration in the first section 

ܽଵଶ ൌ ܽ௫ଵଶ ൅ ܽ௬ଵଶ ൅ ܽ௭ଵଶ ൌ ቀ௧య
௧భ
ܽ௫ଷቁ

ଶ
൅ ቀ௧య

௧భ
ܽ௬ଷቁ

ଶ
൅

ቀ
௧య
௧భ
ܽ௭ଷቁ

ଶ
ൌ ቀ

௧య
௧భ
ቁ
ଶ
ሺܽ௫ଷଶ ൅ ܽ௬ଷଶ ൅ ܽ௭ଷଶ ሻ ൌ ቀ

௧య
௧భ
ቁ
ଶ
ܽଷଶ  .

From here we get ݐଵଶ ൌ ଷݐ
ଶ ቀ

௔య
௔భ
ቁ
ଶ

We take into account that time is a positive value. 

Accordingly, ݐଵ ൌ ଷݐ ቚ
௔య
௔భ
ቚ and the theorem proved. 

The theorem is used for the subsequent optimization of the 
manipulator travel time in sections. 

At the sixth stage, we apply the matrix method [12] to 
determine the spatial coordinate functions of the manipulator 
grip. 

We define the functions of generalized coordinates for a 
universal manipulator with six degrees of freedom, the 
kinematic diagram of which is shown in Fig. 9. In the 
manipulator diagram, there are five rotational kinematic pairs 
and one translational pair. 

Fig. 9. The kinematic diagram of the manipulator. 

The links of the industrial manipulator are modelled by 
rods, the joints are modelled by cylindrical joints and sliding 
joints. We assume that the friction in the joints is small and is 
not taken into account when deriving the robot model. 

Define the coordinate system of the robot links at points 
ܱଵ, ܱଶ, ܱଷ, ସܱ, ܱହ, ܱ଺. The absolute coordinate system is 
connected with the fixed base of the manipulator at a point ܱ଴. 

We take as the generalized coordinates of the manipulator 
with six degrees of freedom the angles of rotation of the links 
,ଵݍ ,ଶݍ ,ଷݍ ,ସݍ  ହ. Here we measureݍ and arm extension length	଺ݍ
angles in radians, lengths in centimetres. 

The matrix method determines the coordinates of the grip 
of the manipulator in the absolute coordinate system ܱ଴	as a 
function of the generalized coordinates of the manipulator: 

଺ݔ ൌ SinሾݍଵሿሺSinሾݍଶሿܽଷ ൅ Sinሾݍଶ ൅ ଷሿሺܽସݍ ൅ ܽହ ൅   ହሻሻݍ

଺ݕ ൌ െCosሾݍଵሿሺSinሾݍଶሿܽଷ ൅ Sinሾݍଶ ൅ ଷሿሺܽସݍ ൅ ܽହ ൅   ହሻሻݍ

଺ݖ ൌ ܽଵ ൅ ܽଶ ൅ Cosሾݍଶሿܽଷ ൅ Cosሾݍଶ ൅ ଷሿሺܽସݍ ൅ ܽହ ൅   ହሻݍ

To move the manipulator grip along an optimal trajectory, 
taking into account the obstacle bypass, we equate the 
coordinates of the manipulator grip to the equations for the 
optimal trajectory. 

We obtain a system of three equations for determining 
,ሻݐଵሺݍ ,ሻݐଶሺݍ  :ሻݐଷሺݍ

Sinሾݍଵሿ൫Sinሾݍଶሿܽଷ ൅ Sinሾݍଶ ൅ ଷሿሺܽସݍ ൅ ܽହ ൅ ହሻ൯ݍ ൌ  , ሻݐሺݔܲ

Cosሾݍଵሿ൫െSinሾݍଶሿܽଷ െ Sinሾݍଶ ൅ ଷሿሺܽସݍ ൅ ܽହ ൅ ହሻ൯ݍ ൌ  ሻݐሺݕܲ
, 

ܽଵ ൅ ܽଶ ൅ Cosሾݍଶሿܽଷ ൅ Cosሾݍଶ ൅ ଷሿሺܽସݍ ൅ ܽହ ൅ ହሻݍ ൌ   ሻݐሺݖܲ

 An analytical solution of the system of equations is 
obtained. 
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మ
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మା௉౮౯

