
Privacy-Preserving Peer Discovery for Group
Management in p2p Networks

Tommi Meskanen, Valtteri Niemi
University of Helsinki

Helsinki, Finland

{tommi.meskanen, valtteri.niemi}@helsinki.fi

Jarkko Kuusijärvi
VTT Technical Research Centre of Finland Ltd

Oulu, Finland

jarkko.kuusijarvi@vtt.fi

Abstract—The necessity for peer-to-peer (p2p) communications
is obvious; current centralized solutions are capturing and storing
too much information from the individual people communicating
with each other. Privacy concerns with a centralized solution in
possession of all the users data are a difficult matter. HELIOS
platform introduces a new social-media platform that is not in
control of any central operator, but brings the power of possession
of the data back to the users. It does not have centralized
servers that store and handle receiving/sending of the messages.
Instead, it relies on the current open-source solutions available
in the p2p communities to propagate the messages to the wanted
recipients of the data and/or messages. The p2p communications
also introduce new problems in terms of privacy and tracking of
the user, as the nodes part of a p2p network can see what data
the other nodes provide and ask for. How the sharing of data
in a p2p network can be achieved securely, taking into account
the user’s privacy is a question that has not been fully answered
so far. We do not claim we answer this question fully in this
paper either, but we propose a set of protocols to help answer one
specific problem. Especially, this paper proposes how to privately
share data (end-point address or other) of the user between other
users, provided that they have previously connected with each
other securely, either offline or online.

I. INTRODUCTION

Privacy concerns and collection of data by the centralized

social media services are driving the need and development

towards decentralized and distributed solutions. Numerous

cases of data breaches by centralized platforms have been

reported thus far [7], [12]. In the premise of these require-

ments, a decentralized solution is needed, in order to fulfill

the end-users needs and wants, the end-user requirements. In

order to achieve a decentralized social media platform, a p2p

solution is required. A number of decentralized solutions have

been proposed, such as [2], [4], that do address the base for

achieving the goals towards having a decentralized solutions

(and in some cases taking into account privacy aspects at some

level), but they do lack the solution of achieving un-tractability

in the networks.
The p2p networks are open in terms of connections and

data exchange between peers, including all the communicating

nodes seeing the end-point addresses of the other connected

nodes, obviously. This cannot be fully avoided with any

generic p2p solution as such (at least without onion routing),

as peers communicating with each other will have to create

connections with each other in order to exchange data and

function as a true p2p network. This is the case when the

communicating nodes cannot directly connect to each other,

e.g., they may be behind distinct Network Address Translation

(NAT). The problem and concern we address in this paper is

that we do not want our identification data (the user ID/IP ad-

dress) to be shared with non-relevant other person(s) involved

in the p2p network. In order to achieve this, we propose a

set of protocols to share identification data in the environment

to a set of users to whom we want to share these data. To

exchange data with the other users, we need to know the actual

end-point addresses of our friends, i.e., IP addresses and the

ephemeral IDs. The premise of HELIOS [6] platform is that

users can communicate with each other in a p2p network,

while taking into account the overall security and privacy of

the user. The restrictions/technical problems explained above

need to be solved, in order to make the user untraceable. One

solution to achieve some level of untraceability is to change

the used end-point address and the ID of the user at certain

intervals.

The libp2p [11] can connect to other nodes using a Circuit

Relay (or relay in networking terms) in case the nodes are

behind a NAT network and cannot connect to each other

directly. The relay feature can also be used to connect to the

p2p network via a relay and exchange data, without connecting

directly to the other nodes. Another way to achieve this would

be to use another gateway outside to connect to the p2p

network (of course that gateway would see the IP address of

the user in this case also).

Peer-to-peer networks have many advantages compared to

networks with centralized control. One of the advantages is

privacy. Nobody in the network has a full view about what

is going on. Sensitive data can also remain local when p2p

paradigm is in use. On the other hand, one of the advantages of

a centralized system over a p2p system is easier management.

For example, nodes in the network can easily find each other

with the help of a centralized database that contains up-to-

date information about the network endpoints of all nodes.

In this paper we show how nodes can find each other (i.e.,

peer discovery and/or sharing of data) in a privacy-preserving

manner.

