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Abstract - The article is devoted to a research of an efficiency 
of high-level synthesis approach, based on  Xilinx's high-level 
synthesis tool - Vivado, for a hardware implementation of sorting 
algorithms, which are one of the key algorithms for Big Data 
analysis, Data Mining, Data and Management. Performance and 
hardware costs are the measures of the efficiency in the provided 
research. The research methods are simulation and comparative 
analysis. Efficiency of software implementation of the selected 
sorting algorithms, based on a universal processor, is compared 
with efficiency of hardware implementation of the same sorting 
algorithms, obtained by high-level synthesis procedure with help 
of Xilinx’s high-level synthesis tool. The article discusses 
approaches to optimize the description of the sorting algorithms 
and assignments in boundaries of high-level synthesis procedure 
to achieve optimal efficiency of the final hardware solutions. The 
article shows that the main efficiency gain is determinate by the 
internal features of the sorting algorithm, selected for hardware 
implementation; the ability to parallelize the processing of the 
source arrays, which is achieved both by the settings of the 
Vivado synthesis tool and description style used for source code. 
Article highlights research results and provide a direction for the 
future research works. 

I. INTRODUCTION 
The modern trend in development of state-of-art computing 

systems is implementation of the Distributed Reconfigurable 
Heterogeneous High Performance Computing (DRH HPC) 
systems [1].  

Due to rapidly increasing requirements for high 
performance computing systems in accordance with such 
criteria as:  

Performance, measured in FLoating-point Operations
Per Second (FLOPS);

Energy Efficiency (FLOPS/W);

Performance Efficiency (Real performance 
FLOPS/Peak performance FLOPS);

Area Efficiency (Real FLOPS/square),

DRH HPC need to have adaptation and hardware 
reconfiguration capabilities for effective implementation nearly 

any computing intensive algorithm [2], [3]. Modern 
Heterogeneous High Performance Computing consist on: 
multiprocessing units (MPU); single instruction multiple date 
(SIMD) accelerators, commonly known as General Purpose 
Graphic Processing Units (GP GPUS), and hardware 
reconfigurable accelerators, often pointed as Reconfigurable 
Computing Technology (RCT).  The core of the state of art 
DRH HPC systems is Reconfigurable Computing Technology 
(RCT). 

Reconfigurable computing technology uses Field-
Programmable Gate Array (FPGA) [4], [5]. FPGA is an 
integrated Circuit (IC) that can change its internal structure in 
accordance with the solving task. Modern FPGA consists of 
programmable logic cells (LCELL) that can perform any 
logic/memory functions and programmable matrix 
(interconnection matrix) that can connect all logic cells 
together to implement complex functions. Binary file, often 
called configuration file, is a file to program or configure logic 
cells and interconnection matrix in the FPGA. Configuration 
file sets up the logic cells and the interconnection matrix such, 
that FPGA can implement the task being solved. State-of-art 
FPGA contains not only logic cells and interconnection matrix 
but also Digital Signal Processing (DSP) blocks; embedded 
memory blocks (BRAM); High Bandwidth Memory (HBM) 
blocks, based on embedded Double-Data Rate (DDR) memory; 
hardware implemented controllers and transceivers for 
external: DDR memory, PCIe interface, 100G Ethernet ports. 
Nearly all FPGA, which are in the market, could be configured 
on the fly. To configure FPGA on the fly means that FPGA 
configuration for solving a new task can be downloaded into 
FPGA during execution of the current task. Some modern 
FPGAs support a partial configuration and reconfiguration. The 
FPGA partial reconfiguration means that a part of FPGA can be 
configured for solving new task while the rest of FPGA 
continues to solve current task [6]. Finally, FPGA can be 
configured and partially reconfigured through PCIe and 
Ethernet interfaces. 

From the system point of view, the DRH HPC systems 
allow, by using the available heterogeneous computational 
resources, particularly hardware reconfigurable FPGA based 
accelerators, temporarily, and, that is very important for the 
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overall system performance, on the fly, create highly 
specialized computational “pipes” for solving the particular 
tasks. The computational pipe can, in the simplest case, consist 
of just hardware reconfigurable FPGA based accelerators or, 
for solving a complex task, include SIMD accelerators, MPUs 
and hardware reconfigurable FPGA based accelerators working 
together by solving the particular task [7]. Proposed approach 
helps to satisfy the most important modern performance criteria 
for high-performance computing systems: Energy Efficiency 
and Performance Efficiency [8]. 

