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Université de Technologie de Compiègne,
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Abstract—We address the question of defining a robust op-
timization approach to model and solve a DVB-T network
design problem, while taking into account the uncertainty that
naturally affects the propagation of wireless signals. The robust
counterpart of the Mixed Integer Linear Programming model
that represents the design problem exploits multiband uncer-
tainty, a cardinality-constrained uncertainty model that employs
multiple deviation bands. Since the robust counterpart may prove
challenging to solve also for state-of-the-art optimization solvers,
we propose a matheuristic for its solution. The matheuristic com-
bines a variable fixing procedure exploiting suitable (tight) linear
relaxations of the model with exact large neighborhood search.
Results of computational tests considering realistic instances are
reported to assess the performance of the approach, showing that
the matheuristic can generate solutions of higher value than a
commercial optimization solver within the available time budget.

I. INTRODUCTION

Television broadcasting still represents a major telecom-

munication service all around the world, despite the strong

competition of a new wide range of alternative services

provided through wireless and wired networks. A critical

technological evolution in its history has been constituted by

the passage from analogue to digital transmissions, which has

taken place starting from the beginning of the new millennium:

digital broadcasting has enhanced the quality and performance

of the television networks, since it is able to exploit the

scarce radio resources available for transmissions in a more

efficient way, allowing the co-existence of a higher number of

broadcasters [21], [29], [45]. Around the world, the digital

television standard that has known the highest diffusion is

DVB-T (Digital Video Broadcasting - Terrestrial) [21]. DVB-

T is based on Orthogonal Frequency-Division Multiplexing

(OFDM), a modulation technique that, thanks to orthogonality,

allows to avoid interference while broadcasting on adjacent

channels that are not separated by guard bands (see e.g., [44]).
In 2009, the second generation of the DVB-T standard

(DVB-T2) has been released: the new standard offers improved

spectral efficiency and higher data rates, by supporting more

refined modulation schemes, in particular those belonging to

the 256-QAM family [22], [26]. In many countries, the switch

from the first to the second generation of DVB-T is currently

ongoing and has required to existing companies to reset their

networks. Moreover, since DVB-T2 allows the co-existence of

a higher number of broadcasters, new companies have entered

into the market and face the question of designing their new

networks. This situation has led to a renewed interest in DVB-

T design software, in particular those containing optimization

tools, since they can provide (much) better design plans.

In this work, we address the question of developing a robust

optimization model for designing DVB-T2 networks while tak-

ing into account the uncertainty that naturally affects wireless

signal propagation. Specifically, our original contributions are:

1) We derive a robust counterpart for the Mixed Integer

Linear Programming (MILP) model, based on signal-

to-interference formulas, which is typically adopted to

represent DVB-T design. The counterpart is defined

according to the principles of Multiband Robust Opti-

mization [10], a refined version of the classical Γ-Robust

Optimization model by Bertsimas and Sim [7], which

has been widely used to deal with data uncertainty in

optimization problems (see e.g., [4], [6]).

2) Since the resulting robust optimization model may result

very challenging even for a state-of-the art optimiza-

tion software like IBM ILOG CPLEX, we define a

matheuristic for its solution, proposing to combine a

probabilistic variable fixing procedure with an exact

large variable neighborhood search. The probabilistic

fixing exploits the precious information that can be

derived from a tight linear relaxation of the MILP

model adopted to represent the DVB-T design problem,

whereas the exact search consists of exploring a solution

neighborhood formulating the search as an optimization

problem that is solved at the optimum.

3) We highlight the performance of our new modelling

and algorithmic approach by means of tests conducted

on realistic DVB-T instances. The tests show that our

algorithmic approach may generate solutions of much

higher quality than a state-of-the-art solver.