A user wants to share their IP address (or other identification

information) to their friends but wants to keep it secret from

the other users. The address is changing over time and a

new address needs to be distributed to the friends. Some user

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

may be removed from the set of friends also, so they should

not learn the new address after they have been removed. In

addition, some new friends may be added to the set of friends

and they should also learn the new address after the addition.

We describe the concept with group of friends but, of course,

other groups can be handled similarly.

In this paper we will describe how we will accomplish

sharing data (e.g., IP address) to the people we have connected

with in the past (have shared keys or such), while keeping this

information as secure and private as possible in terms of the

p2p network premise.

II. RELATED WORK

Different security issues related to p2p networks can be

found in [9], [18]. The paper [3] presents a survey of different

threats and security models for p2p streaming applications. In

the paper [22] Urdaneta et al. consider the attacks against DHT

(distributed hash table, see next section) based systems and

protection techniques against these attacks. In particular, Sybil

attacks are considered in [17]. Data privacy in p2p systems is

extensively discussed in [8]. Privacy issues in p2p networks

and the solutions for these issues are also discussed in [20]

by Touceda et al.

A well-known technique for anonymous Internet commu-

nication is onion routing and the TOR network [21]. In their

paper [1], Brack et al. use DHT to track covid-19 contacts

in a privacy preserving way. One method for two machines

to share session configuration information using DHT can be

found in [14]. A different approach of using blockchain instead

of DHT to share data is presented in [10]. Octopus [24] is a

system developed for the purpose of secure and anonymous

DHT lookups. The paper by Guidi et al. [5] presents the novel

ideas of the HELIOS platform [6] as well as compares it to

other social media platforms. This paper can also be seen as

the motivation for issues in our study.

III. PRELIMINARIES

We assume that there is an out-of-band channel for the user

to change information with the new friend when they contact

each other for the first time. It is difficult to make sure that

people are what they claim to be in the Internet. Thus, it is

better if people meet in person or have some other method to

make sure that they are what they claim to be. One example

of an other method is that they use some trusted third party

to authenticate themselves. They may also have certificates

granted for themselves to show that they are who they claim

to be.

In addition to mutually authenticating each other, two users

can share their public keys that are used for verifying digital

signatures that they generate or self-signed certificates that

contain public keys and identities by which the two would

know each other.

One of the key components of the solution in this paper is a

cryptographic hash function [16]. A cryptographic hash func-

tion takes as an input a bit string of any length and returns a bit

string of fixed length. It is assumed that evaluation of the hash

function can be done efficiently. If Hash is a cryptographic

hash function then it is computationally infeasible to find two

different inputs x and x′ such that Hash(x) = Hash(x′)
or to find x such that Hash(x) = y when output y is given.

SHA-256 is an example of a cryptographic hash function [23].

A cryptographic hash function is needed when using a

distributed hash table.

A distributed hash table (DHT) is a lookup table that is

distributed between several nodes. The table stores (key, value)

pairs. The key is the hash value of value or the hash value

of something else that is used to determine the location for

storing the value. Typically the value is stored to several nodes

where it can be retrieved using the same key. There are several

methods to implement a DHT, for example Chord [19] and

Kademlia [13].

In this paper, DHTs are used to share information uti-

lizing a specific protocol proposed here in a secure way,

without any third-party participant being capable of cap-

turing/deducing/calculating the information at real-time with

currently available methods. Naturally, when DHT is utilized

to retrieve some content, other nodes in the network path will

see a specific node requesting that content and can take use

of this information.

In this paper, we assume that the user can write to, and

the friends can read from, a distributed hash table. The

cryptographic hash function, Hash, in this paper is the hash

function that the chosen implementation of DHT uses.

A digital signature for a message or a bit string is calculated

using the signing algorithm and a key that only the signer

knows. This key is called the private key and it is closely

related to another key that is called the public key. Using

the verification algorithm anybody who has the public key

can make sure that the message was signed using the private

key. Therefore, only the person who has the possession of the

private key could have created the signature. A well known

method for generating electronic signatures is based on the

RSA cryptosystem [15].

