
A Virtual Dialogue Assistant for Conducting Remote
Exams

Anton Matveev, Olesia Makhnytkina, Inna Lizunova, Taisiia Vinogradova,
 Artem Chirkovskii, Aleksei Svischev, Nikita Mamaev

ITMO University
Saint-Petersburg, Russia

{aymatveev, makhnytkina, lizunova, tbvinogradova, chirkovskii, svischev, nmamaev}@itmo.ru

Abstract—In this paper, we demonstrate issues and possible
solutions to building an Artificial Intelligence Dialogue Assistant
for human-machine communication. We specialize it for
conducting written exams at online education platforms, talk
about the main logical components of the system: knowledge
base, question encoder, question generation module, question
analysis module. As a knowledge base we consider text fragments
representing parts of the course of text fragments representing
parts of a course and is a source for a format ontology; and is also
sourced for neural network generation of fact-based questions in
question generation module and building dependency trees for
answer evaluation in question analysis module.

I. INTRODUCTION

A. The Problem
The recent trends to automate education processes pose

new difficult challenges for the developing digital society. Due
to the limited capabilities of online education platforms,
assessment of student performance is mostly done via
multiple-choice questions, which is not ideal for all-round
evaluation of skills and knowledge students acquire during a
course. Unstructured interviews in the form of a written
dialogue between the examiner and the examinee could
provide a much more relevant experience for both parties and
automation of such a tool is sought for by education providers
looking for improvement and optimization of their processes.

Creating dialogue and Question and Answer systems is a
rapidly developing field, however, most of the systems are
built for figuring out an answer to the question of the user but
few focus on generating questions based on some knowledge
base and a dialogue context. While the desire of the market for
such systems is raising, modern systems are yet to satisfy the
performance requirements.

B. The Goals, the Requirements, and the Limitations
The scope of the problem spans across a variety of

different fields of science, and many of them can have a
legitimate claim to own it with respect to the history of the
progress in the field. However, it is clear, that, ultimately, the
problem lies within an intersection of multiple fields, which
makes it difficult to give a formal description of the problem
and criteria for evaluating discovered results. Thus, we feel
that it is crucial to clearly state the environment we are
working in and the kind of results we are seeking.

First, for the limitations, we believe it would be
unproductive to either try to find purely theoretical solutions,
which may or may not be competitive comparing to products
of giants like Google given similar access to the amount of
computation power they can have; and, on the other hand, to
narrow the focus of the research to a very small portion of the
problem and have a provable case of improvement for this
particular subtask. This means the most interesting opportunity
is to say that the limitation is that the system should be able to
operate with the amount of computational resources of a home
personal computer to a small company and should have a clear
pathway to scaling. For this kind of a system, we are talking
about both runtime and compile (training) time performance.

Second, for the requirements, the obvious case is to
attempt to compete with state-of-the-art solutions. However,
due to small number of such systems and ambiguity of what
exactly the measurement of performance is, we believe the
most reasonable approach is a combination of the system
conforming to some clear basic criteria - at least working and
producing results within the given limitations, - and a
subjective evaluation of the results being meaningful and
interesting for particular cases.

Third, the goal is to research and implement a number of
methods, which combined in certain ways fit the limitations
and the requirements, and to compare how different
combinations behave.

II. RELATED WORK
Dialogue systems follow one of the three common routes:

case- or rule-based approach; end-to-end deep learning; or a
hybrid approach. Solutions based on rules provide high quality
and - very important for certain cases - predictable results but
require volumes of manual labor of highly qualified specialists
in both the linguistic and the field of the problem; and also are
very expensive for modification and extension when new
information arrives. For online education platforms, this
approach puts a heavy burden to rebuild or build a brand new
collection of rules for each new course, while existing courses
tend to update annually. End-to-end systems, based on
methods of natural language processing and deep learning,
have issues as well, mostly arising from the unpredictability of
the results. The hybrid approach is an attempt to enjoy the
strongest points of both methods by combining them in
various ways. All of these methods are employed by modern

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

systems trying to answer the question of the user. Systems
asking the user a question, like Eliza, exist for a while now but
are yet to be able to account for a dialogue context and
”understand” the answer.

