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Abstract—Networked Music Performance (NMP) is en-
visioned as a potential game changer among Internet appli-
cations: it aims at revolutionizing the traditional concept
of musical interaction by enabling remote musicians to
interact and perform together through a telecommuni-
cation network. Ensuring realistic conditions for music
performance, however, constitutes a significant engineering
challenge due to extremely strict requirements in terms of
audio quality and, most importantly, network delay. To
minimize the end-to-end delay experienced by the musi-
cians, typical implementations of NMP applications use un-
compressed, bidirectional audio streams and leverage UDP
as transport protocol. Being connectionless and unreliable,
audio packets transmitted via UDP which become lost in
transit are not retransmitted and thus cause glitches in the
receiver audio playout. This article describes a technique
for predicting lost packet content in real-time using a deep
learning approach. The ability of concealing errors in real
time can help mitigate audio impairments caused by packet
losses, thus improving the quality of audio playout in real-
world scenarios.

I. INTRODUCTION

Performing music together at distances across the

Internet is a practice that makes use of low-latency

uncompressed audio streaming technologies. According

to several studies [1], [2], the delay tolerance threshold

is estimated to be 20–30 ms, corresponding to a distance

of approximately 8–9 m (considering the speed of sound

propagation in air), a physical spacing which can be

considered as a maximum separation ensuring the main-

tenance of a common tempo without a conductor. From

the networking point of view, very strict requirements

must therefore be satisfied to keep the one-way end-to-

end transmission delay below a few tens of milliseconds.

A common solution sends UDP audio packets directly

between a pair of network hosts (full-duplex, peer-to-

peer), thus avoiding the processing time required by

compression codecs and delays introduced by the packet

re-transmission mechanisms supported by TCP, while

sacrificing data transfer reliability. Despite having no

guarantees that the audio exchange will be error-free,

good networks and appropriate tuning of audio and

network parameters can still result in connections which

are quite satisfactory for music performance, and even

for concert presentations. Experiences with distributed

ensembles [3] have included multi-channel audio and

multi-site collaborations (greater than stereo and greater

than two sites).

In order to ensure optimal conditions for ensemble

synchronization, a strict deadline is imposed on the

arrival of each audio packet at the receiving site. The

amount of time between when the packet was generated

on the sender side and this playback deadline constitutes

part of the time delay or lag experienced by the col-

laborating musicians. Added to this is any propagation

delay in air such as between instrument or voice and

microphone, and loudspeaker to ear, as well as time spent

in signal conversion between analog and digital. Packet

streams transmitted across a Wide Area Network (WAN)

require buffering at the receiver to account for jitter

(i.e., variations of packet inter-arrival times). Critically,

the buffer queue must be kept as low as possible since

longer “cushions” (longer buffer queues) create longer

transmission delays. A lost packet causes a gap in the

playback audio, and an audio packet that arrives so late

that the buffer queue has been exhausted is effectively a

lost packet. Since the audio signal is not encoded prior
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to transmission, the receiving side cannot rely on error

correction mechanisms implemented in state-of-the-art

audio codecs. Therefore, alternative recovery algorithms

must be devised to cope with packet losses, in order to

mitigate the resulting audio glitches. Such solutions must

operate in real time and without introducing additional

processing delays that would worsen the end-to-end

latency.

In the reminder of this paper, we will focus on jacktrip

[4], which is an open-source project used for concert

and online jamming. The jacktrip application belongs

to a class of uncompressed audio streaming applications

including Soundjack [5], LOLA [6] and UltraGrid [7]. If

a packet is lost in a jacktrip connection, its built-in Packet

Loss Concealment (PLC) algorithm simply repeats the

last good packet that was received. Alternatively, its PLC

mode can be set to mute the audio until the next good

packet is able to be played out. In most cases, these

methods of coping with signal errors are inappropriate

and some degree of distortion is audible.

What to do to repair the gaps from lost packets is

the subject of this paper, which proposes a method to

predict the missing audio data in real-time by leveraging

a deep learning framework. The Machine Learning (ML)

algorithm which will be described is trained with audio

samples extracted from a database of music which resem-

bles the music that will be transmitted. The effectiveness

of the proposed solution is evaluated by artificially intro-

ducing gaps in a test audio signal, inserting intentional

errors which mimic in a controlled way the packet

losses due to transmission through a WAN. The test

algorithm predicts the missing audio and its performance

is compared to a state-of-the-art AutoRegressive (AR)

model used for PLC. Results show that, for a range of

configuration parameters, the ML algorithm outperforms

the AR approach in repairing audio signal gaps.