A logical key hierarchy [25] is a method to distribute a

group key to a set of users. It is based on a (binary) tree. Each

member of the group has a personal key and is assigned a leaf

in the tree by the administrator of the group. The administrator

picks a random key for all nodes of the tree. The encrypted

values of the keys are then stored in the tree. The administrator,

for each node except the root, encrypts the key in the parent

node of the node with the key of the node and stores it in the

node. For the leaves the personal keys of the members of the

group are used for encryption. The group key is stored in the

root of the tree and encrypted by the key picked for the root.

If any member of the group now has access to the encrypted

keys in the tree and they have their personal key, they can

find out the group key. The member can first decrypt the key

located in their leaf by decrypting it by their personal key.

Using the key they decrypted they can again decrypt the next

key on the path from their leaf to the root. They can repeat

the process until they reach the root and are able to learn the

group key. Someone who does not have a personal key, or

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 151 --

any other key in the hierarchy, is unable to decrypt any of the

leaves or any other key in the tree. A logical key hierarchy

tree for seven members is presented in Fig. 1.

There are several benefits for using the logical key hierarchy.

All the encrypted values in the tree can be broadcasted to

all the members of the group. It does not matter if other

persons than the members of the group are able to receive

these encrypted values. They are anyway unable to decrypt

these without a personal key. Thus there is no need for the

administrator to communicate with the individual members.

In addition, it is relatively easy to add members to the group

and deliver the group key to them. The administrator just adds

a node to the tree such that there is one more leaf for the

new member. For removing a member the following steps are

needed:

1) The leaf of the removed member is removed from the

tree.

2) New keys are picked to replace those that the removed

member was able to learn.

3) These new keys are encrypted and stored the same way

as in the original tree.

4) A new group key is picked, encrypted with the new key

picked for the root and stored at the root of the table.

The personal keys of the remaining members need not to be

changed, but the personal key of the removed member is no

longer useful for learning the group key.

IV. THE PROTOCOLS

In this chapter, we present our protocols for sharing the

IP address of user A to a group of their friends. In the first

protocol, we assume that there exists a separate method to

distribute a shared key to all friends in the group.

A. Protocol 0

Sharing phase:

1) A encrypts its address using the shared key that is

distributed to all members of the group.

2) A stores the encrypted address to location Hash(IDA)
in the DHT.

Here IDA is an identity of A in bit string format that is

assumed to be known by everyone who needs to learn the

address of A.

When B needs to find out the address of A, she performs

the following steps:

Retrieving phase:

1) B retrieves the encrypted key from the location

Hash(IDA)
2) B decrypts the address using the key that is distributed

to all members of the group.

Only the persons who have the key are able to decrypt the

address. When the address changes, A performs the sharing

phase again. When a new friend is added, the key is distributed

to her. If friends are removed from the set of friends, a new

key must be distributed to all the remaining friends. In this

solution, the DHT is only used to store the encrypted value of

the address. The non-trivial problem of distributing the key is

left out of this solution.

B. Protocol 1

In this solution, we assume that there is a way for A and B
to authenticate each other and share their public keys. They

do not need to tell their true identities to each other, but there

must be some kind of identity, IDA that B will associate to

this person. User A can use the same identity with several

other users and have other identities to use with the same or

other users.

Setup phase:

1) A and B authenticate themselves to each other in some

way.

2) A and B agree on a sharedkeyAB . They also share their

public signature verification keys.

This setup phase needs to be done between A and all the

friends of A. A different sharedtkeyAB is chosen for each

friend of A.

Sharing phase:

1) A chooses a saltkeyA, encrypts it with

sharedkeyAB , and stores it to the DHT location

Hash(sharedkeyAB ||IDA). The same is repeated for

every friend of A using the same saltkeyA.

2) A encrypts the address using saltkeyA.

3) A stores the encrypted address to location

Hash(saltkeyA||IDA)

Again, A needs to perform this step for all friends of A.

When new friends are added, the same saltkeyA is encrypted

and stored for them. When some friends are removed, a

new random saltkeyA is chosen and updated to DHT for

all remaining friends and the encrypted (preferably changed)

address is stored to the new location in the DHT.

Retrieving phase:

1) B retrieves the encrypted saltkeyA from the DHT

location Hash(sharedkeyAB ||IDA).
2) B decrypts the saltkeyA with sharedkeyAB .

3) B retrieves the encrypted address from the DHT location

Hash(saltkeyA||IDA).
4) B decrypts the address with saltkeyA.