We remark that, while the deterministic (i.e., not considering

data uncertainty) optimal design of wireless networks based

on signal-to-interference ratios has received wide attention,

the use of optimization under uncertainty techniques, such
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as Robust Optimization and Stochastic Programming, has

received less attention and has especially considered the effects

of traffic uncertainty (as discussed in [33]) mainly considering

stochastic programming approaches, such as [27] and [32] for

dealing with fading uncertainty. This is also true for the case

of DVB-T, in which optimization approaches have neglected

data uncertainty (e.g., [16], [17], [34], [37]). To the best of our

knowledge, this is the first work that discusses the adaption

of a robust optimization approach to DVB-T and presents a

matheuristic for the solution of the resulting complex problem.

In the remainder of the paper: Section II states the ref-

erence model that we consider for DVB-T optimal network

design, while Section III discusses how to derive a multiband

robust optimization for the problem; in Section IV we present

the matheuristic algorithm and present results of preliminary

computational tests on realistic instances. Finally, in Section

VI, we conclude the paper discussing possible directions for

future research.

II. DVB-T NETWORK DESIGN OPTIMIZATION

As first step, we illustrate how to define a deterministic
model (i.e., neglecting data uncertainty) for designing a DVB-

T network. The design problem can be essentially described as

that of choosing the power emissions of a set of stations that

must broadcast television services to a territory discretized into

a grid of small squares, commonly referred to as testpoints
(TPs). The testpoint model is recommended to be used by

telecommunications regulatory bodies (e.g., [1], [45]). Besides

the power emission, it is also necessary to establish the serving

station of each TP, which must be covered with a service level

that satisfies quality requirements.

The DVB-T design problem represents a variant of the

Wireless Network Design Problem (WND) (see e.g., [17], [33],

[37], [43]) in which the two essential decisions that must be

taken are: 1) setting the power emission of each transmitter

and 2) establishing the transmitter that serves each user (user-

serving transmitter association).

The joint optimization of the power emission of transmitters

and of the association user-trasnmitter gives raise to the

Scheduling and Power Assignment Problem (SPAP), a variant

of the WND that is NP-hard [37]. The SPAP is considered a

central optimization problem in wireless network design(see

e.g., [37], [38]) and typically includes signal-to-interference

ratios to represent service coverage of users. Besides DVB-T,

it has been considered in many different technological contexts

such as 5G (e.g., [46]), FTTx (e.g., [18], [41]), mesh networks

(e.g, [23], [30]), UMTS (e.g., [2], [24], [25]) WiMAX (e.g,

[3], [28]) and other kind of wireless network design-related

problem (e.g, [13], [32], [33], [43], [47]).

If we denote by S the set of transmitting stations and by T
the set of testpoints, the SPAP can be modelled by introducing

the following two families of decision variables:

• continuous power variables ps ∈ [0, Pmax] ∀s ∈ S, each

modelling the power emission of one station;

• binary service assignment variables xts ∈ {0, 1} ∀t ∈
T, s ∈ S such that:

xts =

{
1 if station s ∈ S serves TP t ∈ T
0 otherwise.

In order to assess the service quality granted by a station

s to a TP t, the first observation to be done is that the

power that t obtain from s is equal to the product of the

power emission ps of s and of a coefficient ats ∈ [0, 1],
commonly called fading coefficient. The fading coefficient

summarizes the power decrease to which the signal is subject

while propagating from s to t [42] (i.e., the power that t
receives from s is equal to ats · ps).

Concerning interference phenomena in DVB-T, it is im-

portant to note that, thanks to the use of OFDM, signals

sent on the same frequency do not necessarily interfere:

their distinction between interfering and useful to the service

depends upon falling within a time window that is used by the

user/testpoint for signal detection. A signal that falls within

the window is useful and contributes to increase the quality

of service. Instead, a signal that falls outside the window is

interfering and contributes to decrease the quality of service.

For a more exhaustive review of the concept of time window

and its impact on designing a DVB-T, we refer the reader to

[36], [37] and to [35], [39].

