
Research of the Efficiency of High-level Synthesis
Tool for FPGA Based Hardware Implementation of

Some Basic Algorithms for the Big Data Analysis and
Management Tasks

Alexander Antonov, Denis Besedin, Alexey Filippov
Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia
antonov@eda-lab.ftk.spbstu.ru, 1310nero@mail.ru, filippov@eda-lab.ftk.spbstu.ru

Abstract - The article is devoted to a research of an efficiency
of high-level synthesis approach, based on Xilinx's high-level
synthesis tool - Vivado, for a hardware implementation of sorting
algorithms, which are one of the key algorithms for Big Data
analysis, Data Mining, Data and Management. Performance and
hardware costs are the measures of the efficiency in the provided
research. The research methods are simulation and comparative
analysis. Efficiency of software implementation of the selected
sorting algorithms, based on a universal processor, is compared
with efficiency of hardware implementation of the same sorting
algorithms, obtained by high-level synthesis procedure with help
of Xilinx’s high-level synthesis tool. The article discusses
approaches to optimize the description of the sorting algorithms
and assignments in boundaries of high-level synthesis procedure
to achieve optimal efficiency of the final hardware solutions. The
article shows that the main efficiency gain is determinate by the
internal features of the sorting algorithm, selected for hardware
implementation; the ability to parallelize the processing of the
source arrays, which is achieved both by the settings of the
Vivado synthesis tool and description style used for source code.
Article highlights research results and provide a direction for the
future research works.

I. INTRODUCTION
The modern trend in development of state-of-art computing

systems is implementation of the Distributed Reconfigurable
Heterogeneous High Performance Computing (DRH HPC)
systems [1].

Due to rapidly increasing requirements for high
performance computing systems in accordance with such
criteria as:

Performance, measured in FLoating-point Operations
Per Second (FLOPS);

Energy Efficiency (FLOPS/W);

Performance Efficiency (Real performance
FLOPS/Peak performance FLOPS);

Area Efficiency (Real FLOPS/square),

DRH HPC need to have adaptation and hardware
reconfiguration capabilities for effective implementation nearly

any computing intensive algorithm [2], [3]. Modern
Heterogeneous High Performance Computing consist on:
multiprocessing units (MPU); single instruction multiple date
(SIMD) accelerators, commonly known as General Purpose
Graphic Processing Units (GP GPUS), and hardware
reconfigurable accelerators, often pointed as Reconfigurable
Computing Technology (RCT). The core of the state of art
DRH HPC systems is Reconfigurable Computing Technology
(RCT).

Reconfigurable computing technology uses Field-
Programmable Gate Array (FPGA) [4], [5]. FPGA is an
integrated Circuit (IC) that can change its internal structure in
accordance with the solving task. Modern FPGA consists of
programmable logic cells (LCELL) that can perform any
logic/memory functions and programmable matrix
(interconnection matrix) that can connect all logic cells
together to implement complex functions. Binary file, often
called configuration file, is a file to program or configure logic
cells and interconnection matrix in the FPGA. Configuration
file sets up the logic cells and the interconnection matrix such,
that FPGA can implement the task being solved. State-of-art
FPGA contains not only logic cells and interconnection matrix
but also Digital Signal Processing (DSP) blocks; embedded
memory blocks (BRAM); High Bandwidth Memory (HBM)
blocks, based on embedded Double-Data Rate (DDR) memory;
hardware implemented controllers and transceivers for
external: DDR memory, PCIe interface, 100G Ethernet ports.
Nearly all FPGA, which are in the market, could be configured
on the fly. To configure FPGA on the fly means that FPGA
configuration for solving a new task can be downloaded into
FPGA during execution of the current task. Some modern
FPGAs support a partial configuration and reconfiguration. The
FPGA partial reconfiguration means that a part of FPGA can be
configured for solving new task while the rest of FPGA
continues to solve current task [6]. Finally, FPGA can be
configured and partially reconfigured through PCIe and
Ethernet interfaces.

From the system point of view, the DRH HPC systems
allow, by using the available heterogeneous computational
resources, particularly hardware reconfigurable FPGA based
accelerators, temporarily, and, that is very important for the

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

overall system performance, on the fly, create highly
specialized computational “pipes” for solving the particular
tasks. The computational pipe can, in the simplest case, consist
of just hardware reconfigurable FPGA based accelerators or,
for solving a complex task, include SIMD accelerators, MPUs
and hardware reconfigurable FPGA based accelerators working
together by solving the particular task [7]. Proposed approach
helps to satisfy the most important modern performance criteria
for high-performance computing systems: Energy Efficiency
and Performance Efficiency [8].