If the saltkeyA has not changed and B remembers it, it

is enough for B to perform the last two steps. However, B
cannot be sure of this unless they perform the first two steps,

or notice that the address they get in Step 4 is no longer the

correct one.

For added security, A could add his digital signature to

everything he stores in the DHT. Then B could verify these

signatures when she retrieves the values.

Compared to the previous protocol, removing friends is now

more efficient. Also, the DHT is now used to distribute the

group key (saltkeyA) for each friend.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 152 --

t

Ek0
(group key)

Ek1
(k0)

Ek3
(k1)

Ek7(k3)

Ek8
(k3)

Ek4
(k1)

Ek9
(k4)

Ek10(k4)

Ek2(k0)

Ek5
(k2)

Ek11
(k5)

Ek12(k5)

Ek6(k2)

Fig. 1. Logical key hierarchy for seven members. Keys k6, k7, . . . , k12 are distributed to the members With a personal key a member can decrypt another
key and finally the group key as long as all the encrypted values are made available.

C. Protocol 1.1

We could modify the previous protocol such that the loca-

tions in the DHT change over time. For example, the location

could change every day and the TIME in the following could

be the current date.

Setup phase:

1) A and B agree on a sharedkeyAB . They also share their

public signature verification keys.

Sharing phase:

1) A chooses a saltkeyA, encrypts it with

sharedkeyAB , and stores it to the DHT location

Hash(sharedkeyAB ||IDA||TIME). The same

is repeated for every friend of A using the same

saltkeyA.

2) A encrypts the address using saltkeyA.

3) A stores the encrypted address to location

Hash(saltkeyA||IDA||TIME) .

User A could repeat this sharing phase every time the value

of the parameter TIME changes to make it easier for other

users to locate the positions in the DHT. If A does not do

this then another user B may need to repeat the following

retrieving phase, using also earlier values of TIME as inputs.

Retrieving phase:

1) B retrieves the encrypted saltkeyA from the DHT

location Hash(sharedkeyAB ||IDA||TIME).
2) B decrypts the saltkeyA with sharedkeyAB .

3) B retrieves the encrypted address from the DHT location

Hash(saltkeyA||IDA||TIME).
4) B decrypts the address with saltkeyA.

If the saltkeyA has not changed and B remembers it, it

is enough for B to perform the last two steps. But, again, B
cannot be sure of this unless they perform the first two steps

or notice that the address they get in Step 4 is no longer the

correct one.

Changing the location in the DHT over time makes it more

difficult for the nodes in charge of the DHT to track when the

address changes and who are reading the location where the

address is stored.

This solution has advantages over the previous one,

but the whole structure needs to be stored to the

DHT every time TIME changes. Even through it would

be enough to just change the information in location

Hash(saltkeyA||IDA||TIME) if all the friends know the

saltkeyA, there is no method in the protocol for A to be sure

that everybody knows the current saltkeyA.

D. Protocol 2

The next solution is based on the ideas of LKH [25].

Setup phase:

1) A and B agree on a sharedkeyAB . They also share their

public signature verification keys.

This phase is the same as before.

We assume that A has constructed a binary tree where

the leaves are all his friends. Each node in the tree has a

random saltkey associated to it, except the leaves. The leaf

that corresponds to B has the sharedkeyAB associated to it.

The situation is presented in Fig. 2.

Sharing phase:

1) For every non-root, non-leaf node of the binary tree,

A encrypts the saltkey associated with its parent

(saltkeyparent) with the saltkey associated with the

node (saltkeynode), and stores the result to the DHT

location Hash(saltkeynode||IDA).
2) For every leaf node B of the binary tree, A encrypts the

saltkey associated with its parent (saltkeyparent)
with the sharedkey associated with the node

(sharedkeyAB), and stores the result to the DHT

location Hash(sharedkeyAB ||IDA).

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 153 --

saltkey0

saltkey1

saltkey3

sharedkeyAC

sharedkeyAD

saltkey4

sharedkeyAE

sharedkeyAF

saltkey2

saltkey5

sharedkeyAG

sharedkeyAH

sharedkeyAB

Fig. 2. Binary tree of saltkeys for seven friends B,C,. . . ,H of A in Protocol 2.