In modelling approaches for DVB-T design, such as [8],

[36], [37], the start of a time window is commonly set equal

to the time that a signal is received from a station. Thus, for

each testpoint t ∈ T , in the deterministic model we consider,

we have one distinction between interfering and useful signals

for each station s ∈ S. We say that s is the server (or serving
station) of t if t starts its detection window when receiving

the signal of s. Once the server s of t is chosen, we indicate

the subset of useful stations for t by U(s, t) ⊆ S and the

subset of interfering stations by I(s, t) ⊆ S (note that it holds

S = U(s, t) ∪ I(s, t) and U(s, t) ∩ I(s, t) = ∅).

In order to establish whether a TP t is served with the

desired quality of service, we rely on a canonical Signal-to-

Interference Ratio (SIR):

SIRts(p) =

∑
σ∈U(s,t) atσ · pσ

N +
∑

σ∈I(s,t) atσ · pσ ≥ δ . (1)

that considers the sum of all the useful powers over the sum of

all the interfering powers. In (1), δ > 0 is called SIR threshold

and expresses the desired service quality, whereas N > 0 is

the system noise. By simple operations, the previous SIR can

be rewritten as:∑
σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ ≥ δ ·N . (2)

Now, a question that arises is that in the DVB-T design

problem we do not know a priori which is the server s of

a TP t, since this is part of the decision problem. So we do

not even know a priori which specific SIR inequalities we

should satisfy. In order to include and model the activation or

deactivation of SIR inequalities, depending upon the stations

______________________________________________________PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 295 ----------------------------------------------------------------------------



chosen as servers of the TPs, we can rely on a standard

optimization approach (see [40]) and define modified SIR

constraints that include the binary variables xts. Specifically,

inside each SIR inequality, we include a new term where

a sufficiently large coefficient denoted by M (the so-called

big-M coefficient) multiplies the binary service assignment

decision variable xts. More in detail, for each TP t and station

s, we define the following big-M SIR constraint:∑
σ∈U(s,t)

atσ ·pσ−δ
∑

σ∈I(s,t)

atσ ·pσ+M(1−xts) ≥ δ·N . (3)

When xts = 1, the big-M term disappears in (3) and the

constraint reduces to the SIR inequality of s serving t, which

must be satisfied. In contrast, when xts = 0, s is not the

server of t, the big-M term adds a very large quantity to the

left-hand-side of (3) and thus (3) is satisfied by any power

emission of the variables pσ and therefore is redundant and

does not affect the feasible set.

The SIR constraints (3) represent a fundamental component

of the MILP used to model the WND and the DVB-T network

design problem. In particular, the complete model we consider

for designing the DVB-T network is:

max
∑
t∈T

∑
s∈S

rt · xts (DVB-MILP)

∑
σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ+

+M(1− xts) ≥ δ ·N t ∈ T, s ∈ S
(4)∑

s∈S

xts ≤ 1 t ∈ T (5)

0 ≤ ps ≤ Pmax s ∈ S

xts ∈ {0, 1} t ∈ T, s ∈ S .

In the previous model, the objective function aims at maximiz-

ing the revenue obtained from covering TPs with service (each

TP generates a revenue rt > 0 when covered). The constraints

(4) are the big-M SIR constraints and the constraints (5)

model that at most one station can provide the reference signal

starting the detection window of each TP.

III. DEFINITION OF A ROBUST OPTIMIZATION

COUNTERPART

The fading coefficients ats that are part of the SIR con-

straints (4) are naturally subject to uncertainty because of

the wide range of factors that influence signal propagation in

a real environment (e.g., landscape, obstacles, weather, etc.)

and that are hard to precisely assess [42]. These coefficients

are commonly computed by (empirical) propagation models

that, using extensive field propagation measurements, provide

a formula for computing the coefficient values on the basis of

factors like the distance between the communicating points,

the portion of the spectrum adopted for transmissions, and the

characteristics of the propagation environment (e.g., with many

obstacles like tall buildings or in line of sight). As well-known

by telecommunication professionals, the actual propagation

values may be sensibly different from the values returned by

the propagation models and it is thus very important to protect

design solutions from possible fluctuations in these values.