A more general task - Automatic Question Generation
(AQG) - has been tackled in many NLP works, most often
with the purpose of knowledge assessment. As per the review
by Kurdi et al. [1], the majority of them describe using ext as
input and operate with template-based or rule-based
algorithms for generating questions. The attempts to use deep
learning have only started after the release of SQuAD and MS
MARCO datasets in 2016. For example, Du et al. [2] use an
encoder-decoder network to create factual questions based on
the SQuAD corpus in an end-to-end fashion. Zhao et al. [3]
use encoder-decoder architecture with self-attention, copy and
maxout mechanisms to construct factual questions. Similarly,
Scialom et al [4] use a small Transformer network with a
copying mechanism to generate factual questions. The task of
conversational question generation is new and is largely
supported by the CoQA dataset [5]. For instance, Gao et al. [6]
[6] jointly encode the passage and the dialogue history with an
encoder-decoder model; Pan et al. [7] propose a reasoning
mechanism for reading the conversation history iteratively.
Pan et al. were also the first to introduce a method to improve
the quality of generated questions via policy gradient. A
similar concept (using a QG system to improve a QA system)
is seen in the work by Duan et al. [8]

III. REVIEW OF THE SYSTEM

The dialogue assistant, developed by the authors of this
paper and intended to conduct a written examination, can work
in a number of ways:

By generating a set of questions to a text corpus.
By generating supplementary questions based on the
ser’s answers.
By evaluating relevancy and correctness of the answers
and figuring out the way to continue the dialogue or
conclude it.
By controlling the flow of the dialogue to adhere to the
desired length of a dialogue.

A. Technical aspects
To conform to the requirements it is important not only to

focus on more scientific subtasks but also to pay attention to
the general design of the system and technical implementation
of it.

The implementation of the system is designed for both the
simplicity of external interfaces and clarity of internal
processes, see Fig. 1.

The top level of the system is split between the compo-
nent, offering an interface to the system, and the subsystem
implementing business-logic.

The client of the system only interacts with the former and
receives from it specification of datatypes and scenarios
supported by the system.

The business-logic subsystem consists of modules
implementing business-logic subroutines, a persistent storage,
and a coordination module responsible for the composition
root of the supported scenarios.

The system is modular and distributed, providing agility
and scalability of the solution, clear visualization of the
processes, and a possibility to employ parts of the system
separately for a particular task. The system is packaged as a
set of modules (libraries) with interfaces that can be run on a
machine or a set of machines connected in a local network or
via the internet.

B. Logic Components

Bridging between technical details and the nature of the
problem, the following concepts provide a way to design the
next level of abstraction of the system.

Knowledge/Text Database: Knowledgebase consists of text
corpora and formal ontologies.

Question Encoder: In the simplest case it is just a question
in a natural language, however, another approach is to
represent it as a construction with a higher or a lower number
of formal restrictions.

Question Generation Module: Generates a question in a
natural language in the context of a text fragment either via
rules or by a trained neural network.’

Question Analysis Module: An evaluation (a measure) of
an answer. In our case, is directly mapped to the module
calculating ”distances” between Dependency Trees.

The ”business-process” running inside the system is
demonstrated in Fig. 2.

1) Knowledge/Text Database: The knowledge base
consists of text fragments representing parts of a course and is
a source for a format ontology; and is also sourced for neural
network generation of fact-based questions and building
dependency trees for answer evaluation. More complex
questions are generated with the support of a formal ontology.
The obstacles for creating a virtual assistant built on top of a
knowledge base are: 1) the result must be in a natural language
and should make sense 2) it requires the input text fragment to
be parsed into a formal representation for the knowledge base
3) the knowledge base architecture itself requires a careful
design. On the basic level, the first problem can be solved by
employing existing template-based solutions for natural
language generation; and for the third, there are several
commonly accepted standards for ontology structure. The
second problem, however, - extracting facts and terms from a
text fragment - still is a present problem in natural language
processing and is of critical importance for creating an
ontology-based virtual dialogue assistant since it is both
needed to avoid expensive manual labor of highly qualified
experts, and to analyze user’s answers dynamically during
their interactions with the system.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 285 --

