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Abstract—Transport Protocol Controllers are parts of most 

terminal nodes of local networks widely used in information and 
telecommunication systems. Typically, a terminal node (node of 
local network) is exploited for several years. New applications, 
new versions of transport protocols or new transport protocols 
could be developed during this time. Support of these new 
features without change of equipment is very important today. 
Also set of tasks could be dynamically changed that leads changes 
in data flows. These changes in turn leads the changes of used 
transport layer protocols or their profiles. The Transport 
Protocol Controller unit should be dynamically reconfigurable to 
meet these requirements. Today dynamically reconfigurable 
components usually are developed with Field Programmable 
Gate Array (FPGA). However, power consumption, area, time 
characteristics (e.g. achievable clock frequency) of FPGA 
implementations are essentially worse than same parameters of 
Application Specific Integration Circuits (ASIC) 
implementations. These factors essentially constrain the 
application area of FPGA based dynamically reconfigurable 
systems.  

In this paper, we consider existing approaches for 
development of dynamically reconfigurable systems with ASIC, 
evaluate its applicability for Transport Protocol Controller Unit. 
We propose an approach to development of dynamically 
reconfigurable Transport Protocol Controller Unit. This 
approach allows us to take into account the specific requirements 
for this unit. In the paper we present several examples of the 
proposed approach. We have evaluated reachable parameters 
and overheads for these examples. 

I. INTRODUCTION 
One of main requirements for many modern local networks 

used in information and telecommunication systems is the 
ability to change of operating mode during exploitation. The 
mode can be changed, for example, due to change in tasks set 
in the system or due to faults in components [1], [2], [3], [4], 
[5]. These changes may lead the change of used transport layer 
protocols set, their profiles. In addition, new transport protocols 
and new versions of transport protocols, well suited for decided 
tasks, may appear during lifecycle of the system.  

Correspondingly, the Transport Protocol Controller Unit 
should support different protocols. But area and power 
consumption of controllers is usually strongly constrained. 
Therefore, the possibility of dynamic reconfiguration is one of 
the most important features for this unit.  

The Transport Protocol Controller Unit may be realized 
entirely in hardware, entirely in software or as hardware- 

software component. On one hand, entirely software realization 
provides very wide possibilities for dynamic reconfiguration. 
But on other hand this approach has several essential 
disadvantages. Typically, the dedicated processor core can not 
be used as the packet distribution unit due to too large area and 
power consumption (and power distribution). To process the 
packet flow in real time, the processor core should operate at 
frequency ten times higher than rate of packets arrival. 
Therefore, power consumption is unacceptably high. 

The dynamically reconfigurable hardware can be realized 
on FPGA. The entire or partial change of bitstream allows us to 
change configuration of several units or whole device. But, 
power consumption and area of FPGA is essentially higher 
than that of ASIC realization due to its structure. Many parts of 
device do not require dynamic reconfiguration. Therefore 
resources of FPGA are used not efficiently.  

In the paper we propose an approach to development of 
dynamically reconfigurable controller with ASIC that allows us 
to avoid the problems specific to software implementation and 
implementation on FPGAs and meet user constraints. 

In the paper, we do not consider the ways of packet 
processing rules specification (corresponding to the Transport 
Layer Protocol). The specification used for Software Defined 
Network-on-Chip or other specifications can be used. 

The paper is organized as follows. In section 2 we briefly 
describe the requirements to the Transport Protocol Controller 
Unit, its structure and architecture. In the next section we 
consider the existing methods for dynamic reconfiguration 
using ASIC technology. The proposed approach to 
development of the dynamic reconfigurable Transport Protocol 
Controller Unit is described in section 4. Several examples of 
this approach applying are presented in section 5. Section 6 
concludes the paper. 

 

II. THE REQUIREMENTS TO THE TRANSPORT PROTOCOL 
CONTROLLER UNIT, ITS STRUCTURE AND ARCHITECTURE 

Transport Protocol Controller Unit may be used as part of 
transport layer units. Typical structure of transport layer is 
represented in Fig. 1. Number of Protocol Controller Units 
depends on quantity of packet flows that should be processed 
concurrently. The packet Distribution unit is used when 
Transport Layer Unit includes more than one Transport Layer 
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Controller Unit. We have proposed an approach to development 
of Dynamic Reconfigurable Packet Distribution Unit in [36]. 