To implement an algorithm on hardware reconfigurable
FPGA based accelerator it is necessary to prepare configuration
file for the algorithm that will be downloaded to FPGA during
runtime, i.e. by which FPGA will be configured or partially
reconfigured for solving the particular task.

The traditional procedure for developing implementation
for reconfigurable hardware devices is based on the using of
Hardware Description Languages (HDL), for example, such as
VHDL, Verilog HDL, System Verilog. This procedure is very
time-consuming and requires hard work both at the stage of
development and at the stage of debugging [9], [10].

A modern approach is to use the capabilities of high-level
synthesis tools that are provided by leading FPGA
manufacturers of programmable logic, such as Xilinx [11] and
Intel PSG [12], and companies engaged in the development of
electronic device development tools, for example, Mentor
Graphics [13].

High-level synthesis tools allow not only to synthesize
hardware solutions to algorithm described in high-level
programming languages, such as C or C ++, but also to verify
the correct operation of the synthesized algorithm, prepared for
configuring FPGA, by applying the common (for software and
hardware testing) test described in C or C ++.

Methodology of using the high-level synthesis tools to
create reconfigurable hardware parts of heterogeneous
computing systems is a rather new methodology, just like the
high-level synthesis tools, and, at present, there are no reliable
evaluations for the efficiency of using such methodology (and
tools) for implementation of data processing algorithms with
high computational complexity and significant memory
requirements.

In order to analyze the efficiency of using high-level
synthesis tools, it is necessary to carry out a simulation and a
comparative analysis of software implementation, based on a
universal processors, and hardware implementation , based on
reconfigurable FPGA base accelerators, of the same algorithm,
described in C or C ++.

Since the architectures of the universal processor and
reconfigurable hardware are different, a comparative analysis
can be performed according to efficiency criterion based on
performance of the particular implementation.

The target of the research is to find the sorting algorithms
(at least one) that, in accordance with their internal features,
can help to achieve significant performance increase in solving
sorting problems when those implemented in hardware, by
using modern HLS tools, in comparison with the software
implementations of the same algorithms on the universal
processors.

II. RESEARCH OF THE EFFICIENCY OF SORTING ALGORITHMS
IMPLEMENTATIONS

A. Objects for the research
Objects for the current research are sorting algorithms.

Such a choice is determined by the facts that:

 Wide using of the sorting algorithms for solving
problems associated with Big Data analysis, Data
Mining, Data Storage and Management;

 The relevance increasing performance of the sorting
algorithms for speeding up many applications related
to Big Data analysis, Data Mining and Data
Management;

 The computational complexity and memory
requirements of sorting algorithms.

To systematize the research, a simplified, based on a
sorting method used, presented on Fig. 1, classification of the
sorting algorithms is used.

This classification helps to choose at least one algorithm
from every sorting method for further research [14].

Fig. 1. Simplified classification of sorting algorithms

Previous hands-on experiences in the hardware
implementation, based on HDL descriptions, of the sorting
algorithms determined our first choice of a set of the
algorithms for the current research.

The selected algorithms are: Gnome sort [15], Heap sort
[16]; Shell sort [17]; Merge sort [18]; Quick sort[19].

The chosen algorithms complexity in the worst case are:
Gnome – O(n2), Heap – O(n log n), Shell – O(n log2n), Merge
– O(n log n), Quick – O(n2) [20]. The estimations of memory
consumption for the algorithms are: Gnome – O(1), Heap –
O(n), Shell – O(1), Merge – O(n), Quick – O(log n) [21].

The chosen algorithms are the typical representatives of the
each sorting method indicated on Fig. 1.

The source codes of the selected sorting algorithms are in C
language. Library functions of time.h were included in source
codes for performance evaluation purposes.

B. The research methods
The used research methods are:

 Simulation of solving the sorting problems on
computational structures with different architectures (on

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 24 --

an universal processor and on the reconfigurable FPGA
based hardware);

 Comparative analysis according to the selected measures
of the efficiency: performance, to compare software and
hardware implementations, and hardware cost, to
compare different hardware implementations with nearly
the same performance.