Fig. 1. High-level architecture of the system

Fig. 2. The outline of the scenario, supported by the system

Terms and facts extraction is based on lexical properties
such as part of speech labeling, named entities labeling, and
coreferent relations. Unfortunately, for Russian language,
which is famous for its fusional nature and flexible word
order, there are no existing databases for labeled named
entities of significant enough volume to train a strong model,
therefore we suggest to rely on characteristics on the kind of
input data we target: text fragments in natural language, but

with high density of particular cliche which intended to
improve readability. This way it is possible to match such
cliche with the formal ontology, extract facts and terms,
normalize them, and add them to the ontology along with the
information about their connections. An improvement to this
method is to employ language models to unify synonymical
entities and empirical knowledge about specific structures
found in a particular media, for example, certain text corpus

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 286 --

may have important terms highlighted, or that textbooks tend
to have lists of terms placed by the end.

The process of formalization of a particular field of
knowledge is called Ontology Learning. Obtaining such
ontology takes several steps involving various methods of
semantical analysis. The formal structure of a field of
knowledge allows to:

1. Group entities no just on the level of words and phrases,
but concepts, i.e. sets of terms referring to the same idea
(analogous to WordNet synsets). Here we call terms the
commonly used phrases referring to a singular idea, e.g.
”natural language processing”, ”machine learning”, etc..

2. Evaluate relations between concepts and their hierarchy.
In terms of Formal Concept Analysis mechanism, a concept
can be represented as a set of objects (i.e. terms in our case)
and a set of attributes shared by all of those objects.

3. Resolve coreference, i.e. all relations and attributes of a
synonym or another reference to the target concept and are
also applied to the concept itself.

Extracting concepts is implemented by searching a text for
specific objects (entities) and attaching respective attributes to
them (properties). At this moment, the solution is based on
classical methods with syntactic parsers and rule systems, and
improvement by utilizing neural networks and linguistical
models like BERT is planned.

The valuable property of modeling a field of knowledge as
concepts is the possibility to analytically find more general or
more specific concepts. This allows us to build a hierarchy of
concepts, for example, the concept of ”languages” can be split
into concepts of ”formal”, ”artificial”, and ”natural”
languages. Additionally, it is possible to describe the category
of constructed languages (artificial and formal) and human
languages (artificial and natural). Having the hierarchy of
concepts we can start working with logical constructs of a
higher level of abstraction; for example, all descendants of a
concept have all its attributes, and, if two terms do not belong
to the same concept, we can determine the difference and
generate a question regarding that.

A sidestep from the area where methods of Formal
Concept Analysis would be to attempt to label relations
between concepts not supported by the method. Any such
relationship can be expressed as an object/attributes pair. Let
us look at an example in notation of Prolog language:

A text fragment: ”Natural language (NL) is a language
used by people to communicate and not intentionally created.
Examples would be Russian, English, Chinese, etc.”

An example of an ontology for this fragment might be:

Term - term(”Natural language”)

Synonymy relation - syn(”Natural language”, ”NL”)

Hypernymy/hyponymy relation - hyp(”Language”,
”Natural language”)

Sample (instance of relation) - ekz(”Natural language”,
”Russian”)

Attribute association - attr(”Natural language”, ”used by
people to communicate”)

Attribute association - attr(”Natural language”, ”is not
intentionally constructed”)

Also such knowledge base requires rules for automatical
relation inference, for example:

hyper(X, Y) :- hyp(Y, X) (if Y is hypernym of X, than X
is hyponym of Y)

attr(Y, Z) :- attr(X, Z), syn(X, Y) (if X has an attribute Z
and Y is a synonym of X, than Y has an attribute Z as well)

2) Question generation module: The question generation
module is implemented for two modes.

