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Abstract—Successful implementation of smart manufacturing 
systems requires tight connectivity and intensive information and 
knowledge exchange. There is still a need for achieving certain 
level of smartness and beyond (i.e. cognitive manufacturing) by 
identifying semantic relations between heterogeneous data 
sources, extract actionable information and subsequently 
automate the process of knowledge generation and target-
oriented recommendation in industrial context. The missing 
linkage is the quality of knowledge generation and protection 
process, which requires further investigation along with standard 
planning and controlling measures. This can be achieved through 
application of ontologies as a mean to support interoperability, 
reasoning and decision making. Considering various alternative 
approaches, this paper describes a research framework for 
ongoing study on ontology-based planning and controlling in 
smart manufacturing systems. 

I. INTRODUCTION 
Smart Manufacturing is a new manufacturing paradigm [1] 

where machines are fully connected via Internet of Things 
(IoT) infrastructure including open communication platforms 
for industrial automation, and equipped with sensors. A 
successful implementation of smart manufacturing systems 
requires a tight integration along all the processes what leads to 
the implementation of cyber-physical system platforms that 
provide possibilities of integration between the physical 
equipment and IT services & applications [2]. However, such 
an integration is usually a challenge since different processes in 
manufacturing systems have different goals, solve different 
tasks, and apply different methods that assume application of 
information models, which fit well to the corresponding tasks, 
but usually are not interoperable with each other. 

Since connectivity is one of the key enablers for this kind of 
systems, one of the main problems is interoperability between 
independent heterogeneous manufacturing resources [3]. In 
Europe, this issue today is receiving a great attention. In the 
concept of a new European interoperability framework (New 
EIF [4], [5]), interoperability is defined as the “ability of 
organizations to interact towards mutually beneficial goals, 
involving the sharing of information and knowledge between 
these organizations, through the business processes they 
support, using the exchange of data between their ICT 
systems”.  

The need for standardization and interoperable systems was 
recognized almost thirty years ago with the launch of the 
European Commission’s CADDIA program in 1985, the 

IDABC program in 1995, the ISA program in 2009 (decision 
2009/922/EC) and the creation of current compatibility 
solutions for European e-government services (ISA²) in 2016 
[6]. However, support for interoperability and integration of 
information resources into common ecosystems is still an 
unsolved interdisciplinary problem.  

The intelligent connectivity and sensor systems allow data 
driven intelligence to analyze complex nonlinear relations 
within smart manufacturing systems and derive 
recommendations from those with the help of industrial data 
science methods, in particular machine learning [7]. Yet, 
smartness is limited to smart connectivity and smart data, i.e. 
generation and storing of large amount of data by means of 
various sensors, cloud-based solution and novel data-driven 
technologies such as augmented reality [7]. Still efforts are 
required to achieve certain level of smartness and even beyond 
(i.e. cognitive manufacturing) by identifying semantic relations 
between heterogeneous data sources, extract actionable 
information and subsequently automate the process of 
knowledge generation and target-oriented recommendation in 
industrial context.  

There are four levels of interoperability [5]: technical, 
semantic, organizational and legislative. Semantic 
interoperability is understood as semantic interpretation of data 
presented using meta-models such as the Unified Modeling 
Language (UML [8]) class diagrams and the Ontology Web 
Language (OWL [9]). The semantic web (Semantic Web) is 
one of the ways to solve the problem of semantic 
interoperability, but today it does not allow working with 
information as seamlessly as necessary.  

To achieve the aforementioned goal, ontology engineering 
and learning should be integrated into the machine learning 
pipeline, where new generated data and even knowledge such 
as diagnosis/prognosis is linked prior (domain or context-
specific) knowledge [10].  

Ontologies have shown their usability for this type of tasks 
(e.g., [11], [12]). These are content theories about the sorts of 
objects, properties of objects and relations between objects that 
are possible in a specified knowledge domain. Ontologies 
provide potential terms for describing the knowledge about the 
domain [13]. An ontological model is used to solve the 
problem of heterogeneity of descriptions of different enterprise 
elements. This model makes it possible to enable 
interoperability between heterogeneous information sources 
due to provision of their common semantics [14].  

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



However, ontologies do not only support linking new and 
prior/background knowledge, but also contribute to improving 
quality of reasoning, problem-solving and decision-making 
processes where historical cases are taken into consideration. 
For instance, Ontology-based Case-based Reasoning (CBR) 
leverages previous expert knowledge for solving a new given 
case. This approach can be applied to maintenance, where 
CBR, in combination with an ontological knowledge base is 
used to improve the efficiency of maintenance planning. 
Ontology-enabled CBR as a decision support system can also 
be applied to optimize the material matching process for 
manufacturing [15]. 