3) A encrypts the IP address using the saltkey associated

with the root (saltkeyroot).
4) A stores the encrypted address to location

Hash(saltkeyroot||IDA)

The resulting tree of encrypted saltkeys is presented in

Fig. 3.

Retrieving phase:

1) B retrieves the encrypted saltkeyparent from the DHT

location Hash(sharedkeyAB ||IDA).
2) B decrypts the saltkeyparent with sharedkeyAB .

3) B continues recursively retrieving node’s parent’s

saltkeys and decrypting them until the saltkeyroot is

reached.

4) B retrieves the encrypted address from the DHT location

Hash(saltkeyroot||IDA).
5) B decrypts the address with saltkeyroot.

If the retriever remembers some of the saltkeys, she does

not need to start retrieving from the leaf, but somewhere closer

to the root. It may be enough to just retrieve the value in the

root. However, again, B cannot be sure whether the saltkeys

have changed unless they check them from the DHT or the

address is found to be old.

A friend B can be added by adding an inner node to the

tree. Let sharedkeyAC , be the sharedkey associated with the

leaf C, let saltkeyP be the saltkey associated with the parent

of L let B have the saltkey sharedkeyAB .

Adding phase:

1) A chooses a new saltkeyN for the new leaf N .

2) A encrypts the saltkeyP with the saltkeyN and stores

it to the DHT location Hash(saltkeyN ||IDA).
3) A encrypts the saltkeyN with the sharedkeyAL

and stores it to the DHT location

Hash(sharedkeyAL||IDA).
4) A encrypts the saltkeyN with the sharedkeyAB

and stores it to the DHT location

Hash(sharedkeyAB ||IDA).

A friend B can be removed as follows: By changing its

sibling to the place of its parent, changing all the saltkeys of

its grandparent, grand grandparent and so on till the root, re-

encrypting them with the saltkeys associated with their siblings

and storing the new values to the DHT as above.

Removing phase:

1) A chooses a new saltkeyG for the grandparent G of

removed leaf.

2) The sibling S of the removed leaf is now replacing the

parent of the deleted leaf.

3) A encrypts the saltkeyG with the saltkeyS and

saltkeyS′ associated with the children of G and

stores them to the DHT location Hash(saltkeyS ||IDA)
and Hash(saltkeyS′ ||IDA). (If S is a leaf then

sharedkeyAS replaces the saltkeyS here. The same is

done for S′.)
4) A chooses a new saltkeyparent for the parent of G.

5) A encrypts the saltkeyG with the saltkeyG and

saltkeyG′ associated with the sibling of G and stores

them to the DHT location Hash(saltkeyG||IDA) and

Hash(saltkeyG′ ||IDA). (Again, if G′ is a leaf then

sharedkeyAG′ replaces the saltkeyG′ here.)

6) A continues recursively towards the root until the root

is reached.

Removing a friend from the set of friends is even more

efficient in this protocol than in the previous ones, because

only 2 log2 n entries in the DHT needs to be changed. Here

n denotes the number of friends. When adding and removing

friends the binary tree may sometimes need some restructuring

to keep it as close to balanced as possible.
After adding and removing friends, the binary tree may need

to be restructured to keep it as close to balanced as possible.

This will require additional encryption and store operations.
If somebody is removed from the set of friends, some of

the remaining friends need to start retrieving the saltkeys far

away from the root because the saltkeys have changed during

the removal. For about half of the remaining friends only the

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 154 --

Esaltkey0
(address ofA)

Esaltkey1(saltkey0)

Esaltkey3
(saltkey1)

EsharedkeyAC
(saltkey3)

EsharedkeyAD
(saltkey3)

Esaltkey4(saltkey1)
EsharedkeyAE

(saltkey4)

EsharedkeyAF
(saltkey4)

Esaltkey2
(saltkey0)

Esaltkey5
(saltkey2)

EsharedkeyAG
(saltkey5)

EsharedkeyAH
(saltkey5)

EsharedkeyAB
(saltkey2)

Fig. 3. Encrypted saltkeys for seven friends of A.