Our work considers an optimization problem in which the

fading coefficients represent uncertain data, i.e. data whose

value is not exactly known when the problem is solved. The

problem is thus suitable to be tackled by Robust Optimization

(RO). RO is an effective and efficient methodology for dealing

with data uncertainty in optimization problems, which essen-

tially consists of including data uncertainty under the form

of hard constraints that restrict the set of feasible solutions,

excluding those that could become infeasible when specified

input data deviations occur. We refer the reader to [5], [6]

for an exhaustive introduction to RO. Here, we recall that,

according to an RO methodology:

• the actual value of each uncertain coefficient is unknown

to the decision maker;

• the decision maker has at disposal a nominal value of

each uncertain coefficient, representing an estimation of

its actual value;

• deviations against which solutions must be protected are

specified by an uncertainty set;
• the problem that is solved is a robust counterpart, a

modified version of the original deterministic problem,

including only robust feasible solutions, namely solutions

that remain feasible for all the deviations values of the

uncertainty set applied to the nominal values;

• a robust optimal solution offers the best objective value

under the worst data deviations;

• since the robust counterpart excludes a subset of feasible

solution of the deterministic problem, the robust feasible

set is a subset of the deterministic feasible set; as a

consequence, a robust optimal solution grants protection

against deviations, but generally presents a worse value

than a deterministic optimal solution. This reduction in

optimality constitutes the so-called price of robustness
[7].

In what follows, we define a first introductive robust opti-

mization model referring to the famous Γ-Robustness model

(Γ-ROB) by [7], which is based on a cardinality-constrained
uncertainty set combined with an interval deviation model.
Thus, in order to formally translate the previous RO principles

into mathematical terms following also Γ-ROB, we assume

that the actual value of a generic uncertain fading coefficient

ats belongs to the symmetric interval [āts − dts, āts + dts]
(here, āts is the nominal value of the uncertain coefficient,

while dts is its maximum allowed deviation). Practically, āts
could be the value provided by a propagation model, while

dts could be set as the maximum deviation that the network

planner wants to consider according to its risk aversion.

If we denote by p the power vector of the decision variables

ps and by Γ the number of deviations of fading coefficients

for which we want to guarantee protection (here, Γ is the

parameter that gives the name to Γ-ROB), we can write a first
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robust version of the SIR constraint as follows:

∑
σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ −DEVts(Γ, p)

+M(1− xts) ≥ δ ·N , (6)

where DEVts(Γ, p) is the maximum reduction in power

that is allowed by the uncertainty set obtained by allowing

at most Γ fading coefficients to deviate at their upper bound

dts. A distinctive feature of Γ-Rob is to impose an upper

bound Γ on the number of coefficients that may deviate

to their worst value in each constraint and to tackle the

resulting non-linear optimization problem by duality theory.

The non-linearity is due to the presence of DEVts(Γ, p)
that actually constitutes an optimization problem inside the

optimization problem. The linear model is then obtained at the

cost of adding additional variables and constraints (we refer

the reader to [7] for a detailed description of the mathematical

approach). The parameter Γ controls the robustness level of

the robust counterpart: assuming m uncertain coefficients in

a constraints, Γ varies in {0, . . . ,m} and, if Γ = 0, there

is no protection and the price of robustness is zero, then as

Γ increases from 1 to m, also the protection increases until

reaching full protection when Γ = m, for all coefficients

deviating to their worst value.