Furthermore, ontologies support protection of knowledge 
within the industrial ecosystem and ensures long-term 
availability of knowledge sources including documentation of 
various generation of machines, equipment, etc., i.e. a 
systematic and reliable knowledge protection.   

Ontologies have proved themselves as one of the most 
efficient ways to solve the problem of semantic interoperability 
support. They are formal conceptualizations of domains of 
interests sharable by heterogeneous applications [16], [17]. 
They provide means for machine-readable representation of 
domain knowledge and enable to share, exchange, and process 
information and knowledge based on its semantics, not just the 
syntax. Ontologies include concepts existing in a domain, 
relationships between these concepts, and axioms.  

It is generally accepted that models of specific problem 
areas (for example, configuration models of complex systems) 
can be obtained by inheriting or extending a common ontology. 
However, in systems with a dynamic structure, such as flexible 
manufacturing systems, this solution does not allow to achieve 
the required level of flexibility, since the expansion of the 
general ontology with the appearance of new information 
objects requires ontology matching.  

This would not be a problem if each process had to deal 
with its own piece of information, however in reality these 
information pieces overlap and changes made during one 
process have to be taken into account at the others. As a result, 
an efficient information exchange between different processes 
requires solving the problem of interoperability support. 

As a result, applying ontologies to digital ecosystems is still 
a problem due to different terminologies and formalisms that 
the members of the ecosystems use.  

The contribution of the paper is twofold. First, approaches 
are analysed that can be efficient for the design of ontologies 
that could take into account heterogeneous nature of 
components of the smart manufacturing systems. Second, the 
paper proposes a framework guiding the research on ontology-
based planning and controlling in smart manufacturing 
systems.  

The reminder of the paper is structured as follows. Section 
II introduces smart manufacturing systems and their specifics 
related to planning and control functions. Section III presents 
state-of-the-art approaches to ontology engineering that can 
support heterogeneous nature of the considered systems. It is 
followed by the description of the designed framework for of 
ontology-based planning in smart manufacturing systems. Main 
results are summarized in the conclusion. 

II. SMART MANUFACTURING SYSTEMS

Smart manufacturing, in particular cyber-physical 
production systems (CPPS), have a significant influence on 
production planning and controlling [18], [19]. Deploying 
CPPS raises several challenges for industries addressed in 
[20], [21], in particular with regard to extraction of knowledge 
from heterogeneous data sources, automation of knowledge 
generation process, interoperations with production 
information systems as well as changeability, adaptability and 
re-configurability in production management. Compared to 
traditional production planning based on a static knowledge 
base, smart manufacturing requires a collection of real time 
information and share from and between products, machines, 
processes and operations [22]. The application and exchange 
of data within and between various elements and building 
blocks of smart manufacturing systems, e.g. production 
planning and maintenance planning, should lead to an 
automated and decentralized production, which is an essential 
characteristic of Industry 4.0 [23], [24].  

Following this line of research the key question is “what is 
required for improving planning and controlling”? In fact, 
improvement could be interpreted and subsequently measured 
in terms of industrial KPIs (Key Performance Indicators) such 
as planning quality (effectiveness, accuracy, etc.), 
(physical/human) resource efficiency and productivity 
improvement. The missing linkage is the quality of knowledge 
generation and protection process, which requires further 
investigation along with standard planning and controlling 
measures [25]. In other words, the more smart manufacturing 
systems become knowledge-driven, the higher is the impact of 
knowledge on quality of production planning and controlling. 
This hypothesis has not been extensively investigated yet in 
the literature of operation management and industrial 
engineering.  

III. USAGE OF ONTOLOGIES IN MANUFACTURING SYSTEMS

Ontologies are a mean to represent knowledge about a 
problem domain in a machine-readable way. They enable 
obtaining, exchanging and processing information and 
knowledge based on their semantics rather than just syntax. 
Ontologies are a well-proven tool to solve the interoperability 
problem, but the problem of applying ontologies to 
manufacturing systems is due to different terminologies used 
in different manufacturing processes even within one company 
[26], [27]. E.g., in [28] a model-driven interoperability 
framework is presented as a technical support of co-evolution 
strategy of products and manufacturing systems. The authors 
address connecting possible product modules to all possible 
production capabilities managed on the Manufacturing Process 
Management tool through establishing “connector framework” 
to match different ontologies.  