The hardware cost is a number of logic elements (LCELL)
and embedded memory blocks (BRAM) used in the FPGA to
implement a particular sorting task.

The performance is a time, in nanosecond, for solving the
particular sorting task.

The selection of these measures for comparative analysis is
justified by the fact that the goals of creating reconfigurable
FPGA based hardware solutions are to increase for the entire
DRH HPC system:

 Power Efficiency (FLOPS/W);

 Performance Efficiency (Real FLOPS/Peak FLOPS).

The Simulation procedure and comparative analysis use the
following tools:

For the software implementation:

 Integrated Development Environment (IDE) –
JetBrains CLion [21].

 Multi-core system – Intel Core i7-4710HQ, 2.50GHz
with 12G Bytes DDR3 RAM.

For the reconfigurable hardware implementation based on
FPGA:

 IDE – Vivado HLS [3].
 FPGA – XCVU125-flvc2104-3 [7].

The selection of JetBrains CLion development
environment is justified by the fact that it is a cross-platform C
and C ++ development environment, which allows you to
easily compile and run any programs using popular compilers
such as: GCC, Clang, MinGW, Cygwin, and pre-installed
libraries. Those for the purposes of the current research, means
the opportunity for a wide range of users to repeat our results.

To evaluate performance of the software implementation
of the particular sorting algorithm, working on an array of
randomly generated values, the time interval between two
control points during the program execution is estimated.

The Vivado HLS (High-level synthesis) Integrated
Development Environment is able to:

 Synthesizes and implements on reconfigurable, FPGA
based hardware, the sort algorithm described either by
C or C ++ language. The tool is able to automatically:

 Evaluate all necessary data for estimation the
performance of the synthesized implementation
targeted to the particular FPGA;

 Estimate the expected hardware costs for the
implementation.

This development environment allows us to optimize the
implementation by assigning to use various resources available
in the target FPGA and by pipelining and parallelizing
hardware implementation according to user-defined criteria.

To evaluate the performance of a synthesized hardware
solution, Vivado HLS calculates the minimum possible period
of the clock frequency synchronizing the operation of the
device. Than the tool estimates the number of the clock
periods necessary to complete execution of the algorithm. That
is, in other words, the tool calculates the number of clock
cycles through which the input of the device that implements
the synthesized algorithm can be fed by new data. Based on
these data, performance, it term of time for sort algorithm
execution, is calculated by multiplying the estimate of the
minimum possible period of the clock frequency on the
number of required clock cycles.

C. Conducting the research
The research procedure includes the following steps:

1) Creation of a source code of an algorithm suitable for
both a software implementation based on a universal processor
and for the synthesis for a reconfigurable FPGA based
hardware solution. The source code should allow to process
input, unsorted, arrays having different size.

2) Creation of a testbench that will be used both to verify
the correct operation of the algorithm described on the C
language, and to verify the behavior of the synthesized and
implemented hardware solution. During the testing procedure,
it is necessary to launch the tested sorting algorithm several
times, since this allows simulating a continuous data stream
characteristic of the hardware implementation. The code
should allow creating source arrays of different size. The
source arrays must be initialized by random integers with a
uniform distribution.

3) Simulation software implementation based on a
universal processor:

 Testing the source code of the algorithm for a given set
of array sizes.

 Simulation and performance estimation for a given set
of array sizes.

4) Simulation and optimization of reconfigurable FPGA
based hardware implementation of the algorithm:

 Testing the source code of the algorithm in the
framework of a high-level synthesis tool for a given set
of array sizes.

 Iterative carrying out the stages of synthesis and
optimization for a given set of array sizes, by applying
a selected set of control directives. The goal is to
achieve maximum performance for each set of array
sizes having in mind that there are restrictions on
available logical capacity for the particular FPGA.

 Co-simulation each hardware implementation of the
algorithm for each set of array sizes, based on the

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 25 --

testbenches, used for testing the software
implementation of the same sorting algorithm.

5) Comparative analysis of software and hardware
implementations of the same sorting algorithm.

For the current research, the following sets of array sizes
are selected: 100; 1000; 10000; 100000; 1000000. All
numbers are of the type Integer (signed integer 32 bits). It
allows simplifying comparative analysis by using native data
type for the software implementation. It is necessary to pay
attention on the fact that if data size is need to be reduced, for
example by using any size which is less than 32 bits, than
hardware implementation will have additional positive gap in
performance.