Instead of adopting Γ-robustness, we propose here to adopt

Multiband Robust Optimization (MB) introduced in [10]–[12]

to generalize and refine classical Γ-Rob: MB uses multiple

deviation bands for better modeling arbitrary discrete distri-

butions, under the form of histograms, which are commonly

considered by professionals to analyze deviations in the input

data in real-world optimization problems (as also illustrated in

[4]). Following the principles of MB, for the uncertain fading

coefficient we define the following Multiband Uncertainty Set

(MBUS):

1) we partition the overall deviation range [−dts, dts] into

K bands, defined on the basis of K deviation values:

−dts = dK
−

ts < · · · < d−1
ts < d0ts = 0 < d1ts <

· · · < dK
+

ts = dts;
2) through these deviation values, K deviation bands are

defined, namely: a set of positive deviation bands k ∈
{1, . . . ,K+} and a set of negative deviation bands

k ∈ {K− + 1, . . . ,−1, 0}, such that a band k ∈
{K−+1, . . . ,K+} corresponds to the range (dk−1

t , dkt ],
and band k = K− corresponds to the single value dK

−
t .

Note that K = K+ ∪K−;

3) we define a lower and upper bound on the number of

values that may deviate in each band: for each band

k ∈ K, two bounds lk, uk ∈ Z+: 0 ≤ lk ≤ uk ≤ |T |·|S|
are introduced. Furthermore, the number of coefficients

that may deviate in the zero-deviation band k = 0
is not limited (i.e., u0 = |T | · |S|) and we impose

that
∑

k∈K lk ≤ |T | · |S|, so as to ensure that there

exists at least one feasible assignment of coefficients to

deviations bands.

An MB uncertainty set is particularly suitable for modelling

histograms. Furthermore, it also considers bands associated

with beneficial and non-adversarial deviations: this is done

since, in real-world applications, our main objective is to

be protected against adversarial data deviations that lead to

infeasibility, but at the same time we want to take into

account also beneficial deviations which may take place and

compensate the adversarial deviations, therefore reducing the

price of robustness.

The linear robust counterpart of an uncertain SIR constraint

defined for a couple (s, t) is obtained according to the theo-

retical results of Multiband Robust Optimization (in particular

Theorem 1 of [10] about the mathematical form of a linear

and compact multiband robust counterpart). Specifically, the

single deterministic SIR constraint of (s, t) is replaced by the

following set of constraints:

∑
σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ −
(∑

k∈K

θkts · wk
ts

+
∑
s∈S

zts

)
+M(1− xts) ≥ δ ·N (7)

wk
ts + zts · pσ ≥ dkts ps k ∈ K

(8)

wk
ts ≥ 0 k ∈ K

(9)

zts ≥ 0 (10)

which includes the additional constraints (8) and variables (9),

(10) to linearly reformulate the original (non-linear) robust SIR

constraints generalizing constraints (6) according to multiband

robust optimization.

The robust optimization problem that we consider and that

we denote by Robu-DVB-MILP is obtained by DVB-MILP

substituting each SIR constraints with (7) and the auxiliary

dual constraints and variables (8), (9), (10).

IV. A MATHEURISTIC FOR SOLVING THE ROBUST

OPTIMIZATION PROBLEM

The multiband robust optimization model Robu-DVB-MILP

constitutes a Mixed Integer Linear Programming problem and

could be solved by using any optimization software. How-

ever, the presence of the robust complicated SIR constraints

and of the big-M coefficients makes it a hard problem that

may prove very challenging for state-of-the-art commercial

solvers, even when considering instances of contained size.

As a consequence, we propose a matheuristic for its solution,

namely an algorithm that combines heuristic exploration of the

feasible set with the adoption of exact optimization methods

(i.e., guaranteeing convergence to an optimal solution) for suit-

able subproblems of the complete problem. Specifically, we

propose a matheuristic that follows the algorithmic principles

presented in [15], [18], [19], to which we refer the reader for

more details. It is mainly based on a probabilistic variable
fixing procedure integrated with an exact large neighborhood
search.
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In our case, the a-priori measure is provided by a linear re-

laxation of the model Robu-DVB-MILP, while the a-posteriori

measure is given by a (tighter) linear relaxation of DVB-MILP

(where a subset of variables has been fixed in value). At the

end of each cycle of variable fixing, the a-priori fixing measure

is updated, evaluating how good were the applied fixing. Once

a time limit is reached, the fixing cycle stops and an exact large

neighborhood search is executed for trying to improve the best

solution found.

