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Abstract—In this paper, we demonstrate issues and possible 
solutions to building an Artificial Intelligence Dialogue Assistant 
for human-machine communication. We specialize it for 
conducting written exams at online education platforms, talk 
about the main logical components of the system: knowledge 
base, question encoder, question generation module, question 
analysis module. As a knowledge base we consider text fragments 
representing parts of the course of text fragments representing 
parts of a course and is a source for a format ontology; and is also 
sourced for neural network generation of fact-based questions in 
question generation module and building dependency trees for 
answer evaluation in question analysis module.  

I. INTRODUCTION 

A. The Problem 
The recent trends to automate education processes pose 

new difficult challenges for the developing digital society. Due 
to the limited capabilities of online education platforms, 
assessment of student performance is mostly done via 
multiple-choice questions, which is not ideal for all-round 
evaluation of skills and knowledge students acquire during a 
course. Unstructured interviews in the form of a written 
dialogue between the examiner and the examinee could 
provide a much more relevant experience for both parties and 
automation of such a tool is sought for by education providers 
looking for improvement and optimization of their processes. 

Creating dialogue and Question and Answer systems is a 
rapidly developing field, however, most of the systems are 
built for figuring out an answer to the question of the user but 
few focus on generating questions based on some knowledge 
base and a dialogue context. While the desire of the market for 
such systems is raising, modern systems are yet to satisfy the 
performance requirements. 

B. The Goals, the Requirements, and the Limitations 
The scope of the problem spans across a variety of 

different fields of science, and many of them can have a 
legitimate claim to own it with respect to the history of the 
progress in the field. However, it is clear, that, ultimately, the 
problem lies within an intersection of multiple fields, which 
makes it difficult to give a formal description of the problem 
and criteria for evaluating discovered results. Thus, we feel 
that it is crucial to clearly state the environment we are 
working in and the kind of results we are seeking. 

First, for the limitations, we believe it would be 
unproductive to either try to find purely theoretical solutions, 
which may or may not be competitive comparing to products 
of giants like Google given similar access to the amount of 
computation power they can have; and, on the other hand, to 
narrow the focus of the research to a very small portion of the 
problem and have a provable case of improvement for this 
particular subtask. This means the most interesting opportunity 
is to say that the limitation is that the system should be able to 
operate with the amount of computational resources of a home 
personal computer to a small company and should have a clear 
pathway to scaling. For this kind of a system, we are talking 
about both runtime and compile (training) time performance. 

Second, for the requirements, the obvious case is to 
attempt to compete with state-of-the-art solutions. However, 
due to small number of such systems and ambiguity of what 
exactly the measurement of performance is, we believe the 
most reasonable approach is a combination of the system 
conforming to some clear basic criteria - at least working and 
producing results within the given limitations, - and a 
subjective evaluation of the results being meaningful and 
interesting for particular cases. 

Third, the goal is to research and implement a number of 
methods, which combined in certain ways fit the limitations 
and the requirements, and to compare how different 
combinations behave. 

II. RELATED WORK 
Dialogue systems follow one of the three common routes: 

case- or rule-based approach; end-to-end deep learning; or a 
hybrid approach. Solutions based on rules provide high quality 
and - very important for certain cases - predictable results but 
require volumes of manual labor of highly qualified specialists 
in both the linguistic and the field of the problem; and also are 
very expensive for modification and extension when new 
information arrives. For online education platforms, this 
approach puts a heavy burden to rebuild or build a brand new 
collection of rules for each new course, while existing courses 
tend to update annually. End-to-end systems, based on 
methods of natural language processing and deep learning, 
have issues as well, mostly arising from the unpredictability of 
the results. The hybrid approach is an attempt to enjoy the 
strongest points of both methods by combining them in 
various ways. All of these methods are employed by modern 
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systems trying to answer the question of the user. Systems 
asking the user a question, like Eliza, exist for a while now but 
are yet to be able to account for a dialogue context and 
”understand” the answer. 

