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Abstract—The problem of fast compressive sensed image
recovery via iterative thresholding algorithm is considered. At
each iteration of the algorithm, we propose to randomly select
high or low complex thresholding operator in order to provide a
good trade-off between the overall computational complexity and
the quality of the recovery. As an example, well-known Block-
matching and 3D filtering (BM3D) is used as a high complex
thresholding operator, while simple 2-D DCT based thresholding
is used as a low complex one. Experimental resuts show that
the resulting approach is around 5 times less complex than
the recovery based on BM3D only providing similar quality of
reconstruction.

I. INTRODUCTION

Compressive sensing [1], [2] is a framework which can
be used for development of new cheap image sensors which
observe a small number (e.g., 10-20%) of random linear mea-
surements instead of all image pixels. A linear reconstruction
by inverse transform, cannot, in general, recover the signal
from a small number of measurements. However, in [1], [2], it
was shown that if the signal is sparse in some known transform
domain, then a stable reconstruction is possible. However, a
high computational complexity of the reconstruction is still an
important issue restricting the use of the compressive sensing
applications in real-life.

In this paper we propose a fast recovery of compressive
sensed images via multiple thresholding operators which al-
lows to achieve a good trade-off between the overall compu-
tational complexity and the quality of the recovery. The rest
of the paper is organized as follows. In Section II, we shortly
describe the sensing model and recovery via iterative thresh-
olding. Then, we introduce the proposed approach and show
its efficiency via experimental results. Section III concludes
the paper.

We use the following notations. The column vectors and
matrices are denoted by boldfaced lowercase and uppercase
letters, respectively, e.g., v and A. The superscript (.)T denotes
the transpose operation for a vector or a matrix, (.)−1 is inverse
operation for matrix, vec(A) concatenates columns of A into a
vector, v̂ means estimation of a vector v, ← means assignment
operation, |.| denotes a number of elements in vector or matrix.

II. PROPOSED APPROACH

A. Sensing model and recovery via iterative thresholding

Let us consider a 2-D image X ∈ R
N×N of size N × N

pixels. Following the compressive sensing framework [1], [3],

the linear measurements are acquired as

y = Φx, (1)

where x =vec(X), Φ ∈ R
M×N2

, M < N2, denotes the

measurement matrix. The ratio
M

N2
is known as sensing rate.

We assume that the image has a sparse representation in
a known basis, i.e. x = Ω−1ϑ, where Ω is a N2 ×N2

representation matrix and ϑ is the sparse vector of the
transform coefficients. Under this assumption, the recovery
is formulated as searching for the sparsest vector ϑ which
satisfies y = ΦΩ−1ϑ. Herewith, the l1–norm can be used
as a sparsity metric. Following our previous work [4], we
reconstruct the image by solving the l1 minimization problem
using iterative soft thresholding (IST) [5], [6], [7]. An image

at iteration k is estimated as x̂k = soft
(

x̂k−1 +Δx̂k, σk

)
,

where Δxk = ΦT
(

y −Φx̂k−1
)

, the initial estimate x̂0
is

zero-vector or an image provided by another recovery method,
and the operator soft(x, σ) includes three main steps:

1) A sparsifying transform with matrix Ω is applied for
an image as ϑ = Ωx.

2) Soft thresholded transform coefficients ϑ̃ = {ϑ̃i} are
calculated as

ϑ̃i =

⎧⎨
⎩

0, if |ϑi| < σ,(
1− σ

|ϑi|
)
ϑi, otherwise.

(2)

3) A soft thresholded image is calculated as x̃ = Ω−1ϑ̃.

B. Recovery utilizing multiple thresholding transforms

From computational complexity point of view, two-
dimensional dicrete cosine transform (2-D DCT) could be
considered as the fast sparsifying transform. In this case, at
each iteration, an input frame X is divided into non overlapped
blocks size of L×L. And the operator soft(x, σ) is performed
separately for each block, i.e., ΩL×L is 2-D DCT transform
size of L× L.

The sparsity level provided by ΩL×L depends on image
properties: for some image areas, such as a flat areas, relatively
large L provides better sparsity, while smaller L are more
efficient for areas with many details. In order to improve
the recovery performance, similar to [8], we could perform
the thresholding for several block sizes from set L and then
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Fig. 1. Performance comparison of different recovery methods for sensing
rate 20%

compute an average as follows:

x̃L =
1

|L|
∑
L∈L

Ω−1
L×Lθ̃L×L. (3)

This approach allows to achieve a higher sparsity level with
a price of higher computational complexity, since at each
iteration we need to compute |L| transforms instead of one.
In order to reduce the computational complexity, in [4] we
proposed to use at each iteration a pseudo random value for L
chosen with uniform probabilities from the set L, i.e., perform
only one randomly selected transform at each iteration. Fig. 1
and Table I show Peak Signal-to-Noise Ratio (PSNR) for each
iteration, when 4 × 4 DCT, ..., 64 × 64 DCT used at each
iteration, and when the averaging (3) is performed with set
L = {4, 8, 16, 32, 64} (called Averaging size), and when the
block size is randomly selected from the same set L (called
Random size). One can see that the both the averaging and
random selection provide much higher PSNR values than any
single 2-D DCT. Herewith, execution time (all the presented
methods are implemented in MATLAB) of the averaging is
around 5 times higher than that of the random selection (see
in Table I).