To implement an algorithm on hardware reconfigurable 
FPGA based accelerator it is necessary to prepare configuration 
file for the algorithm that will be downloaded to FPGA during 
runtime, i.e. by which FPGA will be configured or partially 
reconfigured for solving the particular task.   

The traditional procedure for developing implementation 
for reconfigurable hardware devices is based on the using of 
Hardware Description Languages (HDL), for example, such as 
VHDL, Verilog HDL, System Verilog. This procedure is very 
time-consuming and requires hard work both at the stage of 
development and at the stage of debugging [9], [10]. 

A modern approach is to use the capabilities of high-level 
synthesis tools that are provided by leading FPGA 
manufacturers of programmable logic, such as Xilinx [11] and 
Intel PSG [12], and companies engaged in the development of 
electronic device development tools, for example, Mentor 
Graphics [13].  

High-level synthesis tools allow not only to synthesize 
hardware solutions to algorithm described in high-level 
programming languages, such as C or C ++, but also to verify 
the correct operation of the synthesized algorithm, prepared for 
configuring FPGA,  by applying the common (for software and 
hardware testing) test described in C or C ++.  

Methodology of using the high-level synthesis tools to 
create reconfigurable hardware parts of heterogeneous 
computing systems is a rather new methodology, just like the 
high-level synthesis tools, and, at present, there are no reliable 
evaluations for the efficiency of using such methodology (and 
tools) for implementation of data processing algorithms with 
high computational complexity and significant memory 
requirements. 

In order to analyze the efficiency of using high-level 
synthesis tools, it is necessary to carry out a simulation and  a 
comparative analysis of software implementation, based on a 
universal processors, and hardware implementation , based on 
reconfigurable FPGA base accelerators, of the same algorithm, 
described in C or C ++.  

Since the architectures of the universal processor and 
reconfigurable hardware are different, a comparative analysis 
can be performed according to efficiency criterion based on 
performance of the particular implementation. 

The target of the research is to find the sorting algorithms 
(at least one) that, in accordance with their internal features, 
can help to achieve significant performance increase in solving 
sorting problems when those implemented in hardware, by 
using modern HLS tools, in comparison with the software 
implementations of the same algorithms on the universal 
processors. 

II. RESEARCH OF THE EFFICIENCY OF SORTING ALGORITHMS 
IMPLEMENTATIONS 

A. Objects for the research 
Objects for the current research are sorting algorithms.  

Such a choice is determined by the facts that:  

 Wide using of the sorting algorithms for solving 
problems associated with Big Data analysis, Data 
Mining, Data Storage and Management;  

 The relevance increasing performance of the sorting 
algorithms for speeding up many applications related 
to Big Data analysis, Data Mining and Data  
Management;   

 The computational complexity and memory 
requirements of sorting algorithms. 

To systematize the research, a simplified, based on a 
sorting method used, presented on Fig. 1, classification of the 
sorting algorithms is used. 

This classification helps to choose at least one algorithm 
from every sorting method for further research [14].   

 

Fig. 1. Simplified classification of sorting algorithms 

Previous hands-on experiences in the hardware 
implementation, based on HDL descriptions, of the sorting 
algorithms determined our first choice of a set of the 
algorithms for the current research.  

The selected algorithms are: Gnome sort [15], Heap sort 
[16]; Shell sort [17]; Merge sort [18]; Quick sort[19].  

The chosen algorithms complexity in the worst case are: 
Gnome – O(n2), Heap – O(n log n), Shell – O(n log2n), Merge 
– O(n log n), Quick – O(n2) [20]. The estimations of memory 
consumption for the algorithms are: Gnome – O(1), Heap – 
O(n), Shell – O(1), Merge – O(n), Quick – O(log n) [21]. 

The chosen algorithms are the typical representatives of the 
each sorting method indicated on Fig. 1.  

The source codes of the selected sorting algorithms are in C 
language. Library functions of time.h were included in source 
codes for performance evaluation purposes.   

B. The research methods 
The used research methods are:  

 Simulation of solving the sorting problems on 
computational structures with different architectures (on 
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an universal processor and on the reconfigurable FPGA 
based hardware); 

 Comparative analysis according to the selected measures 
of the efficiency: performance, to compare software and 
hardware implementations,  and hardware cost, to 
compare different hardware implementations with nearly 
the same performance. 

The hardware cost is a number of logic elements (LCELL) 
and embedded memory blocks (BRAM) used in the FPGA to 
implement a particular sorting task. 