A more general task - Automatic Question Generation 
(AQG) - has been tackled in many NLP works, most often 
with the purpose of knowledge assessment. As per the review 
by Kurdi et al. [1], the majority of them describe using ext as 
input and operate with template-based or rule-based 
algorithms for generating questions. The attempts to use deep 
learning have only started after the release of SQuAD and MS 
MARCO datasets in 2016. For example, Du et al. [2] use an 
encoder-decoder network to create factual questions based on 
the SQuAD corpus in an end-to-end fashion. Zhao et al. [3] 
use encoder-decoder architecture with self-attention, copy and 
maxout mechanisms to construct factual questions. Similarly, 
Scialom et al [4] use a small Transformer network with a 
copying mechanism to generate factual questions. The task of 
conversational question generation is new and is largely 
supported by the CoQA dataset [5]. For instance, Gao et al. [6] 
[6] jointly encode the passage and the dialogue history with an 
encoder-decoder model; Pan et al. [7] propose a reasoning 
mechanism for reading the conversation history iteratively. 
Pan et al. were also the first to introduce a method to improve 
the quality of generated questions via policy gradient. A 
similar concept (using a QG system to improve a QA system) 
is seen in the work by Duan et al. [8] 

III. REVIEW OF THE SYSTEM

The dialogue assistant, developed by the authors of this 
paper and intended to conduct a written examination, can work 
in a number of ways: 

By generating a set of questions to a text corpus.
By generating supplementary questions based on the
ser’s answers.
By evaluating relevancy and correctness of the answers
and figuring out the way to continue the dialogue or
conclude it.
By controlling the flow of the dialogue to adhere to the
desired length of a dialogue.

A. Technical aspects 
To conform to the requirements it is important not only to 

focus on more scientific subtasks but also to pay attention to 
the general design of the system and technical implementation 
of it. 

The implementation of the system is designed for both the 
simplicity of external interfaces and clarity of internal 
processes, see Fig. 1. 

The top level of the system is split between the compo-
nent, offering an interface to the system, and the subsystem 
implementing business-logic. 

The client of the system only interacts with the former and 
receives from it specification of datatypes and scenarios 
supported by the system. 

The business-logic subsystem consists of modules 
implementing business-logic subroutines, a persistent storage, 
and a coordination module responsible for the composition 
root of the supported scenarios. 

The system is modular and distributed, providing agility 
and scalability of the solution, clear visualization of the 
processes, and a possibility to employ parts of the system 
separately for a particular task. The system is packaged as a 
set of modules (libraries) with interfaces that can be run on a 
machine or a set of machines connected in a local network or 
via the internet. 

B. Logic Components 

Bridging between technical details and the nature of the 
problem, the following concepts provide a way to design the 
next level of abstraction of the system. 

Knowledge/Text Database: Knowledgebase consists of text 
corpora and formal ontologies. 

Question Encoder: In the simplest case it is just a question 
in a natural language, however, another approach is to 
represent it as a construction with a higher or a lower number 
of formal restrictions. 

Question Generation Module: Generates a question in a 
natural language in the context of a text fragment either via 
rules or by a trained neural network.’ 

Question Analysis Module: An evaluation (a measure) of 
an answer. In our case, is directly mapped to the module 
calculating ”distances” between Dependency Trees. 

The ”business-process” running inside the system is 
demonstrated in Fig. 2. 

1) Knowledge/Text Database: The knowledge base
consists of text fragments representing parts of a course and is 
a source for a format ontology; and is also sourced for neural 
network generation of fact-based questions and building 
dependency trees for answer evaluation. More complex 
questions are generated with the support of a formal ontology. 
The obstacles for creating a virtual assistant built on top of a 
knowledge base are: 1) the result must be in a natural language 
and should make sense 2) it requires the input text fragment to 
be parsed into a formal representation for the knowledge base 
3) the knowledge base architecture itself requires a careful
design. On the basic level, the first problem can be solved by 
employing existing template-based solutions for natural 
language generation; and for the third, there are several 
commonly accepted standards for ontology structure. The 
second problem, however, - extracting facts and terms from a 
text fragment - still is a present problem in natural language 
processing and is of critical importance for creating an 
ontology-based virtual dialogue assistant since it is both 
needed to avoid expensive manual labor of highly qualified 
experts, and to analyze user’s answers dynamically during 
their interactions with the system. 
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Fig. 1. High-level architecture of the system 

 

Fig. 2. The outline of the scenario, supported by the system 

 

Terms and facts extraction is based on lexical properties 
such as part of speech labeling, named entities labeling, and 
coreferent relations. Unfortunately, for Russian language, 
which is famous for its fusional nature and flexible word 
order, there are no existing databases for labeled named 
entities of significant enough volume to train a strong model, 
therefore we suggest to rely on characteristics on the kind of 
input data we target: text fragments in natural language, but 

with high density of particular cliche which intended to 
improve readability. This way it is possible to match such 
cliche with the formal ontology, extract facts and terms, 
normalize them, and add them to the ontology along with the 
information about their connections. An improvement to this 
method is to employ language models to unify synonymical 
entities and empirical knowledge about specific structures 
found in a particular media, for example, certain text corpus 
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may have important terms highlighted, or that textbooks tend 
to have lists of terms placed by the end. 