During the synthesis and optimization, for each given set
of array sizes, the following sets of control directives of the
Vivado HLS were applied:

 Set of directive for choosing an interface architecture
for implementing reading raw data and writing sorted
data. These sets allow the synthesizer automatically use
BRAM blocks for intermediate storage of raw and
intermediate arrays. The target is to speed up the steps
of reading the source data and writing sorted values.

 Set of pipeline directives for both internal and external
loops used in the description of the sorting algorithm.
Pipelining, depending on the internal features of the
particular sorting algorithm, allows parallelization of
reading the raw data, performing certain stages of data
processing, and writing the sorted data.

 Set of directives for unrolling loops. The set allows
increasing performance of the hardware
implementation by executing a pointed number of
sorting processes in parallel. When applying it is
necessary to consider that, this directive requires many
additional logic resources of FPGA.

 Set of dataflow directives for pipelining the hardware
implementation at the level of data flows, i.e., for the
sorting algorithms, at the level of data processing
between cycles. Pipelining at the data flow level
allows, depending on the internal features of the sorting
algorithm, to compose an output array during the
reading input array and the sorting procedure. This can
make the implementation more adaptive to the features
of the input data, for example, for the case if the array
is sorted before the algorithm passes completely.

III. RESULTS OF THE RESEARCH
The estimation of the hardware cost for the initial, without

any additional optimization directives, invocation of the high-
level synthesis and implementation procedure is in Table I.
The hardware cost is estimated in:

 LCELL - logical blocks of FPGA, consist of logical
functions and synchronous flip-flops (FF), used to
implement the particular sorting algorithm.

 BRAM - built-in memory blocks of FPGA, used to
store intermediate data when implementing the
particular sorting algorithm. This estimates is for
internal memory blocks only. The hardware cost do
not take into account external to FPGA memory
blocks used for keeping raw and sorted arrays.

TABLE I. HARDWARE COSTS ESTIMATION WITHOUT OPTIMIZATION

Algorithm Array size LCELL BRAM Interface

Gnome sort

1.0E+2 290 0

ap_memory
1.0E+3 290 0
1.0E+4 290 0
1.0E+5 290 0
1.0E+6 283 0

Merge sort

1.0E+2 2496 2

ap_memory
1.0E+3 2595 18
1.0E+4 2514 231
1.0E+5 2602 2834
1.0E+6 2648 33632

Heap sort

1.0E+2 870 0

ap_memory
1.0E+3 870 0
1.0E+4 870 0
1.0E+5 870 0
1.0E+6 870 0

Quick sort

1.0E+2 1186 4

ap_memory
1.0E+3 1211 4
1.0E+4 1230 38
1.0E+5 1264 358
1.0E+6 1299 3373

The performance estimation for software implementation
and for the initial, without any additional optimization
directives, hardware implementation for the selected sorting
algorithms is shown in Table II.

 TABLE II. PERFORMANCE ESTIMATION WITHOUT OPTIMIZATION

Sort
type

Array
size

CPU
time,

s

Hardware implementation
without any optimization

Clock
period,

ns

II Time,
s

Gnome
sort

1.0E+2 4.60E-05 6.229 3.20E+04 2.84E-04
1.0E+3 2.11E-03 6.229 2.05E+06 1.82E-02
1.0E+4 5.14E-01 6.229 5.24E+08 4.65E+00
1.0E+5 3.32E+01 6.229 3.35E+10 2.98E+02
1.0E+6 2.14E+03 6.229 2.14E+12 1.90E+04

Merge
sort

1.0E+2 5.00E-06 3.750 14E+2 5.33E-06
1.0E+3 7.00E-05 3.767 20E+3 7.55E-05
1.0E+4 1.10E-03 3.988 28E+4 1.12E-03
1.0E+5 1.20E-02 4.106 82E+5 3.37E-02
1.0E+6 1.40E-01 4.084 10E+7 4.08E-01

Heap
sort

1.0E+2 1.48E-05 3.755 45E+2 1.70E-05
1.0E+3 1.86E-04 3.755 68E+3 2.55E-04
1.0E+4 2.33E-03 3.755 91E+4 3.42E-03
1.0E+5 2.92E-02 3.755 11E+6 4.30E-02
1.0E+6 2.73E-01 3.755 16E+7 5.87E-01