In the probabilistic fixing procedure, a number of solutions

are built iteratively: at every iteration, a partial solution (i.e., a

solution where only a subset of variables has its value fixed)

is available and we can fix the value of an additional variable.

Once the value of all the variables has been fixed, we obtain a

complete solution whose quality is evaluated by means of its

objective value. The fixing procedure is based on the observa-

tion that once the power emission variables have been fixed in

value, it is possible to easily check which TPs are covered with

service by some station and compute the value of the objective

function. We thus base the fixing procedure on deciding

the values assumed by the power variables. As preliminary

step, we introduce a discretization of the power emission

range [0, Pmax] into a set P = P1 = 0, P2, . . . , Pn = Pmax

of discrete power values, defined according to a power dis-

cretization step ΔP . We denote by L the set of power indices

{1, 2, . . . , n}. Exploiting this discretization, the continuous

power emissions are replaced by a set of binary variables

ysl ∈ {0, 1} ∀s ∈ S, l ∈ L such that:

ysl =

{
1 if station s ∈ S emits with power Pl ∈ P
0 otherwise,

which must be accompanied by the constraints:∑
l∈L

ysl = 1 s ∈ S (11)

expressing that each station must emit by exactly one power

value. This leads to a so-called Power-Indexed optimization

model, which has been proved to be very performing for

dealing with SIR constraints appearing in optimal design of

wireless networks [17].

At a generic iteration of the construction cycle of a feasible

solution, we have at disposal a partial solution to the problem

(obtained by having chosen the power emissions of a subset

of stations SFIX ⊆ S by fixing their variables ysl while

respecting (11)). We probabilistically choose the next station

whose power emission is fixed by means of the following

formula, defined ∀s ∈ S\SFIX, l ∈ L:

psl =
α τsl + (1− α)ηsl∑

s∈S\SFIX

∑
λ∈L[α τσλ + (1− α) ησλ]

, (12)

which expresses the probability of fixing the power emission

of station s ∈ S\SFIX to power level Pl by considering

all the couples σ ∈ S\SFIX, λ ∈ L of stations whose

emission is not yet fixed. In the formula, τsl is the a-priori

attractiveness measure obtained from the optimal value of

Robu-DVB-MILP including power-indexed variables, while

ηsl is given by the value of a tight linear relaxation of DVB-

MILP including fixing of variables done in previous iterations.

The two measures are combined by a coefficient α ∈ [0, 1].
After having fixed ysl = 1 for some couple (s, l), because of

constraint (11) we can set ysλ = 0 for all λ ∈ L : λ 
= l.
After having defined the power emissions of all stations

(assume this is denoted by a binary power vector ȳ), all the

SIR ratios can be easily computed. On the basis of the value

of these ratios, we can also easily check which testpoints are

covered with service and thus derive a valorization of the

server assignment variables x̄. The resulting solution (ȳ, x̄)
which is feasible for DVB-MILP is accepted as robust when

it maintains its feasibility also when the fading coefficients are

deviating to their worst value.

Once a round of construction of feasible solutions has been

operated, the a-priori measures are updated using the following

formula:

τsl(h) = τsl(h− 1) +

γ∑
SOL=1

ΔτSOL
sl (13)

where:

ΔτSOL
sl = τsl(0) ·

(
OG(vAVG, u)−OG(vSOL, u)

OG(vAVG, u)

)
(14)

where τsl(h) is the a-priori measure of fixing station s at power

level Pl at the h-th execution of the cycle and ΔτSOL
sl is the

modification to the value of the a-priori measures, computed

over a summation that considers the last γ solutions that

have been constructed. Moreover, u is an upper bound on the

optimal value of the problem, vSOL is the value of the SOL-th

feasible solution built in the last construction cycle, vAVG is

the average of the values of the last γ solutions that have been

constructed. The optimality gap OG(v,u) measures how far is

the value v of a solution from the upper bound u and is defined

as OG(v, u) = (u−v)/v. The role of formula (13) is to update

the a-priori measure rewarding (penalizing) those fixing that

have lead to a solution with lower (higher) optimality gap in

comparison to the moving average value vAVG.