The process of formalization of a particular field of 
knowledge is called Ontology Learning. Obtaining such 
ontology takes several steps involving various methods of 
semantical analysis. The formal structure of a field of 
knowledge allows to: 

1. Group entities no just on the level of words and phrases, 
but concepts, i.e. sets of terms referring to the same idea 
(analogous to WordNet synsets). Here we call terms the 
commonly used phrases referring to a singular idea, e.g. 
”natural language processing”, ”machine learning”, etc.. 

2. Evaluate relations between concepts and their hierarchy. 
In terms of Formal Concept Analysis mechanism, a concept 
can be represented as a set of objects (i.e. terms in our case) 
and a set of attributes shared by all of those objects. 

3. Resolve coreference, i.e. all relations and attributes of a 
synonym or another reference to the target concept and are 
also applied to the concept itself. 

Extracting concepts is implemented by searching a text for 
specific objects (entities) and attaching respective attributes to 
them (properties). At this moment, the solution is based on 
classical methods with syntactic parsers and rule systems, and 
improvement by utilizing neural networks and linguistical 
models like BERT is planned. 

The valuable property of modeling a field of knowledge as 
concepts is the possibility to analytically find more general or 
more specific concepts. This allows us to build a hierarchy of 
concepts, for example, the concept of ”languages” can be split 
into concepts of ”formal”, ”artificial”, and ”natural” 
languages. Additionally, it is possible to describe the category 
of constructed languages (artificial and formal) and human 
languages (artificial and natural). Having the hierarchy of 
concepts we can start working with logical constructs of a 
higher level of abstraction; for example, all descendants of a 
concept have all its attributes, and, if two terms do not belong 
to the same concept, we can determine the difference and 
generate a question regarding that. 

A sidestep from the area where methods of Formal 
Concept Analysis would be to attempt to label relations 
between concepts not supported by the method. Any such 
relationship can be expressed as an object/attributes pair. Let 
us look at an example in notation of Prolog language: 

A text fragment: ”Natural language (NL) is a language 
used by people to communicate and not intentionally created. 
Examples would be Russian, English, Chinese, etc.” 

An example of an ontology for this fragment might be: 

Term - term(”Natural language”) 

Synonymy relation - syn(”Natural language”, ”NL”) 

Hypernymy/hyponymy relation - hyp(”Language”, 
”Natural language”) 

Sample (instance of relation) - ekz(”Natural language”, 
”Russian”) 

Attribute association - attr(”Natural language”, ”used by 
people to communicate”) 

Attribute association - attr(”Natural language”, ”is not 
intentionally constructed”) 

Also such knowledge base requires rules for automatical 
relation inference, for example: 

hyper(X, Y) :- hyp(Y, X)   (if Y is hypernym of X, than X 
is hyponym of Y) 

attr(Y, Z) :- attr(X, Z), syn(X, Y)  (if X has an attribute Z 
and Y is a synonym of X, than Y has an  attribute Z as well) 

2) Question generation module: The question generation 
module is implemented for two modes. 

The first mode is a question generator based on an 
ontology. Ontology allows not only to ask factual questions - 
which most of the neural networks trained for QnA model text 
generation do - but also to generate descriptive questions (e.g. 
”Describe X”, that is, list its attributes), discriminative 
questions (e.g. ”What is the difference between X and Y, that 
is, which of their attributes are not shared between them), 
closed questions (e.g. ”Is it true that X has the property Y), 
and even inverse (e.g. ”Which properties X does not have?”) 

Having the ability to generate this variety of questions is 
crucial for an effective virtual assistant since it may provide 
the user with tips, which more closely resembles a natural 
interview. 

Question: ”What are the characteristics of a natural 
language?” 

Query: ? - attr(”Natural language”, X) 

Response: 

X = ”is used by people to communicate” 

X = ”is not intentionally constructed” 

Question: ”What are some examples of artificial 
languages?” 

Query: ? - ekz(”Artificial language”, X) 

Response: 

X = ”Esperanto” 

X = ”Lojban” 

X = ”Toki Pona” 

X = ”Sindarin” 

Question: ”What is common between formal and artificial 
languages?” 