 Fig. 1. Typical structure of transport layer unit 

The following system level requirements and limitations 
should be considered when designing the packet distribution 
unit: 

support for a set of transport protocols that is known in
advance;
support for a set of new transport protocols;
area and power constrains;
specific system requirements.

Let’s consider specific system requirements. Transport Layer 
Controller Unit should provide data streaming interface with the 
Network layer. Receiving data should be processed and sending 
data should be generated “on the fly”. Several actions can be 
performed for every data words (e.g. CRC count, context check 
and etc.).  

To implement most of the existing transport protocols, 
Transport Protocol Controller should process several event flows 
concurrently, perform several actions at the same time (e.g. 
receiving and transmission of data and service packets, different 
guardian timeout control, and etc.). 

Thus, at each stage of the data processing, there is a need to 
perform several actions in parallel and decide to move to the next 
state under several conditions. 

There are quite heavy restrictions on the area and energy 
consumption for many types of systems (e.g., for embedded 
systems). The presence of heavy restrictions on energy 
consumption, in turn, leads to the fact that the Transport Protocol 
Unit shall operate at a frequency corresponding to the frequency 
of receipt of data words. Therefore, most of the data words must 
be processed in one clock cycle, and several decisions should be 
made in this cycle. This requirement should be taken into 
account at the stage of development of the architecture and 
structure of controllers. 

III. THE BRIEF OVERVIEW OF THE METHODS FOR DYNAMIC 
RECONFIGURATION WITH ASIC TECHNOLOGY  

The dynamic reconfiguration can be provided at the 
technology (close to technological) layer or at higher layers, 
 Fig. 2.  
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Fig. 2. Typical structure of transport layer unit 

The dynamic reconfiguration at the technology layer can be 
achieved by using: 

The technology libraries of cells with dynamic
reconfiguration [6], [7];
eFPGA[8], [9], [10], [11].

The technology libraries with dynamic reconfiguration 
includes special cells. Every special cell can perform various 
functions (e.g. NAND, NOR, NOT) depending of the 
configuration. The area of such cells is not essentially bigger 
than area of cells without dynamic configuration. But the area of 
memory cells that need for store of configuration can be 
essential. In addition, existing CAD tools do not support 
synthesis with using of the technology libraries with dynamic 
configuration. Therefore using of these libraries is significantly 
limited. 

The special library cells with FPGA structure (fragment of 
FPGA) - eFPGA can be included in design [8,9,10,11]. The 
eFPGA could include from several hundred to several thousands 
of slices (logic blocks), memory cells and interconnection 
structure. Generation of bitstreams for these eFPGA can be 
performed with the FPGA Design tools. Today eFPGA are 
widely used. However, the availability of eFPGA for a very 
limited list of technology libraries and large size (and area) of 
these cells essentially constrain their use.  

At the close to technological layer, the dynamic 
reconfiguration is achieved by using: 

look-up tables implemented on ASIC library cells
(memory blocks or flip-flops);
programmable logic arrays (PLA) implemented on
ASIC library cells (such as AND, OR, NOT).

This kind of structures could be described on HDL as soft IP-
blocks. They can also be implemented as firm or hard IP-blocks 
for decreasing of area and power overheads. 

Standard CAD tools can be used for synthesis of designs that 
includes such blocks. But use of these IP-blocks is limited by 
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area overheads and achievable working frequency. Typically 
these IP-block are used for implementation of relatively small 
components or as part of more complex reconfigurable 
components. These methods can be used for implementation of 
dynamic reconfiguration at higher layers. 

At the highest layers can be used: 

 schemes providing switching on/off of components; 
 reconfigurable finite state machine (automata); 
 reconfigurable DataPath; 
 processor cores (typically RISC); 
 microcontrollers. 

The schemes, providing switching on/off of components, 
logically based on multiplexors. The main advantages of this 
approach are ease realization and possibility of fast switching 
between modes. When the unused units could be switched off 
the power dissipation of such scheme is practically equal to 
power dissipation of one unit. Nevertheless, area of this schema 
may be too large. Other essential disadvantage of the schema is 
impossibility to configure it for new modes. 