The remainder of this paper is organized as follows:

after briefly reviewing the related literature in Section

II, we provide some background notions on AR mod-

els in Section III and then describe the proposed ML

framework in Section IV. A performance assessment is

provided in Section V.

II. RELATED WORK

NMP over packet switched internets was first exper-

imented with in the 90’s and has gathered increasing

attention in the scientific community in the last two

decades. The widespread diffusion of internet services

and their continuous performance improvements in terms

of latency and capacity have fostered a music-ensembles-

at-a-distance performance practice which is particularly

timely at the time of this writing while the world copes

with the SARS-CoV-2 pandemic and social distancing is

required. For a thorough overview on NMP technologies,

the reader is referred to [8]. Due to the best-effort

paradigm of the IP protocol and wide differences in inter-

net provisioning, packet jitter and losses due to network

congestion or excessively delayed transmissions are gen-

erally unavoidable and require some form of mitigation.

PLC methods for real-time multimedia streaming have

been widely studied [9] and recently ML approaches for

speech reconstruction using neural networks have been

proposed [10], [11].

Of the studies focused on NMP applications, the

majority treat error recovery for transmission of MIDI

signals. The authors of [12] propose a PLC approach

that relies on the RTP protocol and its associated trans-

port control protocol RTCP. The solution leverages a

recovery journal section within the RTP packet which

holds information a receiver uses to recover from earlier

lost packets. This way, the first packet received after

one or multiple consecutive packet losses enables the

recovery from all artifacts caused by missing audio data.

The drawback of this approach is that it generates trans-

mission overheads. Other recovery approaches for MIDI

signals rely on auxiliary reliably-connected channels to

transmit critical MIDI events [13] or implement acknowl-

edgment mechanisms to allow for re-transmission of lost

packets [14].

In [15], a method for the detection of beat patterns

of music signals is discussed as a means for prediction.

At the sender side, the beat information is included as

ancillary data to a preceding audio data interval in the

transmitted compressed audio stream and is leveraged to

perform PLC at the receiver. The method incurs trans-

mission overhead. The authors of [16] propose a low-cost

period extraction and alignment module to synthesize

concealment signals from previous raw audio data, thus

avoiding the use of autoregressive models in order to

reduce the computation time. Period extraction is based

on zero-crossings and matched pre-processing. To ensure

smooth transitions, the extrapolated blocks are cross-

faded from/into the previous/following audio frames. The

main difference between the method proposed in this

paper and the one described in [16] is that, instead of

repeating periods extracted from the previously received

signal, we synthesize the waveform to be inserted in
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place of a missing packet. There has also been prior

work which incorporates time scale modification tech-

niques for audio concealment [17]. The authors of [17]

compared their method with existing techniques (silence

substitution and pattern replication). A next wave of

PLC techniques based upon AR models were shown to

outperform these approaches [18]. These methods are

similar to infill approaches in the image domain [19]

which try to predict raw values of missing pixels based

upon the neighboring content of an image.

The approach described here looks at both the spec-

trogram and the waveform of the input to predict the

upcoming time-domain signal within a short interval.

The method makes use of a latent space representation

which summarizes the content of the signal in order to

predict the next audio packet. The advantage of using

latent space-based approaches is that a suitable summary

representation can be learned according to the problem

of interest, e.g., to simultaneously reconstruct a speech

signal and to decode its transcription [20] or to transform

audio signals from a given domain to another domain

[21]. Additionally, latent representations have been used

to reconstruct the signal of interest in problems such

as style transfer [22] and voice transformation [23]

by successfully mapping contents and characteristics of

audio representations onto lower-dimensional vectors.

III. BACKGROUND ON AUTOREGRESSIVE

PREDICTION MODELS

AutoRegressive (AR) models of stochastic processes

are described by a set of parameters which are the

coefficients of the linear regression of the current output

random variable against its previous values. By assuming

such a model for the transmitted audio signal, an AR

model of order p, denoted by AR(p), can be effectively

used to forecast the future behavior of the time series

as a linear combination of its past p samples. The

regression parameters can be computed and dynami-

cally updated using the most recently received packets

(usually the last valid buffer) by, for example, solving

an Ordinary Least Square (OLS) problem or as the

solution of the well-known Yule-Walker equations. Since

speech signals are often quasi-stationary within short-

time analysis windows, AR models have been found to be

useful in predicting the content of missing packets [18],

[24]. Similarly, music signals are generally well behaved

and analogous assumptions can be made, especially in

the case of recordings of a single pitched instrument.

Therefore, we use this simple approach as a baseline

to evaluate the performance of our ML model. Notice,

however, that various extensions to the classical AR

model have been proposed in the literature, such as the

inclusion of a long-term predictor whose lag is tuned

according to the estimated pitch. For a detailed overview

of AR models and other signal processing approaches,

readers are advised to refer to [25].