TABLE I. COMPARISON OF DHT OPERATIONS IN PROTOCOLS. HERE t IS THE NUMBER OF DIFFERENT VALUES FOR TIME
AND n IS THE NUMBER OF FRIENDS

sharing adding friends removing friends retrieving
Protocol 1 n+ 1 1 n ≤ 3
Protocol 1.1 (n+ 1)t 1 n ≤ 3
Protocol 2 2n 3 2 log2 n ≤ log2 n+ 1
Protocol 2.1 2nt 3 2 log2 n log2 n+ 1

saltkey in the root has changed. For about one fourth of the

friends two saltkeys closest to the root have changed, and so

on.

E. Protocol 2.1

It is possible to modify Protocol 2 in the same way as

Protocol 1 and make the locations in the DHT change over

time. In this case, the whole tree needs to be stored to the

DHT every time the TIME changes. Otherwise, the retrievers

need to guess when the new saltkeys were stored.

V. PERFORMANCE ANALYSIS

In Protocol 0 only one store by A is needed and one retrieve

for each friend is needed. However, the matter of sharing the

key is not addressed. Therefore, we do not compare Protocol 0

to the other protocols in the following.

Let us assume that A has n friends. In practical applications,

typical value for n could be from a dozen to a few hundreds.

In Protocol 1, n + 1 store operations are needed in the

sharing phase, Adding a friend requires one store operation

by A and removing a friend requires n stores, because a

new saltkeyA must be distributed to all remaining friends.

Retrieving the address requires one, two or three retrieves

depending on whether the saltkeyA has been changed and

whether the retriever remembers the sharedkeyAB . In all of

these protocols, if the address changes, one store operation is

enough to update it.

In Protocol 1.1, the number of operations is the same as in

Protocol 1 except that the sharing phase needs to be repeated

every time the TIME changes. That is, n+1 store operations

are needed at fixed predictable times.

In Protocol 2, the sharing phase requires 2n store operations.

If the binary tree is balanced, log2 n + 1 retrieve operations

is enough for the retrieving phase. Three store operations

are needed for adding a friend from the group and 2 log2 n
operations are needed for removing a friend, if the binary tree

is balanced.

Again, the Protocol 2.1 is similar to Protocol 2 in efficiency,

except that 2n store operations need to performed every time

a new TIME is met.

This analysis is summarized in Table 1.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is the proposed set

of protocols to share information securely in p2p networks

with other users after an initial contact with them has been

established. Our protocols utilize cryptographic functions for

the purpose of protecting privacy of the group members. The

goal is to prevent outsiders from learning identities of the

group members and from tracking activities of the group

members.

Our goal is to be able to use the p2p network also for the

discovery of other nodes (and their end-point addresses) with

whom we intend to communicate. Realizing a privacy-aware

p2p platform that can share the identification information/end-

point address only to a restricted set of users, while being a

part of a public p2p network, is crucial. Being able to hide

the top-level identity of the user and to replace it with an

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 155 --

ephemeral ID is something that is also required to improve

the users privacy in a p2p network.

We are planning to implement the most promising protocols

defined here and evaluate them in a simulation setting or a

proof of concept implementation. Especially, we are going to

utilise the protocols to share current ephemeral data of a user

to a set of other users who are allowed to receive it.

ACKNOWLEDGMENT

This work is supported by the HELIOS H2020 project.

HELIOS has received funding from the European Unions

Horizon 2020 research and innovation programme under grant

agreement No 825585.

REFERENCES

[1] S. Brack, L. Reichert and B. Scheuermann, ”Decentralized Contact
Tracing Using a DHT and Blind Signatures”, IACR Cryptol. ePrint
Arch., 2020, 398.

[2] L. A. Cutillo, R. Molva and T. Strufe, ”Safebook: A privacy-preserving
online social network leveraging on real-life trust”, IEEE Communica-
tions Magazine, 47(12), IEEE, 2009, pp. 94-101.

[3] G. Gheorghe, R. L. Cigno and A, Montresor, ”Security and privacy
issues in P2P streaming systems: A survey”, Peer-to-Peer Networking
and Applications 4.2, 2011, pp. 75-91.

[4] K. Graffi and N. Masinde, ”LibreSocial: A Peer-to-Peer Framework for
Online Social Networks”, arXiv preprint arXiv:2001.02962, 2020.