Quick
sort

1.0E+2 7.37E-06 4.156 42E+7 1.73E+00
1.0E+3 1.05E-04 4.156 40E+11 1.67E+04
1.0E+4 1.20E-03 4.156 40E+15 1.66E+08
1.0E+5 1.78E-02 4.156 > 4E+20 >4.00E+10
1.0E+6 2.10E-01 4.156 > 4E+20 >4.00E+10

The performance of the hardware implementation in Table
II is estimated in:

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 26 --

 Clock period – the minimum possible period of the
clock frequency;

 II – initiation interval, the number of the clock periods
necessary to complete execution of the particular
sorting algorithm;

 Time – calculated by multiplying the estimates of the
minimum possible period of the clock frequency on
the number of required clock cycles.

Some conclusions that can be drawn from the analysis of
the results of the initial, without optimization, stage of the
research are below.

Shell sort shows very low performance and high hardware
cost even for small arrays. According to this, the algorithm
was rejected for next stages of the research. Results for the
sorting algorithm are excluded from Table I and Table II.

We need to consider a limitation of modern high-level
synthesis tools [11], [12], [13] associated with the inability to
implement recursive algorithms.

In accordance with the pointed limitation the typical,
recursive, form of Quick sort algorithm is not suitable for
hardware implementation by using modern HLS tools. Results
for implementation of non-recursive form of Quick sort
algorithm are in Table I and Table II . Comparative analysis of
the performance estimation shows that the algorithm demands
a huge number of the clock periods necessary to complete its
execution. According to this, there is no sense to optimize
non-recursive form of Quick sort algorithm and the algorithm
was rejected for further research.

Table III summarizes performance and hardware cost
estimations, which were achieved after optimization of the
high-level synthesis and implementation procedures.

TABLE III. EFFICIENCY OF OPTIMIZED IMPLEMENTATIONS

Sort
type

Array
size

CPU
time

spent, s

Hardware implementation after
optimization

Time
spent, s

LCELL BRAM

Gnome
sort

1.0E+2 4.60E-05 2.04E-04 290 0
1.0E+3 2.11E-03 1.31E-02 290 0
1.0E+4 5.14E-01 3.34E+00 290 0
1.0E+5 3.32E+01 2.14E+02 290 0
1.0E+6 2.14E+03 1.37E+04 283 0

Merge
sort

1.0E+2 5.00E-06 5.33E-07 5.19E+03 1.20E+01
1.0E+3 7.00E-05 5.19E-06 7.45E+03 1.80E+01
1.0E+4 1.10E-03 5.18E-05 1.05E+04 2.47E+02
1.0E+5 1.20E-02 5.18E-04 1.29E+04 2.52E+03
1.0E+6 1.40E-01 1.55E-02 1.53E+04 3.37E+04

Heap
sort

1.0E+2 1.48E-05 9.42E-06 1.10E+05 0
1.0E+3 1.86E-04 1.41E-04 1.10E+05 0
1.0E+4 2.33E-03 1.89E-03 1.10E+05 0
1.0E+5 2.92E-02 2.38E-02 1.10E+05 0
1.0E+6 2.73E-01 3.25E-01 1.10E+05 0

To optimize of the high-level synthesis and implementation
procedures for Gnome sort algorithm the following
assignments in Vivado HLS were used:

 AP_MEMORY interface with AP_SOURCE RAM2P.

To optimize of the high-level synthesis and implementation
procedures for Merge algorithm the following assignments in
Vivado HLS were used:

 AP_MEMORY interface with AP_SOURCE RAM2P.

 PIPELINE for merging arrays.

 DATAFLOW for the top function.

 ARRAY_PARTITION COMPLETE for an internal
arrays.

 UNROLL COMPLETE for merging cycle.

To optimize of the high-level synthesis and implementation
procedures for Heap sort algorithm the following assignments
in Vivado HLS were used:

 AP_MEMORY interface with AP_SOURCE RAM2P.

 ARRAY_PARTITION COMPLETE for an input array.

 UNROLL COMPLETE for all cycles.

To simplify comparative performance analysis some
figures based on Table III are below.