IV. DEEP LEARNING FRAMEWORK FOR

LOW-LATENCY AUDIO PREDICTION

Modeling longer term dependencies is considered

a hard ML problem, especially for time-domain audio

signals [26]. In the literature, a similar problem has been

addressed in the field of computer vision, when trying

to reconstruct a missing part of an image [19]. The high

sample rates of digital audio signals present a significant

challenge for learning small compact representations of

long sequences, even for durations of 2–3 seconds.

We adopt an hybrid approach which makes the prob-

lem tractable by combining both spectral and time-

domain signal representations. The hypothesis of our

approach is as follows: for a missing packet, the correctly

predicted waveform will depend on what has happened

in the past as well as the smoothness of the reconstructed

signal. The latter requirement refers to the continuity of

the signal derivatives at the edges between subsequent

packets which need to be smooth in order to avoid audi-

ble clicks or glitches. As pointed out in [26], it is difficult

to model waveforms on the scale of a few seconds, as

these can be time sequences on the order of 50k samples

or greater (considering 16 kHz as the sampling rate).

In order to learn the behavior of time-domain signals

characterized by longer-term dependencies and predict

packets to come, we utilize spectro-temporal represen-

tations of waveforms in a training database. The same

transform is applied to already received packets which

are stored in a first-in first-out buffer. We compute a 100-

bin mel-spectrogram of the previous 2 s of audio using

a hop size of 10 ms and a 30 ms long Hanning window.

A representation frame of 100×200 corresponds to the

past 2 s of audio. We also extended the previous context

to 4 s and 8 s and sub-sample the mel-spectrograms

by a factor of 2 and 4, respectively, to yield the same

representation frame size. All three frames (2 s, 4 s and

8 s) are stacked into 3 channels of a real-valued tensor

of size 100×200×3. The mel-spectrogram is magnitude

only (which throws away the phase/relative shift of the

time-domain signal). Our assumption is that only the

last valid packet matters when we synthesize the missing
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Fig. 1. Architecture of the proposed method for synthesizing new audio packets using a neural network.

future packet in order to ensure the smoothness of the

reconstructed waveform.

The first part of our hybrid approach uses a con-

volutional neural network which takes as input the

100×200×3 spectro-temporal representation and pro-

duces a 512-dimensional vector. This greater than 100-

fold dimensional reduction proceeds as follows: a 3-layer

convolutional architecture with 3×3 kernels and 1×2

pooling is connected to 2×2 pooling in the next two lay-

ers and finally a linear layer reduces the dimensionality

to 512. Each of the convolutional layers has 64 channels.

The second part of our hybrid approach synthesizes a

valid packet, conditioned on the latent code as extracted

from the past signal history by the convolutional neural

network. It concatenates the immediately previous valid

packet of size 128 with the latent code of the past

spectro-temporal content of size 512. These two signals,

one for learning continuity in the time domain and one

for the spectral content, are concatenated to produce a

summary vector which contains both aspects of the sig-

nal. This is fed to a synthesis neural network, consisting

of 3 fully-connected layers of 1024 neurons, and which

is used to predict the missing or lost packet as depicted

in Fig. 1.

We minimize the L1 norm of the difference between

the predicted packet and the target one. The latent

summary vector, encapsulating the spectral content of

the past, along with the synthesis block that generates

the missing packet, are all learn-able from the data by

adjusting the network weights via backpropagation. The

Adam optimizer [27] was used for the network training

with learning rate decay starting from 10−3 and then

lowered to 10−7 over the course of 100 epochs . The L1

norm was seen to have better convergence than the L2

norm, one of the reasons being that all of the signals are

in the range of [−1, 1].

Not every audio sample point is equal with regards to

error when stitching the predicted packet into an audio

stream. In terms of continuity, errors at the beginning and

at the end of a packet are much more perceptually signifi-

cant than those in the center. Those at the edges introduce

discontinuities in the waveform and its derivatives which

result in audible artifacts. As one possible solution, we

include a weighted loss function which penalizes the

prediction error of those samples that are found on the

edges of a packet more than of those in the center. This

is achieved by multiplying the absolute error for each

sample by an inverse Hanning window:

w[n] = 1− sin2
(

πn

N − 1

)

where n = 0, 1, 2, ..., N −1 is the sample index within a

packet and N = 128 is the packet length. This approach

is very similar to other nonlinear weighting techniques,

for example, C-loss, Hinge Loss and other approaches

used to handle data imbalances in machine learning [28].

Our assumption is that the network, by focusing on the

______________________________________________________PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 271 ----------------------------------------------------------------------------



edge regions of each packet, will autonomously learn

how to generate seamless transitions.