The performance is a time, in nanosecond, for solving the 
particular sorting task.  

The selection of these measures for comparative analysis is 
justified by the fact that the goals of creating reconfigurable 
FPGA based hardware solutions are to increase for the entire 
DRH HPC system: 

 Power Efficiency (FLOPS/W);  

 Performance Efficiency (Real FLOPS/Peak FLOPS). 

The Simulation procedure and comparative analysis use the 
following tools: 

For the software implementation: 

 Integrated Development Environment (IDE) – 
JetBrains CLion [21]. 

 Multi-core system – Intel Core i7-4710HQ, 2.50GHz 
with 12G Bytes DDR3 RAM. 

For the reconfigurable hardware implementation based on 
FPGA: 

 IDE – Vivado HLS [3]. 
 FPGA – XCVU125-flvc2104-3 [7]. 

The selection of JetBrains CLion development 
environment is justified by the fact that it is a cross-platform C 
and C ++ development environment, which allows you to 
easily compile and run any programs using popular compilers 
such as: GCC, Clang, MinGW, Cygwin, and pre-installed 
libraries. Those for the purposes of the current research, means 
the opportunity for a wide range of users to repeat our results. 

To evaluate performance of the software implementation 
of the particular sorting algorithm, working on an array of 
randomly generated values,   the time interval between two 
control points during the program execution is estimated.  

The Vivado HLS (High-level synthesis) Integrated 
Development Environment is able to:  

 Synthesizes and implements on reconfigurable, FPGA 
based hardware, the sort algorithm described either by 
C or C ++ language. The tool is able to automatically:  

 Evaluate all necessary data for estimation the 
performance of the synthesized implementation 
targeted to the particular FPGA;  

 Estimate the expected hardware costs for the 
implementation.  

This development environment allows us to optimize the 
implementation by assigning to use various resources available 
in the target FPGA and by pipelining and parallelizing 
hardware implementation according to user-defined criteria. 

To evaluate the performance of a synthesized hardware 
solution, Vivado HLS calculates the minimum possible period 
of the clock frequency synchronizing the operation of the 
device. Than the tool estimates the number of the clock 
periods necessary to complete execution of the algorithm. That 
is, in other words, the tool calculates the number of clock 
cycles through which the input of the device that implements 
the synthesized algorithm can be fed by new data.  Based on 
these data, performance, it term of time for sort algorithm 
execution, is calculated by multiplying the estimate of the 
minimum possible period of the clock frequency on the 
number of required clock cycles. 

C. Conducting the research 
The research procedure includes the following steps: 

1) Creation of a source code of an algorithm suitable for 
both a software implementation based on a universal processor 
and for the synthesis for a reconfigurable FPGA based 
hardware solution. The source code should allow to process 
input, unsorted, arrays having different size. 

2) Creation of a testbench that will be used both to verify 
the correct operation of the algorithm described on the C 
language, and to verify the behavior of the synthesized and 
implemented hardware solution. During the testing procedure, 
it is necessary to launch the tested sorting algorithm several 
times, since this allows simulating a continuous data stream 
characteristic of the hardware implementation. The code 
should allow creating source arrays of different size. The 
source arrays must be initialized by random integers with a 
uniform distribution. 

3) Simulation software implementation based on a 
universal processor: 

 Testing the source code of the algorithm for a given set 
of array sizes. 

 Simulation and performance estimation for a given set 
of array sizes. 

4) Simulation and optimization of reconfigurable FPGA 
based hardware implementation of the algorithm: 

 Testing the source code of the algorithm in the 
framework of a high-level synthesis tool for a given set 
of array sizes. 

 Iterative carrying out the stages of synthesis and 
optimization for a given set of array sizes, by applying 
a selected set of control directives. The goal is to 
achieve maximum performance for each set of array 
sizes having in mind that there are restrictions on 
available logical capacity for the particular FPGA. 

 Co-simulation each hardware implementation of the 
algorithm for each set of array sizes, based on the 
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testbenches, used for testing the software 
implementation of the same sorting algorithm.   

5) Comparative analysis of software and hardware 
implementations of the same sorting algorithm. 

For the current research, the following sets of array sizes 
are selected: 100; 1000; 10000; 100000; 1000000. All 
numbers are of the type Integer (signed integer 32 bits). It 
allows simplifying comparative analysis by using native data 
type for the software implementation. It is necessary to pay 
attention on the fact that if data size is need to be reduced, for 
example by using any size which is less than 32 bits, than 
hardware implementation will have additional positive gap in 
performance.   