The first mode is a question generator based on an
ontology. Ontology allows not only to ask factual questions -
which most of the neural networks trained for QnA model text
generation do - but also to generate descriptive questions (e.g.
”Describe X”, that is, list its attributes), discriminative
questions (e.g. ”What is the difference between X and Y, that
is, which of their attributes are not shared between them),
closed questions (e.g. ”Is it true that X has the property Y),
and even inverse (e.g. ”Which properties X does not have?”)

Having the ability to generate this variety of questions is
crucial for an effective virtual assistant since it may provide
the user with tips, which more closely resembles a natural
interview.

Question: ”What are the characteristics of a natural
language?”

Query: ? - attr(”Natural language”, X)

Response:

X = ”is used by people to communicate”

X = ”is not intentionally constructed”

Question: ”What are some examples of artificial
languages?”

Query: ? - ekz(”Artificial language”, X)

Response:

X = ”Esperanto”

X = ”Lojban”

X = ”Toki Pona”

X = ”Sindarin”

Question: ”What is common between formal and artificial
languages?”

Query: attr(”Formal language”, X), attr(”Artificial
language”, X)

Response:

X = ”intentionally constructed”

Another implementation is based on deep neural networks.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 287 --

CQG (Conversational Question Generation) attempts to
generate the next question based on a text fragment and a
dialogue context, that is question/answer pairs to the text
fragment. It is closely connected to the CQA (Conversational
Question Answering) problem, which, in turn, is a field of the
QA (Question Answering) problem. However, while from QA
and QG points of view generating a question or an answer is a
static solution, CQA and CQG consider the problem as a time
series with attached dialogue context and coreferent
connection and requires a much deeper understanding of what
part of the available information should be the focus to source
from.

The first step was to prepare data by semi-automatic
translation of English training data to Russian. The second
step was to train a ReDR (Reinforced Dynamic Reasoning)
network.

3) Question Analysis Module: To prepare data for evalu-
ation of the correctness of answers by fuzzy comparison of
grammar dependency trees we have to perform graphemati-
cal, morphological, and syntactic analysis. For graphematical
analysis, tokenization by sentences and then by words is
performed. For morphological analysis, we perform lemmati-
zation, i.e. figuring out stems and labeling with parts of speech
and extracting morphological features. For syntactic analysis,
for each sentence, we build a dependency tree with words for
nodes and types of semantical connections for edges.

In this work we use the semantical parser UDify [9], which
produces a result adhering to a unified system of labeling parts
of speech, morpho-syntactical attributes and types of
syntactical connections, developed by Universal Dependencies
[10], to support the development of a multilingual syntactic
analyzer, inter-language training, and analysis from the point
of view of typology of a language. This markup is universal
for all modern languages and brings together knowledge of
various linguistic theories. According to this markup system,
labels for parts of speech are separated into three categories:
open class words, closed class words, and others. The first
class consists of 6 tags, which are attached to independent
parts of speech, typical for most of the languages. The second
class has 8 tags, which are attributed to supporting parts of
speech. The third class contains 3 tags for symbols, not
representation particular words, or some special cases. There
are 24 tags offered for labeling morphological attributes,
which are split into lexical and inflectional groups. In the
inflectional group, there are nominal and verbal features,
however, this separation is fluid since there is no universal rule
deciding a specific feature can only attach to nouns or only to
verbs.

For semantical dependencies, there are 37 tags, which
correspond to basic linguistic principles of sentence structure
building or describe supplemental relations. Fig. 3 demon-
strates examples of building dependency trees for student’s
answers to the question ”What kind of a language can be
called natural?”

After that, we extract features from the vector space of the
pre-trained language model RuBERT [11], which is trained on
Russian Wikipedia and news data. The basis for this method of

building embeddings is the Transformer architecture and the
idea of training a predictor of words, obscured by a mask.

To evaluate the user’s answer we apply a measurement of
the relevancy of the answer. The ”relevancy” term in natural
language processing often refers to how well the results
provided by a search engine corresponding to the query of the
user, i.e. how closely do the information fit to the needs of the
user.