There are efforts aimed at enriching ontologies with 
additional information (e.g., extension of DAML+OIL for 
description of configuration problems [29], introducing 
semantic annotations [30], etc.), however, they still cannot 
solve the problem of integrating heterogeneous information 
and knowledge described in different terminology. For 
example, it is common understanding that domain specific 
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models (e.g., configuration models) can be derived by 
inheriting or subclassing the ontologies within the general 
model. Thus, SWRL is a rule-based language for description 
of constraints is based on OWL and the resulting ontology is 
an extension of OWL ontology. Then, actual configuration 
system can be implemented using Jess what requires mapping 
of OWL-based configuration knowledge and SWRL-based 
constraints into Jess facts and Jess, respectively [31]. 

There are a number of research efforts addressing this 
problem. For example, in [32] a solution is proposed based on 
semantically annotated multi-faceted ontology for product 
family modelling to automatically suggest semantically-related 
annotations based on the design and manufacturing repository 
on the example of laptop computers. In [33] an ontology for 
the musical domain has been developed. The co-authors of this 
paper have also previously proposed ontology-based solutions 
for enterprise modelling [34] and self-organizing cyber-
physical-social systems [35]. However, these and similar 
works are aimed at development of a reference ontology that is 
to be reused, updated or extended in the future. In the 
considered here problem of smart manufacturing systems 
support, it is necessary to provide for a mechanism that can be 
reused for development of ontologies for each particular case 
(since smart manufacturing systems can differ substantially) 
with a possible reuse of common fragments. 

A possible option is usage of ontology integration 
supported by ontology matching. However, as it was 
mentioned before, the smart manufacturing systems are quite 
dynamic, what would require continuous changes in the 
resulting ontology. This assumes that the matching process 
would be used very often, nearly on continuous basis. The 
problem of this approach is that automatic ontology matching 
methods are still not sufficiently reliable, and manual ontology 
matching would significantly reduce the efficiency. 

As it can be seen there are many efforts aimed at 
integration of heterogeneous knowledge into a single complex 
ontology. After an extensive study of the domain, three main 
and most promising possibilities, which are discussed below, 
have been identified. 

A. Multilingual ontology 

Multilingual ontologies are aimed at solving terminological 
issues arising from usage of different languages. Among the 
terminological issues the following can be selected [36]: 

1) Existence of an exact equivalent. This is the easiest case 
when two terms have completely the same meaning. In real 
life (when talking of regular languages such as English or 
German) this is a rear situation, however in a company most of 
terminology would be the case. For example, “product” would 
mean the same both during the design stage and the production 
stage, or in the considered company, “feature” during the 
design stage means the same as “characteristic” during the 
production stage. 

2) Existence of several context-dependent equivalents. 
This case assumes that one can choose the right translation 

(the right equivalent) based on the situation. An example could 
be the term “modular product” that can stand for both product 
consisting of several modules or product with some variable 
characteristics.  

3) Existence of a conceptualization mismatch. This is an 
important issue for regular languages, standing for a lack of 
semantic equivalent for a given term. In the considered case of 
smart manufacturing systems this is not a common issue since 
the lack of a certain term in a sub-domain usually would mean 
that it is not used (not needed) in this domain. 

Usually, such ontologies are based on language specific 
fragments with relationships between terms and it might be a 
straightforward enough solution for multi-aspect domains. 
This really helps to overcome the terminological issues, as 
well as to solve the problem of heterogeneity of information 
and knowledge between different lifecycle stages. 

However, a multilingual ontology is formulated in a single 
formalism and collecting together for example, configuration 
knowledge with procurement knowledge would not be 
possible without losing some semantics. As a result this 
approach cannot not completely solve the problem formulated.  

B. Granular Ontology  

Granular ontologies are based on the integration of 
ontology-based knowledge representation with the concept of 
granular computing. Granular computing is based around the 
notion of granule that links together similar regarding to a 
chosen criteria objects or entities (“drawn together by 
indistinguishability, similarity, proximity or functionality” 
[37]). The granules can also be linked together into bigger 
granules forming multiple levels of granularity.  

From the knowledge representation point of view, a 
granule can be considered as a chunk of knowledge made 
about a certain object, set of objects or sub-domain [38]. When 
speaking of smart manufacturing systems, higher-level 
granules can combine knowledge related to a certain 
manufacturing system layer, and lower-level granules can be 
related to processes (Fig. 1). A level is a collection of granules 
of similar nature. The hierarchy of granules then would form a 
hierarchy of smart manufacturing system layers.  