During the synthesis and optimization, for each given set 
of array sizes, the following sets of control directives of the 
Vivado HLS were applied: 

 Set of directive for choosing an interface architecture 
for implementing reading raw data and writing sorted 
data. These sets allow the synthesizer automatically use 
BRAM blocks for intermediate storage of raw and 
intermediate arrays. The target is to speed up the steps 
of reading the source data and writing sorted values. 

 Set of pipeline directives for both internal and external 
loops used in the description of the sorting algorithm. 
Pipelining, depending on the internal features of the 
particular sorting algorithm, allows parallelization of 
reading the raw data, performing certain stages of data 
processing, and writing the sorted data. 

 Set of directives for unrolling loops.  The set allows 
increasing performance of the hardware 
implementation by executing a pointed number of 
sorting processes in parallel. When applying it is 
necessary to consider that, this directive requires many 
additional logic resources of FPGA. 

 Set of dataflow directives for pipelining the hardware 
implementation at the level of data flows, i.e., for the 
sorting algorithms, at the level of data processing 
between cycles. Pipelining at the data flow level 
allows, depending on the internal features of the sorting 
algorithm, to compose an output array during the 
reading input array and the sorting procedure. This can 
make the implementation more adaptive to the features 
of the input data, for example, for the case if the array 
is sorted before the algorithm passes completely. 

III. RESULTS OF THE RESEARCH  
The estimation of the hardware cost for the initial, without 

any additional optimization directives, invocation of the high-
level synthesis and implementation procedure is in Table I. 
The hardware cost is estimated in: 

 LCELL - logical blocks of FPGA, consist of logical 
functions and synchronous flip-flops (FF), used to 
implement the particular sorting algorithm. 

 BRAM - built-in memory blocks of FPGA, used to 
store intermediate data when implementing the 
particular sorting algorithm. This estimates is for 
internal memory blocks only. The hardware cost do 
not take into account external to FPGA memory 
blocks used for keeping raw and sorted arrays. 

TABLE I.  HARDWARE COSTS ESTIMATION WITHOUT OPTIMIZATION   

Algorithm Array size LCELL BRAM Interface 

Gnome sort 

1.0E+2 290 0 

ap_memory 
1.0E+3 290 0 
1.0E+4 290 0 
1.0E+5 290 0 
1.0E+6 283 0 

Merge sort 

1.0E+2 2496 2 

ap_memory 
1.0E+3 2595 18 
1.0E+4 2514 231 
1.0E+5 2602 2834 
1.0E+6 2648 33632 

Heap sort 

1.0E+2 870 0 

ap_memory 
1.0E+3 870 0 
1.0E+4 870 0 
1.0E+5 870 0 
1.0E+6 870 0 

Quick sort 

1.0E+2 1186 4 

ap_memory 
1.0E+3 1211 4 
1.0E+4 1230 38 
1.0E+5 1264 358 
1.0E+6 1299 3373 

The performance estimation for software implementation 
and for the initial, without any additional optimization 
directives, hardware implementation for the selected sorting 
algorithms is shown in Table II.   

       TABLE II. PERFORMANCE ESTIMATION WITHOUT OPTIMIZATION 

Sort 
type 

Array 
size 

 
CPU 
time, 

s 

Hardware implementation 
without any optimization 

Clock 
period, 

ns 

II Time,  
s 

Gnome 
sort 

1.0E+2 4.60E-05 6.229 3.20E+04 2.84E-04 
1.0E+3 2.11E-03 6.229 2.05E+06 1.82E-02 
1.0E+4 5.14E-01 6.229 5.24E+08 4.65E+00 
1.0E+5 3.32E+01 6.229 3.35E+10 2.98E+02 
1.0E+6 2.14E+03 6.229 2.14E+12 1.90E+04 

Merge  
sort 

1.0E+2 5.00E-06 3.750 14E+2 5.33E-06 
1.0E+3 7.00E-05 3.767  20E+3 7.55E-05 
1.0E+4 1.10E-03  3.988 28E+4 1.12E-03 
1.0E+5 1.20E-02  4.106 82E+5 3.37E-02 
1.0E+6 1.40E-01  4.084 10E+7 4.08E-01 