Other way of dynamical reconfiguration providing is using of 
reconfigurable finite state machine. The next properties of 
reconfigurable state machine could be changed dynamically: the 
logical meaning and quantity of the states, the rules of transition 
between states, the values of output signals, associated with 
them. The physical realizations of reconfigurable finite state 
machine may be various. Typical realizations based on Look-up 
Tables or Programmable Logic Matrices (PLM). Let’s briefly 
consider Look-up Table based realization. The input signals and 
the current state are feed to inputs of Look-up table. Strings of 
Look-up table contains the next state and the values of output 
signals (or values of output signals can be generated by 
combinational circuit as function of current state and input 
signals). Number of strings in Look-up table is determined by the 
formula 2(Ni+Ns), where Ni – total width of input signals, Ns – 
width of state vector. Therefore, the area of Look-up table grow 
essentially with growing of Ni or Ns. Developer can use next 
approaches to reduce area: 

 decomposition of initial finite state machine to sub-
automates [12]; 

 additional multiplexing schemes for input signals, that 
allow us to decrease the number of input signals (Ni) 
connected to Look-up table in comparison with the 
number of input signals of finite state machine [13], 
[14], [15]. 

When decomposition of initial finite state machine to sub-
automates is used, the number of states, input and output signals 
for every sub-machine will be essentially less than for initial 
finite state machine. Correspondingly, total area of realization is 
also essentially less in comparison with initial realization. 
However, when developer decompose an initial finite state 
machine to sub-machines achievable degree of configurability 
(number of possible configurations) may be decreased [16]. This 
decline is especially significant when the decomposition makes 
formally. In this case, any new configuration may not 
corresponds to this decomposition. Therefore, when the structure 
of the initial finite state machine is permanent for all possible 

modes, the decomposition to sub-automates should correspond to 
this structure [17]. 

The value of Ni is decreased when the additional multiplexing 
scheme is used for input signals. Decomposition of finite state 
machine to sub-machines and additional multiplexing schemes 
could be used together [17]. 

Other way of realization of reconfigurable state machines 
based on PLM structures and a register for storing of finite state 
machine’s state. In this case, the area overheads are also main 
factors that limit the number of inputs and states of finite state 
machine. Also, eFPGA cells could be used for realization of 
large reconfigurable automates. 

The next state of finite state machine is selected every clock 
cycle correspondingly to values of input signals and current state 
(all possible conditions are considered). Therefore reconfigurable 
state machines well suited for parallel processing of many flows 
of events in real time. However, state machines do not intended 
to data flow processing. Therefore, reconfigurable finite state 
machines are often used in combination with dynamically 
reconfigurable Datapath. 

Dynamically reconfigurable DataPath includes set of 
functional units (FU) and interconnections between these units. 
The FUs functions and the structure of interconnections could be 
dynamically reconfigurable. Dynamically reconfigurable 
DataPath typically used for data flow processing. It is poorly 
suited for realization of control logic due to large overheads [18]. 

The dynamic reconfiguration could be provided by using 
processor cores. In this case, dynamic reconfiguration is 
achieved by change software. Several cores, such as Xtensa, 
ARC [19], [20], [21], [22], [23], [24], [25] and others 
programmable processors, such as [34] provides additional 
reconfiguration possibilities. They may include reconfigurable 
units for implementation of specific data processing.  

However, these cores do not suitable for processing of data 
flow “on the fly”. Too high working frequency is required for 
processing of several event flows in real time due to context 
switching (it will be 10 - 20 times higher than data flow rate). 
Thin design rules are required for achieve such working 
frequency. Often it is not economically feasible. Other problem 
is high power consumption and dissipation when high working 
frequency is used. Due to these disadvantages processor cores 
cannot be used for the Packet distribution unit implementation. 

Special microcontroller cores also can be used for realization 
of dynamic reconfiguration. Microcontrollers often have special 
components for data flow processing in real time.  

Several classes of microcontrollers, such as streaming 
processors [28], [29], [30] are not suitable for the Transport 
Layer Controller Unit realization due to too large area. Other 
classes of microcontrollers, such as [31] are more compact, but 
too high working frequency is required for processing of several 
event flows in real time (it will be 10 - 20 times higher than data 
flow rate). Due to these disadvantages microcontroller  
cores cannot be used for the Packet distribution unit  
implementation. 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 431 ----------------------------------------------------------------------------



The main advantages and disadvantages of analyzed 
approaches for realization of reconfigurable packet distribution 
unit are represented on Table I. 