The same idea can be used when a single sparsifying
transform L × L DCT is performed with shift of blocks
grid by a random vector (sx, sy) ∈ {−S/2, ..., S/2}. In our
experiments, we used 8×8 DCT with S = 1 for the averaging
approach (see Averaging shift). In this case it need to perform
|L| = 9 transforms at each iteration which makes it the slowest
method among the considered ones. Herewith, the approach
with the random selection (see Random shift) allows to perform
the recovery with S = L/2, i.e., for all possible combinations
of shifts. As a result, it provides even higher performance with
much lower complexity comparing to the averaging approach.

However, considered above 2-D DCT based approach ex-
ploits only local redundancy of images, therefore, it achieves
only moderate sparsity level of an image representation. In
order to achieve higher sparsity level, non-local self-similarity
of images should be exploited as well. In [9], an image
denoising algorithm based on sparse 3-D transform-domain
collaborative filtering has been proposed. It utilizes block
matching and 3-D transform (BM3D) in order to exploit both
local and non-local image similarities. Moreover, as it was
shown in [10], BM3D can be also used as a thresholding
operator in other applications, e.g., for image super-resolution
or compressive sensed image recovery. However, the main
drawback of BM3D is its high computational complexity
caused by block matching, 3-D transforms computation and
thresholding within 3-D transform domain.

In order to reduce the recovery complexity, in this paper
we propose to combine the recovery via 2-D DCT with
random shift with the BM3D in the following way. First, at
iterations i = 1, ..., i1, only the 2-D DCT with random shift
is used. Then at iterations i = i1 + 1, ..., imax, we run BM3D
with probability ρ, and the 2-D DCT with random shift with
probability (1 − ρ). As a result, in average, we use BM3D
only ρ(imax − i1) times instead of imax as in the original
recovery approach. In our experiments (see Fig. 1 and Table I)
we performed the proposed approach (called Proposed) with
i1 = 50 and ρ = 0.2. In all cases, imax was set to 100, i.e., in
average, the proposed approach uses the BM3D only 10 times.
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TABLE I. PEAK SIGNAL-TO-NOISE RATIO (PSNR) AND EXECUTION TIME FOR DIFFERENT SENSING RATES

Recovery method Akiyo Foreman Container
PSNR, dB PSNR, dB PSNR, dB

20% 15% 10% Time,sec 20% 15% 10% Time, sec 20% 15% 10% Time, sec

4 × 4 DCT 30.18 27.64 25.62 61.9 27.29 25.32 23.29 61.5 24.03 21.72 20.00 59.2

8 × 8 DCT 31.48 29.51 27.45 16.7 28.13 26.55 24.89 17.2 26.1 24.45 22.39 17.5

16 × 16 DCT 31.35 29.62 27.88 6.0 28.74 27.50 26.09 6.0 26.1 24.57 22.70 6.8

32 × 32 DCT 30.47 29.04 27.69 3.3 28.86 27.78 26.44 3.3 25.59 24.15 22.45 3.2

64 × 64 DCT 29.44 28.35 27.28 2.4 28.83 27.91 26.69 2.4 24.93 23.82 22.38 2.4

Averaging size 33.98 31.91 29.72 86.2 31.32 29.98 28.32 85.0 28.59 26.82 24.65 82.0

Averaging shift 40.51 37.86 34.41 247.8 33.92 32.40 30.35 251.7 32.75 30.92 28.39 237.0

Random size 33.34 31.47 29.48 17.3 31.09 29.82 28.24 16.7 28.24 26.57 24.51 17.1

Random shift 41.21 38.77 35.36 16.5 34.38 32.94 30.94 16.8 33.24 31.38 29.01 15.8

BM3D 42.49 40.12 36.52 76.2 36.64 35.51 33.81 73.2 33.76 31.74 29.27 83.1

Proposed 42.19 39.77 36.10 16.4 36.23 34.88 32.74 16.0 33.96 31.91 29.39 17.9

One can see that the resulting recovery approach is around 5
times faster and provides similar quality of recovery measured
in PSNR.

III. CONCLUSION

In this paper we presented fast recovery of compressive
sensed images via multiple thresholding operators. This ap-
proach randomly switches between high and low complex
thresholding operators providing a good trade-off between
the overall computational complexity and the quality of the
recovery. Therefore, it can be attractive for real-time recovery
applications.
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