Query: attr(”Formal language”, X), attr(”Artificial 
language”, X) 

Response: 

X = ”intentionally constructed” 

Another implementation is based on deep neural networks. 
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CQG (Conversational Question Generation) attempts to 
generate the next question based on a text fragment and a 
dialogue context, that is question/answer pairs to the text 
fragment. It is closely connected to the CQA (Conversational 
Question Answering) problem, which, in turn, is a field of the 
QA (Question Answering) problem. However, while from QA 
and QG points of view generating a question or an answer is a 
static solution, CQA and CQG consider the problem as a time 
series with attached dialogue context and coreferent 
connection and requires a much deeper understanding of what 
part of the available information should be the focus to source 
from. 

The first step was to prepare data by semi-automatic 
translation of English training data to Russian. The second 
step was to train a ReDR (Reinforced Dynamic Reasoning) 
network. 

3) Question Analysis Module: To prepare data for evalu-
ation of the correctness of answers by fuzzy comparison of 
grammar dependency trees we have to perform graphemati-
cal, morphological, and syntactic analysis. For graphematical 
analysis, tokenization by sentences and then by words is 
performed. For morphological analysis, we perform lemmati-
zation, i.e. figuring out stems and labeling with parts of speech 
and extracting morphological features. For syntactic analysis, 
for each sentence, we build a dependency tree with words for 
nodes and types of semantical connections for edges. 

In this work we use the semantical parser UDify [9], which 
produces a result adhering to a unified system of labeling parts 
of speech, morpho-syntactical attributes and types of 
syntactical connections, developed by Universal Dependencies 
[10], to support the development of a multilingual syntactic 
analyzer, inter-language training, and analysis from the point 
of view of typology of a language. This markup is universal 
for all modern languages and brings together knowledge of 
various linguistic theories. According to this markup system, 
labels for parts of speech are separated into three categories: 
open class words, closed class words, and others. The first 
class consists of 6 tags, which are attached to independent 
parts of speech, typical for most of the languages. The second 
class has 8 tags, which are attributed to supporting parts of 
speech. The third class contains 3 tags for symbols, not 
representation particular words, or some special cases. There 
are 24 tags offered for labeling morphological attributes, 
which are split into lexical and inflectional groups. In the 
inflectional group, there are nominal and verbal features, 
however, this separation is fluid since there is no universal rule 
deciding a specific feature can only attach to nouns or only to 
verbs. 

For semantical dependencies, there are 37 tags, which 
correspond to basic linguistic principles of sentence structure 
building or describe supplemental relations. Fig. 3 demon-
strates examples of building dependency trees for student’s 
answers to the question ”What kind of a language can be 
called natural?” 

After that, we extract features from the vector space of the 
pre-trained language model RuBERT [11], which is trained on 
Russian Wikipedia and news data. The basis for this method of 

building embeddings is the Transformer architecture and the 
idea of training a predictor of words, obscured by a mask. 

To evaluate the user’s answer we apply a measurement of 
the relevancy of the answer. The ”relevancy” term in natural 
language processing often refers to how well the results 
provided by a search engine corresponding to the query of the 
user, i.e. how closely do the information fit to the needs of the 
user. 

This approach fits a question-answering system and can be 
employed to evaluate the user’s answer to the question asked 
by the system. For documents ranking a function is taken 
which reaches extremum fitting to the definition of relevance. 
To use is for a single document, though, requires to calculate a 
threshold for deciding whether the answer is relevant or 
not. 

For this project, to evaluate a user’s answer we perform a 
comparison of dependency trees for text fragments, which 
allows comparing whole phrases/sentences: a text fragment 
from the text corpora and a user’s answer. 

The grammar dependency tree is a way to illustrate syn-
tactical structures of a sentence, where all connections are 
considered subordinate, the root of the tree is the predicate, 
and the prepositions are described by how they control a form 
of a noun. 

There are various ways to measure distances between 
dependency trees, and they are much easier to work with 
comparing to ontologies or raw texts. 

A simple way to compare dependency trees for which there 
already are built children-trees is to calculate intersections of 
such relationships. In this case, the distance between two 
strings can be calculated as: 

where E is a measure of proximity, 

Q is the set of tuples of dependencies in the ”correct 
answer”, 

T is the set of tuples of dependencies in the user’s 
answer. 

To evaluate how close the user’s answer to one of the 
correct answers we need to figure out a threshold for making a 
decision. 

A more complicated, but also more precise method for 
comparing dependency trees is predicate matching. This 
measure is a more detailed version of the one before. 