TABLE I.  COMPARISON OF APPROACHES TO DYNAMIC 
RECONFIGURATION IMPLEMENTATION 
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No specific requirement to 

CAD  - +- + + + + 

No specific requirements to 
tech libs - - + + + + 

Area, power overheads  +- - + + - - 
Possibility of data flow 

processing in real time when 
working frequency is equal 

to data rate  

+ + + + - + 

Possibility of parallel 
processing for several event 

flows, when working 
frequency is equal to data 

rate  

+ + + + - - 

Possibility of new modes 
realization  + + - + + + 

This table show that using of reconfigurable finite state 
machines in combination with reconfigurable DataPath is the 
most appropriate approach to realization of Transport Layer 
Controller Unit. 

IV. THE PROPOSED APPROACH TO DEVELOPMENT OF 
TRANSPORT LAYER CONTROLLER UNIT  

We propose an approach to development of Transport Layer 
Controller Unit, based on dynamically reconfigurable finite state 
machine and DataPath.  

The general structure of proposed dynamically reconfigurable 
unit is represented in Fig. 3. It includes Control Unit 
(reconfigurable finite state machine), reconfigurable DataPath, 
memory subsystem (storage of current configuration, storage for 
processed data, registers and flags) and Interface Unit (with 
structure similar to FPGA interconnect). 

Several transport layer protocols require to store a large 
amount of data (e.g. for providing of retransmission when errors 
in network occur). It is possible to store data in outside memory 
when proposed approach is used. 

The reconfigurable unit has a functional input and output 
interface and a configuration interface (interface for loading of 
new configuration). The functional interface includes an 
interface with network layer (streaming interface) and an 
interface with application layer (typically, an interface like AHB, 
AXI, WISHBONE, and an IRQ interface). 

Fig. 3. General structure of the proposed dynamically reconfigurable unit 

One configuration corresponds to one operating mode. 
Configuration (Fig. 4) includes: 

values, that written to Look-up table of reconfigurable
finite state machine (automata);
initial values for DataPath FU’s;
initial values of registers4;
a set of configuration vectors.

 Every Configuration Vector consist of two parts: 

configuration of the DataPath FU’s;
configuration of the Interface Unit.

Configuration Vector 1
Configuration Vector 2

Configuration Vector N

Configuration

Configuration of LUT (for automata)

Initial values for DataPath FUs
Initial values for Registers

Configuration of the 
DataPath’s FUs

Configuration of the Interface 
Unit

Configuration Vector i

Configuration of one 
DataPath’s FUs

Structure of Configuration Vector:

Configuration of one switch 
of Interface Uint

 Fig. 4. Structure of configuration 

Configuration of the DataPath FU’s consists of configuration 
subvectors for every FUs of DataPath, which may be configured 
(one subvector corresponds to one FU). Configuration of the 
Interface Unit consists of subvectors for every switch.  
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The configuration vector determines the set of actions that are 
performed with input data words and internal events. 
Configuration vectors play the role of arithmetic, logic and 
load/store commands in processors architectures (like 
instructions in WLIV architectures).  

The main function of Control Unit is choice of configuration 
vector (determining of configuration vector number) that shall be 
used in next clock cycle. In comparison with processor 
architectures, this unit implements conditional and unconditional 
branches. However, as noted above, the use of a finite state 
machine allows us in one clock cycle to realize the choice of a 
transition between several branches (more than two). This 
distinguish our approach from others (e.g. [35]), where 
implement classical jump with two branches in finite state 
machine.  

The illustration of our approach is represented in Fig. 5. The 
example of algorithm’s part contain two sequential conditions 
(Fig. 5, a). The first of these conditions may be complex. For 
example, the header of packet is correct when format of header is 
correct (Hformat_correct=true), the Address of packet is correct 
(PAddr_correct=true), the Key of packet is correct 
(PKey_correct=true), the CRC of header is correct 
(HCRC_correct=true). 