This approach fits a question-answering system and can be
employed to evaluate the user’s answer to the question asked
by the system. For documents ranking a function is taken
which reaches extremum fitting to the definition of relevance.
To use is for a single document, though, requires to calculate a
threshold for deciding whether the answer is relevant or
not.

For this project, to evaluate a user’s answer we perform a
comparison of dependency trees for text fragments, which
allows comparing whole phrases/sentences: a text fragment
from the text corpora and a user’s answer.

The grammar dependency tree is a way to illustrate syn-
tactical structures of a sentence, where all connections are
considered subordinate, the root of the tree is the predicate,
and the prepositions are described by how they control a form
of a noun.

There are various ways to measure distances between
dependency trees, and they are much easier to work with
comparing to ontologies or raw texts.

A simple way to compare dependency trees for which there
already are built children-trees is to calculate intersections of
such relationships. In this case, the distance between two
strings can be calculated as:

where E is a measure of proximity,

Q is the set of tuples of dependencies in the ”correct
answer”,

T is the set of tuples of dependencies in the user’s
answer.

To evaluate how close the user’s answer to one of the
correct answers we need to figure out a threshold for making a
decision.

A more complicated, but also more precise method for
comparing dependency trees is predicate matching. This
measure is a more detailed version of the one before.

Now, we are not only looking at triplets, constructed from
two nodes, but also at all semantical relationships of a
semantical root (predicate relationships) at the verb position.
We compare the predicate of the correct answer to the
predicate, extracted from the user’s answer.

Q
TQ

E (1)

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 288 --

Fig. 3. Examples of dependency trees

The measure of similarity SimTerm(t1, t2) between terms t1
and t2.

21

21
2121 ,),(

WW
WW

WWJttSimTerm (2)

Where W1 and W2 are sets of context words from WordNet
dictionary to the terms t1 and t2 respectively.

Then, if tu is a term from the user’s answer and ta is a term
from the correct answer, Tu and Ta - sets of terms from the
user’s and the correct answers, the evaluation of the similarity
between the user’s predicate pu and the correct predicate pa is
calculated by

0,max:

,max

),(arg

auExprTermTtuua

Tt auExprTermTt

aus

ttSimTtT

ttSim

ppSim

aa

uu aa (3)

The total similarity measurement of the whole predicate is
calculated as a product of measurement from 3 and the
similarity of verb-terms. Such measure accounts for context
words, which deals with issues of, for example, Homonymy.

Another method is the depth-first fuzzy search, which
works this way:

1. Follow the same paths for both graphs from the roots
and picking the same edges and nodes with identical
labels.

2. Every time nodes match, add points to a cumulative
score:

2.1. Edge match
2.1.1. Edges of different types can be assigned

different weights
2.1.2. Some edges and nodes can be dropped in one

of the graphs
2.2. Node match

2.2.1. Letter-by-letter match - 1 point
2.2.2. Matched lemmas - 0.5 point
2.2.3. One lemma is a substring of another - 0.5 point

3. Compare the cumulative score to the threshold

Node connection types (coordination, subordination, etc.)
determine weights assigned to edges. The more important the
connection for preserving the semantic structure of the
sentence, the larger the weight should be assigned to it.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 289 --

This method expands on the depth-first fuzzy search
similar to how predicate matching expands on relationships
sets intersections counting.

To compare the user’s answer to the correct answer, we
suggest the following:

Given text phrases as dependency trees, first
simultaneously path along the dependency trees, similarly to
the depth-first fuzzy searching. Each time an edge is skipped a
set amount of points is deducted. Each step, compare nodes
letter-by-letter, compare lemmas, and in the vector space,
created by a neural network, calculate dot product of the two
nodes. Meanwhile, collect all paths, and for each one arriving
to the final node, calculate the cumulative score. The best
score would indicate the best path and is accepted as the
measure of similarity between the two text fragments.