Heap  
sort 

1.0E+2 1.48E-05 3.755 45E+2 1.70E-05 
1.0E+3 1.86E-04 3.755  68E+3 2.55E-04 
1.0E+4 2.33E-03 3.755 91E+4 3.42E-03 
1.0E+5 2.92E-02 3.755 11E+6 4.30E-02 
1.0E+6 2.73E-01 3.755 16E+7 5.87E-01 

Quick  
sort 

1.0E+2 7.37E-06 4.156  42E+7 1.73E+00 
1.0E+3 1.05E-04 4.156  40E+11 1.67E+04 
1.0E+4 1.20E-03 4.156  40E+15 1.66E+08 
1.0E+5 1.78E-02 4.156  > 4E+20 >4.00E+10 
1.0E+6 2.10E-01 4.156  > 4E+20 >4.00E+10 

The performance of the hardware implementation in Table 
II is estimated in:  
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 Clock period – the minimum possible period of the 
clock frequency;  

 II – initiation interval, the number of the clock periods 
necessary to complete execution of the particular 
sorting algorithm; 

 Time – calculated by multiplying the estimates of the 
minimum possible period of the clock frequency on 
the number of required clock cycles. 

Some conclusions that can be drawn from the analysis of 
the results of the initial, without optimization, stage of the 
research are below.  

Shell sort shows very low performance and high hardware 
cost even for small arrays. According to this, the algorithm 
was rejected for next stages of the research. Results for the 
sorting algorithm are excluded from Table I and Table II. 

We need to consider a limitation of modern high-level 
synthesis tools [11], [12], [13] associated with the inability to 
implement recursive algorithms.  

In accordance with the pointed limitation the typical, 
recursive, form of Quick sort algorithm is not suitable for 
hardware implementation by using modern HLS tools. Results 
for implementation of non-recursive form of Quick sort 
algorithm are in Table I and Table II . Comparative analysis of 
the performance estimation shows that the algorithm demands 
a huge number of the clock periods necessary to complete its 
execution.    According to this, there is no sense to optimize 
non-recursive form of Quick sort algorithm and the algorithm 
was rejected for further research. 

Table III summarizes performance and hardware cost 
estimations, which were achieved after optimization of the 
high-level synthesis and implementation procedures.  

TABLE III. EFFICIENCY OF OPTIMIZED IMPLEMENTATIONS 

Sort 
type 

Array 
size 

CPU 
time 

spent, s 

Hardware implementation after 
optimization 

Time 
spent, s 

LCELL BRAM 

Gnome 
sort 

1.0E+2 4.60E-05 2.04E-04 290 0 
1.0E+3 2.11E-03 1.31E-02 290 0 
1.0E+4 5.14E-01 3.34E+00 290 0 
1.0E+5 3.32E+01 2.14E+02 290 0 
1.0E+6 2.14E+03 1.37E+04 283 0 

Merge 
sort 

1.0E+2 5.00E-06 5.33E-07 5.19E+03 1.20E+01 
1.0E+3 7.00E-05 5.19E-06 7.45E+03 1.80E+01 
1.0E+4 1.10E-03 5.18E-05 1.05E+04 2.47E+02 
1.0E+5 1.20E-02 5.18E-04 1.29E+04 2.52E+03 
1.0E+6 1.40E-01 1.55E-02 1.53E+04 3.37E+04 

Heap 
sort 

1.0E+2 1.48E-05 9.42E-06 1.10E+05 0 
1.0E+3 1.86E-04 1.41E-04 1.10E+05 0 
1.0E+4 2.33E-03 1.89E-03 1.10E+05 0 
1.0E+5 2.92E-02 2.38E-02 1.10E+05 0 
1.0E+6 2.73E-01 3.25E-01 1.10E+05 0 

To optimize of the high-level synthesis and implementation 
procedures for Gnome sort algorithm the following 
assignments in Vivado HLS were used: 

 AP_MEMORY interface with AP_SOURCE RAM2P. 

To optimize of the high-level synthesis and implementation 
procedures for Merge algorithm the following assignments in 
Vivado HLS were used: 

 AP_MEMORY interface with AP_SOURCE RAM2P. 

 PIPELINE for merging arrays. 

 DATAFLOW for the top function. 

 ARRAY_PARTITION COMPLETE for an internal 
arrays. 

 UNROLL COMPLETE for merging cycle. 

To optimize of the high-level synthesis and implementation 
procedures for Heap sort algorithm the following assignments 
in Vivado HLS were used:  

 AP_MEMORY interface with AP_SOURCE RAM2P. 

 ARRAY_PARTITION COMPLETE for an input array. 