Fig. 2 visualizes the comparative analysis of the software-
based implementation and the optimized hardware
implementation of the Gnome sort algorithm. Results for
Gnome sort are shown on a logarithmic scale for convenience.
The Fig. 2 shows that Gnome sort algorithm implemented in
hardware by using modern HLS tools works slower than the
software implementation: by one order of magnitude slower
for any arrays size.

Fig. 2. Comparative performance analysis: Gnome sort

Fig. 3 visualizes the comparative analysis of the software-
based implementation and the optimized hardware
implementation of the Merge sort algorithm. The Fig. 3 shows
that Merge sort algorithm implemented in hardware by using
modern HLS tools works faster than the software
implementation. It should be noted that the positive
performance gap depends on the size of the array: the larger
the array, the greater the positive gap. For the largest array in
the current research, the gap is nearly one order of
magnitude.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 27 --

Fig. 3. Comparative performance analysis: Merge sort

Fig. 4 visualizes the comparative analysis of the software-
based implementation and the optimized hardware
implementation of the Heap sort algorithm. The Fig. 4 shows
that Heap sort algorithm implemented in hardware by using
modern HLS tools works slower than the software
implementation for large arrays. It should be noted that the
negative performance gap depends on the size of the array: the
larger the array, the greater the negative gap. For the largest
array in the current research, the negative gap is nearly two
times.

Fig. 4. Comparative performance analysis: Heap sort

Taking into account the sorting algorithm that gave in
hardware implementation a performance gain relative to the
software implementation (Merge sort and Heap sort), it is
necessary to pay an attention to the fact, illustrated in Table
III, that Merge sort algorithm, which gives a greater positive
gain in the performance, also has a large hardware cost for
implementation.

IV. CONCLUSION

The hardware implementation of the sorting algorithm
achieved by utilizing of the modern HLS tool does not always
provide higher performance than the execution of the same
algorithm on a universal processor. Performance gap (positive
or negative) depends on the internal features of the particular
sorting algorithm, for example, whether it allows
parallelization of reading, processing, writing the data, and on
optimization directives applied.

There are some reasons, why the hardware
implementations of the particular algorithms optimized by

modern HLS tools are still slower, than the software
implementation of the same algorithms:

The algorithms assume a sequential execution of
operations that is difficult to parallelize by using even
state of art high-level synthesis tools.

The clock speed of the universal processor is about an
order of magnitude higher than the clock frequency for
hardware implementation: the processor used for the
current research has a clock frequency of 2.5 GHz, and
the synthesized device, as it could be calculated from
the data given in Table III, is about 250 MHz.

There are algorithms that cannot be implemented in
hardware by using modern HLS tools, for example, recursive
Quick sort algorithm, in accordance with the HLS tools
restrictions.

The research shows that the non-recursive form of Quick
sort algorithm implemented in hardware by HLS tool
demonstrates a very low performance comparing to software
implementation the same algorithm. The reasons are the same:
internal features of the particular sorting algorithm and
inability of the modern HLS tool to parallelize and pipeline the
algorithm.

There are sorting algorithms, for example Merge sort
algorithm found during current research, which have positive
gap in performance when comparing with software
implementation of the same algorithm. Such algorithms, in
accordance with their internal features, allow to perform
several sorting stages concurrently and to do pipelining. These
are the reasons for the advantages in performance in
comparison with the software implementation.

The current research gave a solid background for
understanding capabilities of sorting algorithms and tools,
which should be taken in account while doing further research.

The direction and scope of the further research is related
with expansion of the number of sorting algorithms covered,
taking an additional attention to the sorting methods which
gave the better results.

The first target to the further research is Tim sort [22]
algorithm. The algorithm combines, as pointed on Fig. 1,
Merge sort and Insertion sort, which expected to make
hardware implementation even faster than Merge sort, with
reduced hardware costs.

The ultimate target for the further research should be to
find a set of sorting algorithms which, implemented in
hardware, by using modern HLS tools, will have the positive
performance gap in comparison with the fastest software
implementations of any sorting algorithms. This set should be
ranked according to the hardware costs required to implement
the algorithms.