  

Fig. 1. Example of smart manufacturing system ontology granules from smart 
factory to smart machine 
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Granular ontologies seem to be a suitable solution to 
support various smart manufacturing processes: they enable 
splitting the domain in smaller areas with consistent 
terminology and formalisms. The possibility to form a 
hierarchy (generalization) is also beneficial due to the 
possibility to define generic concepts and relationships at 
higher levels. 

However, smart manufacturing system processes and 
layers usually overlap in terms of used information and 
knowledge. This means that there exist multiple processes that 
assume collaboration and usage of the same information and 
knowledge. Pure granular ontologies cannot solve the problem 
of terms having different meaning at manufacturing processes 
or different company departments. There are multiple efforts 
in the area of rough granular computing [39]–[41], however, 
they are not directly related to ontology design. As a result, 
additional research in this area is required.  

Another possibility is to extend a granular ontology with a 
concept that would enable certain “roughness” of it, and the 
following section proposes such a possibility.  

C. Temporal Logics-Based Ontology 

The authors of [42] propose to address the problem of 
terms having different meaning at different manufacturing 
processes  Product Lifecycle Management (PLM) stages 
through usage of temporal logics. The idea of using temporal 
logics in describing PLM originates from the fact that most of 
product related information and knowledge is used in the 
product lifecycle only during some stages. PLM is basically 
always associated with time. The most often met PLM 
schemes are “time arrow” (when the PLM stages follow one 
after another) and “time wheel” (when the time arrow of PLM 
stages is connected into one or several circles). Time is also 
considered as one of the key resources in PLM, when, for 
example one speaks of decreasing lead time or increasing the 
product usage period.  

This can equally be applied to smart manufacturing 
systems. 

The approach presented in [42] is based on the fuzzy 
extension of temporal logics to enable links and overlapping 
between different stages of the lifecycle. The metaphor used in 
the approach is based on the idea of representing processes as 
time intervals with fuzzy duration. 

The ontology (ONTLC) is described by the following 
formula: 

ONTLC = <CLC, RLC, OLC, TLC>, where 

CLC is the set of concepts related to the described domain 
(all the concepts of the ontology used at all manufacturing 
processes), 

RLC is the set of relations between the concepts,  

OLC is the set of operations over concepts and/or relations, 

TLC is the set of temporal characteristics for processes. 

Since the ontology is aimed at separation of concepts 
between different manufacturing processes, the systemic 
kernel is represented as the following triple: 

ONTS = <S, RS, OS>, where 

S is the set of manufacturing processes, 

RS is the set of relations between the processes, 

OS is the set of operations used on the processes.  

 
As it was mentioned the manufacturing processes are 

considered as time intervals s = [t-, t+], with starting and 
ending time points t- and t+ respectively. However, in order to 
indicate the overlapping of them, the intervals are considered 
to be fuzzy. 

Though the usage of granular ontology with temporal logic 
for smart manufacturing systems looks complex, it can solve 
the heterogeneity problem arising from different mental 
models at manufacturing layers. However, it still doesn’t solve 
the problem of having different formalisms in one big domain. 

D. Multi-Viewpoint Ontology 

The most promising approach is to preserve the ontologies 
of services and build some structure on the top of them. An 
application of top-level ontology called Basic Formal 
Ontology (BFO) to facilitate interoperability of multiple 
engineering-related ontologies [43]. The authors present a 
system of formal linked ontologies by re-engineering legacy 
ontologies to be conformant with BFO.  

A layered framework is proposed in [44] aimed for 
integration heterogeneous networked data sources, whose 
heterogeneity originates from different models (e.g., relational, 
XML, or RDF), different schemas within the same model, and 
different terms associated with the same meaning. The authors 
use metadata representation and global conceptualization with 
further mapping support in order to provide information 
translation. 

The approach presented in [45] is aimed at description of 
multi-cloud systems where clouds differ both syntactically and 
semantically. It is built around an ontology-based abstract 
model that on the one hand is different from models of the 
clouds, but on the other hand bridges gaps between them 
through establishing mappings between own concepts and 
those of particular clouds.  

Viewing a problem domain from different viewpoints has 
resulted in appearance of Multi-Viewpoints Ontology 
(MVpOnt) where each viewpoint corresponds to the 
knowledge representation useful to a particular group of 
people, which coexists and collaborates with other groups 
[46]. This approach seems to be the most suitable for the 
problem set. 

The most important progress in this direction was achieved 
by M. Hemam who in co-authorship with Z. Boufaïda 
proposed in 2011 a language for description of multi-
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viewpoint ontologies - MVP-OWL [46], which was extended 
in 2018 to support probabilistic reasoning [47].  