[5] B. Guidi, K. G. Kapanova, K. Koidl, A. Michienzi and L. Ricci, ”The
Contextual Ego Network P2P Overlay for the Next Generation Social
Networks”, Mobile Networks and Applications, 2020, pp. 1-13.

[6] HELIOS project homepage, Web: https://helios-h2020.eu/.
[7] M. Isaac and S. Frenkel, ”Facebook Security Breach

Exposes Accounts of 50 Million Users”, Web:
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-
breach.html.

[8] M. Jawad, P. Serrano-Alvarado and P. Valduriez, ”Supporting data
privacy in p2p systems”, in Security and Privacy Preserving in Social
Networks, Springer, Vienna, 2013, pp. 195-244.

[9] J. Li, ”A Survey of Peer-to-Peer Network Security Issues”, 2007, Web:
https://www.cse.wustl.edu/ jain/cse571-07/ftp/p2p/.

[10] G. Li and H. Sato, ”A Privacy-Preserving and Fully Decentralized
Storage and Sharing System on Blockchain”, in 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC) Vol. 2,
IEEE, 2019, pp. 694-699.

[11] Libp2p homepage, Web: https://libp2p.io/.

[12] D. Lynskey, ”’Alexa, are you invading my pri-
vacy?’ the dark side of our voice assistants”, Web:
https://www.theguardian.com/technology/2019/oct/09/alexa-are-you-
invading-my-privacy-the-dark-side-of-our-voice-assistants.

[13] P. Maymounkov and D. Mazieres, ”Kademlia: A peer-to-peer informa-
tion system based on the xor metric”, in International Workshop on
Peer-to-Peer Systems, Springer, Berlin, Heidelberg, March 2002, pp.
53-65.

[14] R. Moore, C. Morrell, R. Marchany and J. G. Tront, ”Utilizing the
BitTorrent DHT for blind rendezvous and information exchange”,
in MILCOM 2015-2015 IEEE Military Communications Conference,
IEEE, 2015, pp. 1560-1565.

[15] R. L. Rivest, A. Shamir, and L. Adleman. ”A method for obtaining
digital signatures and public-key cryptosystems”, Communications of
the ACM, 21(2), 1978, pp. 120-126.

[16] P. Rogaway and T. Shrimpton., ”Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance”, in International
workshop on fast software encryption, Springer, Berlin, Heidelberg, Feb.
2004, pp. 371-388.

[17] H. Rowaihy, W. Enck, P. McDaniel and T. La Porta, ”Limiting sybil
attacks in structured p2p networks”, iIn IEEE INFOCOM 2007-26th
IEEE International Conference on Computer Communications, IEEE,
2007, pp. 2596-2600.

[18] E. Sit and R. Morris, ”Security considerations for peer-to-peer dis-
tributed hash tables”, in International Workshop on Peer-to-Peer Sys-
tems. Springer, Berlin, Heidelberg, 2002, pp. 261-269.

[19] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek and H. Balakrishnan,
”Chord: A scalable peer-to-peer lookup service for internet applica-
tions”, ACM SIGCOMM Computer Communication Review, 31(4),
2001, pp. 149-160.

[20] D. S. Touceda, J. M. S. Cámara and J. T. Isaac, ”Privacy in Peer-to-Peer
Networks”, in Privacy in a Digital, Networked World, Springer, Cham,
2015, pp. 111-139.

[21] Tor Rendezvous Specification - Version 3, Web:
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt.

[22] G. Urdaneta, G. Pierre and M. V. Steen, ”A survey of DHT security
techniques”, ACM Computing Surveys (CSUR), 43(2), 2011, pp. 1-49.

[23] US National Institute of Standards and Technology, ”Federal Infor-
mation Processing Standards Publication 180-4: Secure Hash Stan-
dard”, Web: http://www.csrc.nist.gov/publications/fips/fips180-4/fips-
180-4.pdf, 2012.

[24] Q. Wang and N. Borisov, ”Octopus: A secure and anonymous DHT
lookup”, in 2012 IEEE 32nd International Conference on Distributed
Computing Systems, IEEE, 2012, pp. 325-334.

[25] C. K. Wong, M. Gouda and S. S. Lam, ”Secure group communications
using key graphs”, ACM SIGCOMM Computer Communication Review,
28(4), 1998, pp. 68-79.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 156 --