Corresponding assembler code will include several 
comparison commands and jump commands for implementation 
of this algorithm. Implementation of this algorithm with state 
machine is represented in Fig. 5,b. In one clock cycle state 
machine may pass from Packet_header_CRC_state to one of 
three states (Deletion_state, Read_state, Write_state). 

Special FUs based on PLA structure are used in DataPath to 
quickly and concurrently calculate values of conditions (they will 
be considered further). 

As noted above, the main limitation when using a 
reconfigurable state machine is the area limitation. 
Decomposition to sub automates and multiplexing of inputs may 
be used for area decreasing. 

We have analysed modern transport Layer protocols and its 
possible realizations. Corresponding structures and quantity of 
sub automates vary greatly. Therefore using of decomposition 
approach in this case will not give a tangible gain in area, or very 
significantly limit the possibilities for reconfiguration. 

Consequently, we consider an approach of input multiplexing. 
During the analysis of modern Transport layer protocols, it was 
determined that the number of inputs that must be analysed to 
determine the next state can range from several tens to several 
hundreds. (Conditions of transitions typically are very complex, 
different groups of signals are used in different states of state 
machine).  

Due to using special FU based on PLA for calculation of 
values for inputs of state machine, the maximum possible 
number of transitions from one state to the next is determined the 
number of input signals of the state machine. Analysis of the 
Transport protocol’s implementations showed that the number of 
following states for each possible state does not exceed 10. 
Therefore, input multiplexing allows us very essentially 
decreasing quantity of inputs of the reconfigurable automata. 

CRC of the packet header 
received

The header is 
correct

Deletion of the packet 
rest

The command 
is “READ”

Reading data Writinging 
data

...

...

... ...

Packet_ header_ 
CRC_state

Deletion_state Read_state Write_state

...

... ... ...

yesno

yes no

A)

B)

This condition may be 
complex, for example, 
Header_correct=true 
when
HFormat_correct=true
PAddr_correct=true
PKey_correct=true
HCRC_correct=true

Header_correct
=false

Header_correct
=false &

Read_command
=true

Header_correct
=false &

Read_command
=false

Fig. 5. An example (1) of implementation of transition between several 
branches 

Let’s consider these FUs and its using. The FUs with PLA 
structure allows us to implement functions presented in perfect 
disjunctive normal form. (Such FUs can be used to implement 
any function whose number of input variables does not exceed 
the number of FU’s inputs and the number of disjunctions does 
not exceed the number of library cells with OR logic, includes 
into the FU.) 

Let’s consider an example of using such FU’s for 
implementation of the part of algorithm (Fig. 5). In this 
implementation, we use next flags: 

Flag(0), for which a logic function HFormat_correct is
assigned (it is set to one if the Header Format is
correct);
Flag(1), for which a logic function PAddr_correct is
assigned (it is set to one if the Address of the packet is
correct);
Flag(2), for which a logic function PKey_correct is
assigned (it is set to one if the Key field of the packet
header has allowable value);
Flag(3), for which a logic function HCRC_correct is
assigned (it is set to one if the Header CRC is correct);
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 Flag(4), for which a logic function Read_command is 
assigned (it is set to one if the received command is 
Write Command). 

The Packet Header is correct when (Flag(0) = ‘1’) & 
(Flag(1)=’1’) & (Flag(2)=’1’) & (Flag(3)=’1’).  

We denote inputs of the Control unit (state machine) as in(i). 
For implementation of considered part of algorithm we will use 
in(0), in(1). When its values are “X0” (in(1) may have any value, 
in(0)=0) the state machine should pass to Deletion_state. When 
its values are ‘11’, the state mashine should pass to Read_state. 
When its values are ‘01’, the state mashine should pass to 
Write_state. 

We use FU with PLA structure for calculation values for these 
inputs. The next function is implemented with PLA: in(0)= 
(Flag(0) = ‘1’) & (Flag(1)=’1’) & (Flag(2)=’1’) & 
(Flag(3)=’1’). We do not need PLA for in(i) calculation 
(in(1)=Flag(4)). 