In accordance with this notation, the OWL-DL language 
was extended in the following way (only some of the 
extensions are listed here; for the complete reference, please, 
see [46]). First, the viewpoints were introduced. Classes and 
properties were split into global (observed from two or several 
viewpoints) and local (observed only from one viewpoint). 
Individuals could only be local, however, taking into account 
the possibility of multi-instantiation, they could be described 
in several viewpoints and at the global level simultaneously 
(Fig. 2). Also, four types of bridge rules were introduced that 
enable links or “communication channels” between 
viewpoints. 

Multi-viewpoint ontologies make it possible to work with 
knowledge represented in different formalisms, however, the 
require building additional structure on top of the existing 
ontologies and there are no best practices to analyze since they 
are not widely used at the moment. 

IV. RESEARCH FRAMEWORK FOR ONTOLOGY-BASED 
PLANNING IN SMART MANUFACTURING SYSTEMS 

The research framework described below (Fig. 3) is aimed 
at conducting research to develop models and methods for 
ontology-based decision-support of dynamic job and function 
allocation in human-machine world of smart manufacturing 
systems with the elements of Artificial Intelligence (AI), 
allowing to effectively select contributors for a particular task, 
based on job/skill decomposition/reconfiguration methods, 
taking into consideration human- and machine-specific factors.  

The smart manufacturing system ontology is on the top 
layer of the framework defining the formalism, notations and 
terminologies used in lower layers. As it was mentioned, it is 
essential for such an ontology to support multiple (sometimes 
loosely coupled) domains and at the same time to provide for 
interoperability between these. The aim of this layer of the 
research framework is not to develop a particular ontology, but 
to provide for methodology and models that would enable 
quick building of such an ontology for particular cases. 

 

Fig. 2. Global and local classes and properties in the RDF_MVP notation 

 

Fig. 3. Research framework of ontology-based planning in smart manufacturing systems 
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The knowledge base layer contains different pieces of 
knowledge required for smart manufacturing system planning 
and job scheduling. The first block represents Knowledge, 
Skills, Competences and Abilities (KSCA) of the smart 
manufacturing system parties, which are represented via 
Digital Knowledge Profiles (DKP) for both humans and 
machines. They are described in terms of the common 
ontology and identify how these are to be described in order to 
be accessible and understandable by the next layer. 

Tasks and jobs identified from existing documents through 
application of text mining approaches (topic modeling and 
vocabulary detection/enrichment) constitute a job pool and 
task storage together with their descriptions. Usage of the 
common ontological representation makes it possible to 
integrate this knowledge. Further joint analysis of jobs and 
tasks and identification of their inputs and outputs make it 
possible to build job chains that are to be executed by the 
smart manufacturing system.  

The question to be answered at this layer is how this 
information should be described and what information is 
important and enough for planning in smart manufacturing 
systems. 

At the next layer, the decision making process takes place. 
Given the requirements, goals and constraints from the upper 
layer, a model can be built such that it could be processed by a 
certain engine (depending on the formalism used it could be a 
rule or reasoning engine or a mathematical solver) to produce 
feasible job execution plans. The research question at this 
layer is what kind of engine could efficiently solve the task 
set. This has to be aligned with the formalization layer since 
the common ontology has to support the appropriate for the 
engine knowledge representation (constraints, rules, etc.) 
along with representations for other components. 

The lowest layer represents the smart manufacturing 
systems itself (a typical use case that can be implemented in 
the available to the authors research facilities) where such 
processes as human-machine collaboration, equipment 
maintenance and assembly processes take place. It is also 
aimed at testing the developed solutions in a close to real life 
environment. 

In case of any changes occurred, updated requirements a 
passed to the knowledge base layer so that the decision 
support process could be repeated to update the current job 
execution plan. 

V. CONCLUSION 
The paper aims at developing a research framework for 

approaching the problem of ontology-based support of smart 
manufacturing systems. State-of-the-art approaches to 
ontology engineering that can support heterogeneous nature of 
the considered systems are presented. Unlike works aimed at 
development of a reference ontologies for heterogeneous 
domains, the present research tries to provide for a mechanism 
for development of ontologies for each particular case (since 
smart manufacturing systems can differ substantially) with a 
possible reuse of common fragments. Four approaches that 
were found most promising (multilingual ontologies, granular 

ontologies, temporal logics-based ontologies and multi-
viewpoint ontologies) are analysed in details taking into 
account the specifics of the considered systems. A four-
layered ontology-based research framework for planning and 
control in smart manufacturing systems is proposed that is 
based on interoperable knowledge representation about 
different components of the considered systems and 
application of existing optimization or reasoning techniques 
for decision making. 
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