At the end of the construction cycle, with the aim of

improving the best robust solution found, an exact neigh-

borhood search is conducted, i.e. we explore a (very large)

neighborhood of the best solution, formulating the search

as an optimization problem which is optimally solved by a

state-of-the-art solver (see e.g., [9], [20]). The adoption of

exact searches is motivated by the fact that, while it can be

difficult and long for a solver to solve the complete problem,

it is instead possible to efficiently solve to optimality some

subproblems. The large neighborhood that we define is built

from a robust solution (ȳ, x̄) allowing to change the power

emission of all stations by either 1) turning off a station s
(i.e., setting ys0 = 1 or 2) allowing a modification of the power

emission to the adjacent power level set by ȳ (i.e., if ysl = 1
then it is allowed to set ysl−1 = 1 or ysl+1 = 1. The exact

search is then conducted by expressing the previous conditions

as linear constraints that are added to Robu-DVB-MILP and

the resulting problem is solved by an exact solver.
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The pseudocode of the matheuristic for solving Robu-DVB-

MILP is presented in Algorithm 1. The first step consists of

solving the linear relaxation of Robu-DVB-MILP including

the power fixing of each couple (s, l) with s ∈ S and l ∈ L.

The obtained optimal values are employed to initialize the a-

priori measures τsl(0). Then a solution construction cycle is

executed until reaching a time limit. In each execution of the

cycle, a number of feasible solutions are built first by fixing

the power emission binary variables through formula (12),

then deriving the corresponding valorization of variables x and

finally checking their robustness. At the end of each execution

of the cycle, the a-priori measures τ are updated on the basis

formula (13). As last step, once the construction time limit

is reached, the exact large neighborhood search is conducted,

using as basis the best robust feasible solution defined during

the construction cycle.

Algorithm 1
1: compute the linear relaxation of the power-indexed version

of Robu-DVB-MILP for all ysl = 1 and initialize the

values τsl(0) with the corresponding optimal values

2: let (x∗, y∗) be the best robust feasible solution found

3: while a global time limit is not reached do
4: for SOL := 1 to γ do
5: construct a feasible power vector ȳ using the

probabilistic fixing formula (12)

6: compute the set of station-testpoint couples asso-

ciated with satisfied SIR quantities and derive the corre-

sponding x̄ vector

7: check the robustness of the feasible solution (x̄, ȳ)
8: if the coverage granted by (x̄, ȳ) is better than that

of (x∗, y∗) then
9: update (x∗, y∗) with (x̄, ȳ)

10: end if
11: end for
12: update τ according to (13)

13: end while
14: execute the exact large neighborhood search using (x∗, y∗)

and the modified power-indexed version of Robu-DVB-

MILP as basis

15: return (x∗, y∗)

V. PRELIMINARY COMPUTATIONAL RESULTS

The robust optimization approach was tested on 10 instances

including realistic data defined from regional DVB-T networks

deployed in Italy, including up to about 300 stations and 4000

testpoints. The revenue associated with covering a testpoint

is represented by the population of the testpoint, so, in what

follows, the value of the best solution found by an algorithm

is expressed as the percentage of the population covered

with service. As optimization software, we used IBM ILOG

CPLEX [14] and the algorithms were tested on a Windows

machine with 2.70 GHz Intel i7 and 8 GB of RAM. Both

CPLEX and the matheuristic ran with a time limit of 1 hour

(in the case of the matheuristic, 50 minutes are devoted to

TABLE I. EXPERIMENTAL 
RESULTS

ID COV-CPLEX% COV-MH% ΔCOV%

DVB1 75.4 91.5 21.3
DVB2 74.0 88.4 19.4
DVB3 71.2 86.0 20.7
DVB4 66.8 64.8 26.9
DVB5 67.4 90.4 34.1
DVB6 74.7 87.5 17.1
DVB7 71.5 82.6 15.5
DVB8 79.0 88.1 11.5
DVB9 68.2 82.3 20.6
DVB10 72.6 87.5 20.5