We use this PLA based FU for implementation of other 
function in other part of considered algorithm. (This part is 
represented in Fig. 6). The state machine may pass from the 
Packet_command_state to Packet_header_CRC_state or to Idle 
state dependently on the next received data word. If the End of 
Packet (EP) received, the state machine goes to Reset_state. (EP 
is not expected symbol here and the received part of packet 
should be discarded.) If Data symbol is received the state 
machine pass to Packet_header_CRC_state. If nothing received, 
the state machine stays in Packet_command_state. The primary 
inputs and outputs of reconfigurable controller (data_in, valid_in, 
ready_out) are used for calculation of these conditions.  

Nothing_received = (valid_in=’0’) U (ready_out =’0’) 

EP_received = Data_in(8) (in this example Data_in(8) is 
using for signing data or EP word) 

In this case in(0)= Nothing_received. Corresponding function 
is implemented with PLA based FU. In(1) is equal EP_received. 

When its values are “X1” (in(1) may have any value, in(0)=1) 
the state machine stays in Packet_command_state. When values 
are “00” the state machine goes to state 
Packet_header_CRC_state. When values are “10” the state 
machine goes to state Reset_state.  

These examples illustrate using the same FU for calculation of 
different conditions, and illustrate multiplexing of inputs of state 
machine. 

To determine the whole set of FUs that should be included in 
DataPath, we have analysed the algorithms corresponding to 
modern transport layer protocols. Despite the fact that the 
protocols may vary greatly, they include a limited set of actions 
that are performed during the processing and generation of the 
packet’s header and body, generation and processing of various 
internal events (e.g. timeouts). In most cases, this set includes 
operations of comparison (=, <, >), shifts, arithmetic operations 
(+,-,*), CRC count, count of different events. Therefore, 
DataPath should include standard set of components for 
performing arithmetic and logical operations (e.g. ALUs) and 

special components (CRC counters, special components for 
calculation the values of conditions). 

As discussed above, in proposed architecture special 
components for calculation the values of conditions need for 
forming of input signals (for determining of branch conditions) 
for Control Unit, also we use these components in combination 
with counters for count of different events quantity (e.g. 
timeouts, quantity of data words, quantity of errors and etc.) 

 

Packet_ header_ 
CRC_state

...

... ...

Header_correct
=false

Header_correct
=false &

Read_command
=true

Header_correct
=false &

Read_command
=false

...

Packet_ 
Command_ 

state

Reset_state

EP_Received=true

Nothing_received=false
EP_Received=false

Nothing_Received=
true

 Fig. 6. An example (2) of implementation of transition between several 
branches 

Let’s consider memory subsystem. Different components of 
this subsystem may be implemented on memory block (special 
library component) or as arrays of flip-flops. Area and power 
dissipation for memory blocks is essentially less than for an array 
of flip-flops with same capacity. Therefore, the size of flip-flops 
array is strongly constrained. However, memory block typically 
have only one or two interfaces (accesses to one or two memory 
cells may be performed in one time). Several (more than two) 
cells from flip-flop array can be read and written in one time.  

Memory subsystem in the dynamically reconfigurable unit 
includes: 

 Look-up tables in reconfigurable finite state machine; 
 Storage for configuration vectors; 
 Memory for processing data (outside memory can be 

used); 
 Registers (for storage parameters need for packet 

header analysing) and flags. 

The data to Look-up table and to Storage for configuration 
vectors is written, when new configuration is loaded. One word 
is read from these memories every clock cycle. Therefore, 
memory block can be used for it’s realization.  

The processed data packets can be quite large (up to several 
KB, MB). Therefore, for their intermediate storage, it is 
necessary to use memory blocks. Memory external to the 
controller may be used. 

Registers are used for storage of parameters, that need for 
packet header and body analysing (e.g. identificators of transport 
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protocols, addresses, identificators of applications, acceptable 
number of words in packet body), for internal events control (e. 
g. timeout values). Also, registers are used for storage different 
variables (e.g. current packet length). These parameters and 
variables can be used by different FUs of DataPath concurrently. 
Therefore they should be implemented as separate flip-flop 
groups (memory block is not suitable due to restriction to 
number of words that can be read and write concurrently). 

Flags are used for storage a values of conditions. They are 
realized as separate flip-flops. 