Now, we are not only looking at triplets, constructed from 
two nodes, but also at all semantical relationships of a 
semantical root (predicate relationships) at the verb position. 
We compare the predicate of the correct answer to the 
predicate, extracted from the user’s answer. 

Q
TQ

E (1) 
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Fig. 3. Examples of dependency trees 

The measure of similarity SimTerm(t1, t2) between terms t1 
and  t2. 
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WWJttSimTerm (2) 

Where W1 and W2 are sets of context words from WordNet 
dictionary to the terms t1 and  t2 respectively. 

Then, if tu  is a term from the user’s answer and ta is a term 
from the correct answer, Tu and Ta - sets of terms from the 
user’s and the correct answers, the evaluation of the similarity 
between the user’s predicate pu and the correct predicate pa is 
calculated by 

0,max:

,max

),(arg

auExprTermTtuua

Tt auExprTermTt

aus

ttSimTtT

ttSim

ppSim

aa

uu aa (3) 

The total similarity measurement of the whole predicate is 
calculated as a product of measurement from 3 and the 
similarity of verb-terms. Such measure accounts for context 
words, which deals with issues of, for example, Homonymy. 

Another method is the depth-first fuzzy search, which 
works this way: 

1. Follow the same paths for both graphs from the roots
and picking the same edges and nodes with identical
labels.

2. Every time nodes match, add points to a cumulative
score:

2.1. Edge match 
2.1.1. Edges of different types can be assigned 

different weights 
2.1.2. Some edges and nodes can be dropped in one 

of the graphs 
2.2. Node match 

2.2.1. Letter-by-letter match - 1 point 
2.2.2. Matched lemmas - 0.5 point 
2.2.3. One lemma is a substring of another - 0.5 point 

3. Compare the cumulative score to the threshold

Node connection types (coordination, subordination, etc.) 
determine weights assigned to edges. The more important the 
connection for preserving the semantic structure of the 
sentence, the larger the weight should be assigned to it. 
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This method expands on the depth-first fuzzy search 
similar to how predicate matching expands on relationships 
sets intersections counting. 

To compare the user’s answer to the correct answer, we 
suggest the following: 

Given text phrases as dependency trees, first 
simultaneously path along the dependency trees, similarly to 
the depth-first fuzzy searching. Each time an edge is skipped a 
set amount of points is deducted. Each step, compare nodes 
letter-by-letter, compare lemmas, and in the vector space, 
created by a neural network, calculate dot product of the two 
nodes. Meanwhile, collect all paths, and for each one arriving 
to the final node, calculate the cumulative score. The best 
score would indicate the best path and is accepted as the 
measure of similarity between the two text fragments. 

IV. CONCLUSION 
This work proposes a virtual dialogue assistant for 

conducting remote exams to enable supports the entire process 
of taking the exam in the form of an interview. The online 
exam system can create a large number of simple questions 
based on the texts of  course lectures and compare the 
student's answer with the reference answer, which in our 
opinion is the best option for conducting the exam, then even 
test. Improvement of the system is represented in the form of 
implementing the possibility of maintaining a student-system 
dialogue, when the system is able to ask clarifying questions, 
and the response analysis module takes into account all the 
student's responses when calculating the final grade. However, 
when creating and improving such systems, one of the 
problems is the complexity of evaluating the quality of its 
work. 

While the ”subjective test” proves to be a solid choice as 
an evaluation system for a solution to a problem in terms of it 
fitting to ”sane” requirements, all according to Occam’s razor, 
the complexity of the problem makes it very difficult to reason 
about when trying to produce some sort of comparison to 
similar solutions to similar problems. Artificial Intelligence 
solutions, and in particular dialog systems, taking a place at 
the intersection of variety of fundamental disciplines, enjoy a 
significant number of degrees of freedom, allowing for 
exponential growth of opportunities, but blurring the sense of 
measurement of performance of a system due to increasing 
number of aspect towards which the performance can be 
evaluated. 

It appears building systems such as the one described in 
this paper, more than anything requires very careful and strict 
formulation of the aim and criteria of achieving the goal. Since 
the comprehensive evaluation of such systems takes a large 
amount of testing data, preparation of the data should be 

accounted for when planning the research and development 
cycles of a project. 

In spite of difficulties with evaluating results, nevertheless, 
the potential of such systems definitely is there, and, even 
though subjectively evaluated, the results prove to be 
enlightening and interesting. 
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