V. ACKNOWLEDGMENT
The research was supported by international scientific-

educational center “Embedded Microelectronic System” of
Peter the Great St. Petersburg Polytechnic University.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 28 --

REFERENCES
[1] A. Antonov, V. Zaborovskij, I. Kalyaev, “The architecture of a

reconfigurable heterogeneous distributed supercomputer system for
solving the problems of intelligent data processing in the era of
digital transformation of the economy”, Cybersecurity Issues, Aug.
2019, vol. 33, # 5, pp. 2-11. DOI:10.21681/2311-3456-2019-5-02-11.

[2] F. Mantovani, E. Calore, “Performance and Power Analysis of HPC
Workloads on Heterogeneous Multi-Node Clusters”, Low Power
Electronics and Application. May 2018, vol. 8, #2, pp. 13-27.
https://doi.org/10.3390/jlpea8020013

[3] M. Usman Ashraf, F. Alburaei Eassa, A. Ahmad Albeshri, A.
Algarni, “Performance and Power Efficient Massive Parallel
Computational model for HPC Heterogeneous Exascale Systems”,
IEEE Access, April 2018, vol. 6, pp. 23095-23107. DOI:
10.1109/ACCESS.2018.2823299.

[4] Xilinx official website, UltraScale and UltraScale+ FPGA, Web:
https://www.xilinx.com/products/silicon-devices/fpga/virtex-
ultrascale.html#productTable

[5] Intel official website, Intel PSG and FPGA, Web:
https://www.intel.com/content/www/us/en/products/programmable.ht
ml

[6] R. Kobayashi, Y. Oobata, N. Fujita, Y. Yamaguchi, T. Boku,
“OpenCL-ready High Speed FPGA Network for Reconfigurable High
Performance Computing”, In Proc. International Conference on High
Performance Computing in Asia-Pacific, HPC Asia, Jan. 2018, pp.
192-201. DOI:10.1145/3149457.3149479.

[7] A. Antonov, V. Zaborovskij, I. Kisilev, “Specialized reconfigurable
computers in network-centric supercomputer systems”, High
availability systems, May 2018, vol.14, #3, pp. 57-62.
DOI:10.18127/j20729472-201803-09

[8] J. Dongarra, S. Gottlieb, W. Kramer, “Race to Exascale”, Computing
in Science and Engineering, Feb. 2019, vol.21, #1, pp. 4-5.
https://doi.org/10.1109/MCSE.2018.2882574

[9] A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, J.

Dongarra, “Investigating power capping toward energy-efficient
scientific applications”, Concurrency and Computation Practice and
Experience, March 2018, pp. 1-14. DOI: 10.1002/cpe.4485

[10] V. Le Fèvre, T. Herault, Y. Robert, A. Bouteiller, A. Hori, J G.
Bosilca, J. Dongarra, “Comparing the Performance of Rigid,
Moldable and Grid-Shaped Applications on Failure-Prone HPC
Platforms”, Parallel Computing, July 2019, vol. 85, pp. 1-12.
https://doi.org/10.1016/j.parco.2019.02.002

[11] Xilinx official website, IDE Vivado HLS, Web:
https://www.xilinx.com/video/hardware/vivado-hls-tool-
overview.html

[12] Intel official website, Intel HLS compiler, Web:
https://www.intel.com/content/www/us/en/software/programmable/q
uartus-prime/hls-compiler.html?wapkw=HLS

[13] Mentor official website, Catapult HLS, Web:
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

[14] W. Sherenaz, A. Baddar, K. Batcher, Designing Sorting Networks. A
New Paradigm. Springer, 2011. DOI: 10.1007/978-1-4614-1851-1.

[15] Sorting Algorithm, Gnome sort, Web:
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort

[16] Sorting Algorithm, Heap sort, Web:
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort

[17] Sorting Algorithm, Shell sort, Web:
http://rosettacode.org/wiki/Sorting_algorithms/Shell_sort

[18] Sorting Algorithm, Merge sort, Web:
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort

[19] Sorting Algorithm, Quick sort, Web:
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort

[20] Sorting And Searching Algorithms, Time and Space Complexities,
Web: https://www.hackerearth.com/ru/practice/notes/sorting-and-
searching-algorithms-time-complexities-cheat-sheet/

[21] Software IDE, Clio Web: https://www.jetbrains.com/clion/
[22] Sorting Algorithm, Tim Sort Web: https://dev.to/s_awdesh/timsort-

fastest-sorting-algorithm-for-real-world-problems--2jhd

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 29 --