The Interface Unit provide connections between the Memory 
for processed data, the Registers, the Flags and DataPath (FUs). 
The Interface Unit consists of two parts: 

 interconnection system between the flags and the FUs 
(width of channels – 1 bit); 

 interconnection system between the Memory for 
processed data, the Registers and the FUs (width of 
channels – 1 word). 

For example, the data inputs of comparator FU are connected 
to interconnection system with one word channels width, the 
data output is connected to interconnection system with one bit 
channels width. 

The structure of both interconnection systems is same. Each 
Interconnection system includes some logical channels. The 
number of logical channels is equal to number of primary ports 
(ports of reconfigurable controller) of input ports of the registers, 
the flags and the FU’s connected to this system (every input port 
connected to one logical channel). One logical channel support 
one connection of corresponding input port with any output port 
that connected to this interconnection system at one point of 
time. (One output port may connect to only one input port in 
same time.) The logical channel in implemented as multiplexor 
on Register Transfer Layer. The corresponding subvector of 
Configuration vector is forwarded to the control input of the 
multiplexor. Physical implementation of multiplexor is 
implemented by CAD tools correspondingly to used technology 
library. 

The Transport Layer Controller Unit developed with proposed 
approach can be configured to perform any algorithm 
corresponds to next constraints: 

 Set of functional units included in the DataPath support 
all functions need for algorithm 

 Capacity of configuration vectors storage is enough for 
set of configuration vectors, Look-up Table size is 
enough to realization of finite state machine, 
corresponds to transport protocol 

 Quantity of parameters and flags need for packet flow 
processing is not more than quantity of registers and 
flags 

The area overhead of dynamic reconfigurable Transport 
protocol controller developed with using of proposed approach 
depends on area of the Look-up table, the storage of 
configuration vectors, Interface unit and PLA. (Other 
components also are used in realization without dynamic 
reconfiguration and therefore do not affect to overheads.) 

V. EXAMPLES OF RECONFIGURABLE TRANSPORT LAYER 
CONTROLLER UNIT  

We have selected several transport protocols that could be 
used for similar tasks in different operating modes for 
demonstration of our approach. These protocols are widely used 
in aerospace onboard networks. 

We initially developed a Reconfigurable Transport Layer 
Controller Unit that can support the RMAP [30] and the STP 
[31] transport protocols with proposed approach. (The algorithm 
of Reconfigurable automata generation is beyond the scope of 
this paper.) Both these protocols can be used for transmission 
data from sensors to host system in different modes of data 
processing. The RMAP protocol is used in query mode (host 
send to sensors queries when need the data from them). STP 
protocol is used when the data packets are periodically 
transmitted from sensors to host. 

We have included into the Reconfigurable Transport Layer 
Controller Unit 15 additional registers, 20 additional flags, and 
CRC16 FU for providing possibility of other protocols 
implementation. 

Then we have generated the configuration corresponds to the 
ESDP (STP2) protocol [32] controller for this Reconfigurable 
Transport Layer Controller Unit. (ESDP protocol differs from 
the STP protocol in the format of the packet header and the 
procedure of setting up the transport connection, it includes some 
additional features for data transmission.) 

Further we have generated the configuration corresponds to 
the STP-ISS 13 protocol [33] controller for the Reconfigurable 
Transport Layer Controller Unit. (This protocol also is used for 
data transmission from sensors to the host system.) 

After that we have showed that the Reconfigurable Transport 
Layer Controller Unit includes not enough resources (FUs, 
registers, flags and memory blocks) for realization of STP_ISS 
14 [33]. (This version of protocol is essentially complex than 
STP_ISS 13.) There were not enough registers, flags, and 
memory size to store Look-up table and configuration vectors. 
But we have generated configurations for several profiles of 
STP_ISS 14 (scheduling and command duplication). Only 
profile with transport connections can not be implemented. 

Let’s compare area of proposed Reconfigurable Transport 
Protocol Controller with area of other realizations: 

 separate realizations of considered protocol’s 
controllers (RMAP, STP, ESDP, STP_ISS 13, 
STP_ISS 14); 

 realizations of dynamically reconfigurable controllers 
with schemes providing switching on/off of these 
controllers (three variants: RMAP+STP+ESDP, 
RMAP+STP+ESDP+STP_ISS13, 
RMAP+STP+ESDP+STP_ISS14).  