మ ା௉౰౗
మ ൯ቇ

௔య
మ൫௉౮౯

మ ା௉౰౗
మ ൯

ሿ  

ሻݐଷሺݍ ൌ െArcTanሾ ଵ

௔య
మ௔ల൫௉౮౯

మ ା௉౰౗
మ ൯

మ ሺܽଷ
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ଶ െ ୸ܲୟ
ଶ ሻ ൅ ܽଷܽ଺ଶሺܽ଺ଶ െ

୶ܲ୷
ଶ െ ୸ܲୟ

ଶ ሻሺ ୶ܲ୷
ଶ െ ୸ܲୟ

ଶ ሻ െ ܽଷ
ଷሺ ୶ܲ୷

ଶ െ ୸ܲୟ
ଶ ሻሺ2ܽ଺ଶ ൅ ୶ܲ୷

ଶ ൅ ୸ܲୟ
ଶ ሻ ൅

2ሺܽଷଶ െ ܽ଺ଶሻ  

୸ܲୟටെܽଷ
ଶ
୶ܲ୷
ଶ ൬ܽଷ

ସ ൅ ൫െܽ଺
ଶ ൅ ୶ܲ୷

ଶ ൅ ୸ܲୟ
ଶ ൯

ଶ
െ 2ܽଷ

ଶ൫ܽ଺
ଶ ൅ ୶ܲ୷

ଶ ൅ ୸ܲୟ
ଶ ൯൰ሻሿ 

ܽ଺ ൌ ܽସ ൅ ܽହ ൅
௧మொఱ

௜ఱ
మ௠ఱା௜ల

మ௠ల
 , ୸ܲୟ ൌ ሻݐሺݖܲ െ ܽଵ െ ܽଶ,  

୶ܲ୷ ൌ ሻଶݐሺݔܲ ൅   ሻଶݐሺݕܲ

 Analytical solution for ݍସሺݐሻ, ,ሻݐହሺݍ  ሻ obtained fromݐ଺ሺݍ
the dynamic matrix equations of Lagrange [13-15]. 

ሻݐସሺݍ ൌ
௧మொర

௜ర
మ௠రା௜ఱ

మ௠ఱା௜ల
మ௠ల

, ሻݐହሺݍ ൌ
௧మொఱ

௜ఱ
మ௠ఱା௜ల

మ௠ల
, ሻݐ଺ሺݍ ൌ

௧మொల
௜ల
మ௠ల

.  

Here ܳ௞ are the generalized forces created by the link drives, 
݉௞  is the mass of the link, ݅௞ is the radius of inertia of the link. 

Thus, the functions of the generalized coordinates of the 
gripper of the manipulator are determined for the movement of 
the gripper along the optimal trajectory with bypassing the 
obstacle. 

The presented ABI hybrid method allows you to build the 
optimal trajectory of the manipulator when avoiding obstacles 
and to control the movement along the trajectory. 

IV. CONCLUSION 

In this paper, we consider the urgent task of constructing an 
optimal spatial trajectory of the grip movement relative to the 
fixed base of the manipulator strut, taking into account the 
obstacle bypass. 

As a result of the hybrid method, the optimal path of 
manipulator grip motion is obtained, which ensures continuity 
and smoothness of grip motion. Minimizing the length of the 
path while bypassing the obstacle reduces the operating stroke 
time of the manipulator. Unlike the works considered, the 
hybrid method is multi-step and combines finite-element grid 
model construction methods, graph shortest path determination 
methods, interpolation, approximation, and matrix methods. 
The combination of these methods allows solving the problem 
of determining the optimal trajectory when bypassing the 
obstacle by the manipulator capture in the assumption of 
uniform movement of the capture on the main working 
section. 

A theorem is presented that determines the relationship 
between the length of time the manipulator grip moves in 
equally accelerated and equally slow sections. The theorem is 
used for the subsequent optimization of the manipulator travel 
time in sections. 

 A new hybrid ABI method for constructing the optimal 
trajectory of the manipulator's grip taking into account obstacle 
avoidance is introduced. The ABI hybrid method has six main 
steps. The method combines a finite element mesh approach, a 
graph model construction method, A * method for finding the 
minimum path for a graph, a B-spline interpolation method, 
polynomial approximation, and a matrix method. The 
combination of grid, graph, interpolation and matrix methods 
allows you to completely solve the problem. 