IV. CONCLUSION
This work proposes a virtual dialogue assistant for

conducting remote exams to enable supports the entire process
of taking the exam in the form of an interview. The online
exam system can create a large number of simple questions
based on the texts of course lectures and compare the
student's answer with the reference answer, which in our
opinion is the best option for conducting the exam, then even
test. Improvement of the system is represented in the form of
implementing the possibility of maintaining a student-system
dialogue, when the system is able to ask clarifying questions,
and the response analysis module takes into account all the
student's responses when calculating the final grade. However,
when creating and improving such systems, one of the
problems is the complexity of evaluating the quality of its
work.

While the ”subjective test” proves to be a solid choice as
an evaluation system for a solution to a problem in terms of it
fitting to ”sane” requirements, all according to Occam’s razor,
the complexity of the problem makes it very difficult to reason
about when trying to produce some sort of comparison to
similar solutions to similar problems. Artificial Intelligence
solutions, and in particular dialog systems, taking a place at
the intersection of variety of fundamental disciplines, enjoy a
significant number of degrees of freedom, allowing for
exponential growth of opportunities, but blurring the sense of
measurement of performance of a system due to increasing
number of aspect towards which the performance can be
evaluated.

It appears building systems such as the one described in
this paper, more than anything requires very careful and strict
formulation of the aim and criteria of achieving the goal. Since
the comprehensive evaluation of such systems takes a large
amount of testing data, preparation of the data should be

accounted for when planning the research and development
cycles of a project.

In spite of difficulties with evaluating results, nevertheless,
the potential of such systems definitely is there, and, even
though subjectively evaluated, the results prove to be
enlightening and interesting.

ACKNOWLEDGMENT
This work was partially financially supported by the

Government of the Russian Federation (Grant 08-08).

REFERENCES
[1] G. Kurdi, J. Leo, B. Parsia, and S. Al-Emari, ”Asystematic review of

automatic question generation for educational purposes”,
International Journal of Artificial Intelligence in Education, Nov.
2019.

[2] X. Du, J. Shao, and C. Cardie, ”Learning to ask: Neural question
generation for reading comprehension”, Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1342–1352, Jan. 2017.

[3] Y. Zhao, X. Ni, Y. Ding, and Q. Ke, ”Paragraph-level neural question
generation with maxout pointer and gated self-attention networks”,
Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 3901–3910, Brussels, Belgium,
Oct.-Nov. 2018, Association for Computational Linguistics.

[4] T. Scialom, B. Piwowarski, and J. Staiano, ”Self-attention
architectures for answer-agnostic neural question generation”,
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 6027–6032, Florence, Italy, July
2019, Association for Computational Linguistics.

[5] S. Reddy, D. Chen, and C. D. Manning, ”Coqa: A conversational
question answering challenge”, Transactions of the Association for
Computational Linguistics, 7:249–266, Mar. 2019.

[6] Y. Gao, P. Li, I. King, and M. R. Lyu, ”Interconnected question
generation with coreference alignment and conversation flow model-
ing”, Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4853–4862, Florence, Italy, July
2019, Association for Computational Linguistics.

[7] B. Pan, H. Li, Z. Yao, D. Cai, and H. Sun, ”Reinforced dynamic
reasoning for conversational question generation”, Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, 2019.

[8] N. Duan, D. Tang, P. Chen, and M. Zhou, ”Question generation for
question answering”, Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 866–874,
Copenhagen, Denmark, Sep. 2017, Association for Computational
Linguistics.

[9] D. Kondratyuk and M. Straka, ”75 languages, 1 model: Parsing
univer-sal dependencies universally”, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th Inter-national Joint Conference on Natural Language
Processing (EMNLPI-JCNLP), pp. 2779–2795, Hong Kong, China,
2019, Association for Computational Linguistics.

[10] M. Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,
C. D. Manning, ”Universal Stanford dependencies: A cross-linguistic
typology”, Proceedings of the Ninth International Conference on
Lan-guage Resources and Evaluation (LREC’14), 2014, pp. 4585–
4592.

[11] Y. Kuratov, M. Arkhipov, ”Adaptation of Deep Bidirectional Multi-
lingual Transformers for Russian Language”, arXiv:1905.07213,
2019, Web: https://arxiv.org/abs/1905.07213

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 290 --