We used Cadence design tools and different technology 
libraries (180 nm – 65 nm) for synthesis of these units. Area of 
units depends on technology library, timing constraints (clock 
period and others) and specific of implementations. Therefore, 
we used implementations of RMAP, STP, STP-ISS controllers 
developed for the same clock frequency. (Frequency is varied 
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from 125MGz for 180mn to 325MGz for 65 nm. These values 
were selected in accordance with the existing requirements to 
bandwidth of controller.) 

We have evaluated hardware cost (area) of units and 
compared results. The ratio of the results obtained for different 
libraries varies slightly (within 5%). The relative areas of 
considered controllers are represented in Fig. 7. 

 

Fig. 7. Relative area of Transport Protocol Controller Units 

This chart shows, that area of the Reconfigurable Transport 
Protocol Controller Unit is essentially bigger, than areas of the 
RMAP, STP, ESDP (STP2) Controller Units implemented 
separately. However, the proposed Reconfigurable controller is 
not essentially bigger, than the based on switching on/off scheme 
Reconfigurable Controller, that includes the RMAP, STP, ESDP 
Controller Unit. The area of proposed Reconfigurable controller 
is essentially less than area of based on switching on/off scheme 
Reconfigurable Controller, includes the RMAP, STP, ESDP, 
STP ISS 13 Controller Unit.  

This example shows that the area overheads of the Unit, 
developed with our approach are acceptable, that we can add 
new configurations of the Reconfigurable controller for 
implementation of new protocols or new profiles of protocols. 

We have compared area of the Reconfigurable Transport 
Protocol Controller with the area of the STP_ISS 13+ controller 
(profile of STP_ISS 14 with scheduling and commands 
duplication, without connections) implemented with Xilinx 
Virtex 7 (with using Vivado). We select Virtex 7 due to partial 
reconfiguration is supported for this FPGA. Virtex 7 is realized 
with 28 nm technology. 

We select STP_ISS 13+ controller for comparison due to its 
area is bigger than area of RMAP, STP, ESDP, STP_ISS 13.  
 

Number of LUTs need for implementation of STP_ISS 13+ is 
enough for implementation any other considered controller. 
Therefore implementation of the STP_ISS 13+ controller may be 
replaced by implementation of other controller in SoC realized 
with Virtex 7. 

Area of the Reconfigurable controller (ASIC 180 nm) is 
comparable with area of the STP_ISS 13+ controller (Virtex 7). 
But achievable working frequency of the STP_ISS 13+ 
controller with Virtex 7 is about 75MGz. That is less than 
achievable working frequency of the Reconfigurable controller 
(125 MGz). Area of the Reconfigurable controller (ASIC 65 nm) 
is in dozen times less, than area of the STP_ISS 13+ controller 
(Virtex 7). 

This comparison show that implementation of the 
Reconfigurable controller with ASIC is more compact and has 
higher achievable working frequency (and throughput) than 
implementation of one special controller with FPGA. 

VI. CONCLUSION 
We consider existing approaches to realizing of dynamic 

reconfigurable units with ASIC, their advantages and 
disadvantages for Transport Protocol Controller Unit 
correspondingly to specific requirements to this Unit. 

We propose an approach for realization of dynamic 
reconfigurable Transport Protocol Controller Unit, which is 
based on dynamically reconfiguration state machine 
(automata) and DataPath.  

In frame of this approach, we use units with PLA structure 
in DataPath for calculation of complex conditions. In 
combination with using reconfigurable state machine, it allows 
us to select next state (which depends on several conditions) in 
one clock cycle that is not possible when processor core is 
used. This feature is very actual for Transport Protocol 
Controller Unit since processing of several event flows is 
required. 

Besides, the complex conditions are used for decreasing of 
finite state machine inputs and for count of events. 

The dynamically reconfigurable units developed with 
proposed approach can be configured to perform any 
algorithm corresponds to several constraints described in the 
corresponding part of the paper. 

Several examples are considered where presented approach 
is used, and area overheads are evaluated. It’s shown, that area 
of Reconfigurable Unit developed with our approach are 
typically less than when set of units without dynamic 
reconfiguration is used. Also we show that using of the 
approach allows us to realize new algorithms in existing 
Reconfigurable controller unit. 
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