REFERENCES 
[1] Reiter, A., Müller, A., & Gattringer, H. “On Higher Order Inverse 

Kinematics Methods in Time-Optimal Trajectory Planning for 
Kinematically Redundant Manipulators”, Transactions on Industrial 
Informatics, IEEE, vol. 14(4), 2018 pp. 1681-1690. 

[2] Beiki, M. R. E., & Irani-Rahaghi, M. “Optimal Trajectory Planning 
of a Six DOF Parallel Stewart Manipulator”, 6th RSI International 
Conference on Robotics and Mechatronics (IcRoM), IEEE, Oct. 
2018, pp. 120-125. 

[3] Xidias, E. K. “Time-optimal trajectory planning for hyper-redundant 
manipulators in 3D workspaces” Robotics and computer-integrated 
manufacturing, 50, 2018, pp. 286-298. 

[4] Wang, M., Luo, J., Fang, J., & Yuan, J. “Optimal trajectory planning 
of free-floating space manipulator using differential evolution 
algorithm”, Advances in Space Research, vol. 61(6), 2018, pp. 1525-
1536. 

[5] Diao, S., Chen, X., Wu, L., Zhong, Z., & Lin, Z. “Task-level time-
optimal collision avoidance trajectory planning for grinding 
manipulators”, Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering Science,  vol. 
233(8), 2019, pp. 2894-2908. 

[6] Huang, J., Hu, P., Wu, K., & Zeng, M. “Optimal time-jerk trajectory 
planning for industrial robots”, Mechanism and Machine Theory, vol. 
121, 2018, pp. 530-544. 

[7] Geng, J., & Arakelian, V. “Design of Partially Balanced Planar 5R 
Symmetrical Parallel Manipulators via an Optimal Motion Planning” 
In IFToMM World Congress on Mechanism and Machine Science. 
Springer, Cham, Jun. 2019 pp. 2211-2220 

[8] Kabir, A. M., Shah, B. C., & Gupta, S. K. “Trajectory planning for 
manipulators operating in confined workspaces” In 2018 IEEE 14th 
International Conference on Automation Science and Engineering 
(CASE), IEEE. Aug. 2018. pp. 84-91 

[9] Kumar, V., Sen, S., Shome, S. N., & Roy, S. S. “An Approach to 
Trajectory Planning for Underwater Redundant Manipulator 
Considering Hydrodynamic Effects” In Machines, Mechanism and 
Robotics. Springer, Singapore, 2019, pp. 377-388 

[10] Hu, J., Sun, Y., Li, G., Jiang, G., Kong, J., Xiong, H. & Jiang, D. 
“Trajectory planning algorithm and simulation of 6-DOF 
manipulator”, International Journal of Wireless and Mobile 
Computing, vol. 14(2), 2018, pp. 138-148. 

[11] Chettibi, T. “Smooth point-to-point trajectory planning for robot 
manipulators by using radial basis functions”. Robotica, vol. 37(3), 
2019, pp. 539-559. 

[12] E. I. Vorobyov, S. A. Popov, G. I. Sheveleva, Mechanics of industrial 
robots: in 3 books, Part 1: Kinematics and dynamics, M.: Higher. 
school, 1988, p. 304. 

[13] G. I. Melnikov, S. E. Ivanov, V. G. Melnikov, “The modified 
Poincare-Dulac method in analysis of autooscillations of nonlinear 
mechanical systems”, Journal of Physics: Conference Series, vol. 
570(2), IOP Publishing, 2014, p.022002. 

[14] T. V. Zudilova, S. E. Ivanov, L. N. Ivanova, “The automation of 
electromechanical lift for disabled people with control from a mobile 
device”, Computing Conference, IEEE, 2017, pp. 668-674. 

[15] G. I. Melnikov, N. A. Dudarenko, K. S. Malykh, L.N. Ivanova, V. G. 
Melnikov, “Mathematical models of nonlinear oscillations of 
mechanical systems with several degrees of freedom”, Nonlinear 
Dynamics and Systems Theory, vol. 17(4), 2017, pp. 369-375. 

 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 513 ----------------------------------------------------------------------------