 UNROLL COMPLETE for all cycles. 

To simplify comparative performance analysis some 
figures based on Table III are below.  

Fig. 2 visualizes the comparative analysis of the software-
based implementation and the optimized hardware 
implementation of the Gnome sort algorithm. Results for 
Gnome sort are shown on a logarithmic scale for convenience. 
The Fig. 2 shows that Gnome sort algorithm implemented in 
hardware by using modern HLS tools works slower than the 
software implementation: by one order of magnitude slower 
for any arrays size.  

 

Fig. 2. Comparative performance analysis: Gnome sort 

Fig. 3 visualizes the comparative analysis of the software-
based implementation and the optimized hardware 
implementation of the Merge sort algorithm. The Fig. 3 shows 
that Merge sort algorithm implemented in hardware by using 
modern HLS tools works faster than the software 
implementation. It should be noted that the positive 
performance gap depends on the size of the array: the larger 
the array, the greater the positive gap. For the largest array in 
the current research, the gap is nearly one order of  
magnitude.   
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Fig. 3. Comparative performance analysis: Merge sort

Fig. 4 visualizes the comparative analysis of the software-
based implementation and the optimized hardware 
implementation of the Heap sort algorithm. The Fig. 4 shows 
that Heap sort algorithm implemented in hardware by using 
modern HLS tools works slower than the software 
implementation for large arrays. It should be noted that the 
negative performance gap depends on the size of the array: the 
larger the array, the greater the negative gap. For the largest 
array in the current research, the negative gap is nearly two 
times.  

Fig. 4. Comparative performance analysis: Heap sort

Taking into account the sorting algorithm that gave in 
hardware implementation a performance gain relative to the 
software implementation (Merge sort and Heap sort), it is 
necessary  to  pay an attention to the fact, illustrated in Table 
III, that Merge sort algorithm, which gives a greater positive 
gain in the performance, also has a large hardware cost for 
implementation.  

IV. CONCLUSION

The hardware implementation of the sorting algorithm 
achieved by utilizing of the modern HLS tool does not always 
provide higher performance than the execution of the same 
algorithm on a universal processor. Performance gap (positive 
or negative) depends on the internal features of the particular 
sorting algorithm, for example, whether it allows 
parallelization of reading, processing, writing the data, and on 
optimization directives applied. 

There are some reasons, why the hardware 
implementations of the particular algorithms optimized by 

modern HLS tools are still slower, than the software 
implementation of the same algorithms: 

The algorithms assume a sequential execution of
operations that is difficult to parallelize by using even
state of art high-level synthesis tools.

The clock speed of the universal processor is about an
order of magnitude higher than the clock frequency for
hardware implementation: the processor used for the
current research has a clock frequency of 2.5 GHz, and
the synthesized device, as it could be calculated from
the data given in Table III, is about 250 MHz.

There are algorithms that cannot be implemented in 
hardware by using modern HLS tools, for example, recursive 
Quick sort algorithm, in accordance with the HLS tools 
restrictions. 

The research shows that the non-recursive form of Quick 
sort algorithm implemented in hardware by HLS tool 
demonstrates a very low performance comparing to software 
implementation the same algorithm. The reasons are the same: 
internal features of the particular sorting algorithm and 
inability of the modern HLS tool to parallelize and pipeline the 
algorithm. 

There are sorting algorithms, for example Merge sort 
algorithm found during current research, which have positive 
gap in performance when comparing with software 
implementation of the same algorithm. Such algorithms, in 
accordance with their internal features, allow to perform 
several sorting stages concurrently and to do pipelining. These 
are the reasons for the advantages in performance in 
comparison with the software implementation. 

The current research gave a solid background for 
understanding capabilities of sorting algorithms and tools, 
which should be taken in account while doing further research.  

The direction and scope of the further research is related 
with expansion of the number of sorting algorithms covered, 
taking an additional attention to the sorting methods which 
gave the better results.  

The first target to the further research is Tim sort [22] 
algorithm. The algorithm combines, as pointed on Fig. 1, 
Merge sort and Insertion sort, which expected to make 
hardware implementation even faster than Merge sort, with 
reduced hardware costs. 

The ultimate target for the further research should be to 
find a set of sorting algorithms which, implemented in 
hardware, by using modern HLS tools, will have the positive 
performance gap in comparison with the fastest software 
implementations of any sorting algorithms.  This set should be 
ranked according to the hardware costs required to implement 
the algorithms.  
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