the solution construction and 10 minutes are reserved to the

execution of the exact neighborhood search). The parameters α
and γ are set equal to 0.5 and 5, respectively. The robust model

takes into account a deviation range that allows deviation up

to 20% of the value of the fading coefficients and that is

partitioned into 5 deviation bands. The preliminary results

of the computational tests are presented in Table 1, where:

i) ID identifies the instance; ii) COV-CPLEX% and COV-
MH% are the percentage of population covered by the best

robust feasible solution found by CPLEX and the best robust

feasible solution found by the metaheuristic; iii) ΔCOV%
is the percentage increase in population coverage that the

metaheuristic grants with respect to CPLEX.

Evaluating the results, it can be observed that CPLEX

experiences difficulties to find high quality solutions, iden-

tifying robust solutions of quite low value in comparison to

the matheuristic. Specifically, while CPLEX offers coverage

between about 66 and 79 %, the matheuristic offers a coverage

at least above 80% that may exceed 90% and offers an

average coverage of 86%. Thus the matheuristic is able to offer

solutions that are on average about 20% better in coverage

value than those returned by CPLEX. The better performance

of the matheuristic can be attributed to the fact of heuristically

uncoupling the power and assignment variables, which, when

linked, produce a much more complicated problem. Moreover,

the variable fixing heuristic attempts at exploiting the valuable

information coming from (strengthened) linear relaxations of

the considered models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a robust optimization approach

for tackling the uncertain nature of fading coefficients ap-

pearing in optimization models adopted for designing DVB-T

wireless networks. The robust optimization model is based

on Multiband Robust Optimization and may prove difficult

to solve also for a state-of-the-art optimization solver, when

considering realistic instances. In order to identify solutions

of higher quality, we proposed a matheuristic that combines a

variable fixing procedure based on exploiting linear relaxations

of the robust and deterministic model with an exact large

neighborhood search. Preliminary computational results based

on realistic instances indicated that the matheuristic is able
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to identify solutions of sensibly better quality than those

returned by a commercial optimization solver. In the future,

we intend to widen the computational experience to a larger

set of instances, also conducting a study about the impact of

parameter tuning. Moreover, we intend to also better study the

impact of different characterization of the uncertainty set on

the robustness of solutions.
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[4] T. Bauschert, C. Büsing, F. D’Andreagiovanni, A.M.C.A. Koster, M.
Kutschka, U. Steglich: Network Planning under Demand Uncertainty with
Robust Optimization. IEEE Communications Magazine 52 (2), 178-185
(2014) DOI: 10.1109/MCOM.2014.6736760

[5] A. Ben-Tal, L. El Ghaoui, A. Nemirovski: Robust Optimization. Springer,
Heidelberg, 2009.

[6] D. Bertsimas, D. Brown, C. Caramanis: Theory and Applications of
Robust Optimization. SIAM Review 53 (3) 464-501 (2011)

[7] D. Bertsimas, M. Sim: The Price of Robustness. Oper. Res. 52 (1), 35-53
(2004)

[8] R. Beutler, Frequency Assignment and Network Planning for Digital
Terrestrial Broadcasting Systems, Springer, Heidelberg (2004)

[9] C. Blum, J. Puchinger, G. R. Raidl, A. Roli, “Hybrid metaheuristics
in combinatorial optimization: A survey”. Applied Soft Computing 11,
4135-4151, 2011.
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