V. PERFORMANCE ASSESSMENT

A. Database and Audio Acquisition Setup

For the purpose of this paper, all of the results

are reported for a single instrument, violoncello. The

recordings were made in a consistent manner with the

same player and music and the same acoustical setup

(microphone, positions and room). This was done to

reduce the influence of these factors on our modeling

results. A total of 15 hours of audio recording was

collected. The cellist was practicing Bach’s Six Suites for

Violoncello over the course of a few weeks. These are

extremely raw, unedited recordings including instrument

tuning, scales practice and occasional improvisations. For

the sake of the experiment, the database can be regarded

as representative of a rehearsal of classical music such as

might take place in a NMP session. The room was fairly

reverberant with a high ceiling and sparsely furnished.

The dataset is available online [29].

For the autoregressive approach, since it only requires

storing of a set of past buffers, we do not create training

data. For neural networks, we need to build a training

and validation set to optimize the parameters.

Using a high-speed wired LAN with a gateway router

coupled to WAN modem for either fiber-to-the-home,

digital subscriber line or cable access to the Internet,

packet dropouts usually happen only as a very small

percentage of the total number of packets transmitted.

Statistical distributions of packet loss probabilities are

extremely variable, as they are highly depending on net-

work traffic conditions. Therefore, for training purposes,

we presume that packet dropouts are isolated and can

happen at any instant. We sample time windows corre-

sponding to the content carried by one packet at random

points in the cello recordings. In particular, the missing

packets thus selected amount to 1% of the available

audio data. For each packet, we extract the respective

spectro-temporal context and store the previous valid

packet. A point to note is that a higher sampling would

yield more training data and thus improved performance.

This choice, however, was mainly due to the limited

computational resources at our disposal.

The experiments use contexts of either 2 s or 8 s

(storing intermediate representations of 2 s, 4 s and 8 s

into 3 channels) that were (down-)sampled at 16 kHz

(from 48 kHz) and a packet size of 128 samples. The

goal of the experiments is: given the previous valid

packets which have been received, can we predict the

next packet?

Data input from the training and test sets were nor-

malized to have a unity peak amplitude at each hop. For

example, in the 2 s context case each new 2 s window-

full would be normalized. By minimizing the L1 norm

between the predicted and the target waveforms, the

model is biased towards reducing the errors of higher

amplitude signals rather than lower amplitude signals.

Context normalization avoids this amplitude-dependent

performance bias.

Unfortunately, this also boosts packets which only

have low-amplitude background noise as their content.

However, since only a small fraction of packets in the

database are noise-like, the neural network will mainly

learn how to model deterministic signals, which in this

case are mostly music signals, and will apply the learned

model to noise-like signals, too.

B. Numerical Evaluation

We evaluate the latent space-based ML method de-

scribed above and compare it to a baseline AR(p) model

implemented using the statsmodels Python library [30].

Only isolated, single packet dropouts have been tested

to date. Evaluation was performed on a held out test

set. This test data consists of a single track of just over

11 minutes that was not present in the training dataset,

for a total of 646 missing packets. As mentioned earlier,

this test set vs. training set split does not affect AR(p)

performance, as AR models estimate coefficients only

from the previous history of the signal. An advantage of

the AR model is that it can update its parameters from

observing short-time correlations in the input stream,

whereas ML methods derive a fixed set of parameters

from all of the entire training set.

In comparing algorithm performance using context

time scales of 2 s vs. 8 s, we noted that longer contexts do

not improve the validation loss. For the comparison, we

trained the network shown in Fig. 1 using two different

kinds of spectro-temporal inputs. The first one consisted

of the 2 s, 4 s and 8 s representation frames stacked in the

first, second and third input channel of the convolutional

neural network, respectively. The second, for compatibil-

ity with the same model architecture, consisted of the 2 s

mel-spectrogram replicated it in all three input channels.

The ML method provided equivalent results in both test

cases. Therefore, the shorter 2 s context was used for all
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further experiments. This finding indicates that PLC is

not a long-term dependency problem, a fact reinforced

also by the competence of the AR model in our testing

scenario.

All of the results were evaluated on a Tesla K80 GPU

using TensorFlow 1.15. In terms of achieving an eventual

real-time system, things look favorable. The GPU-based

system ran roughly 10 times faster than real time when

computing the mel-spectrogram and doing a forward pass

using the trained system. With a CPU-based system,

the forward pass could not be computed in real time

(defined as completing the process within the interval

between the arrival of two packets). In our case, with a

1.8 GHz Intel Core i5 processor, it ran approximately

5 times slower than real time. Future improvements

in both computational power and in the architectural

simplification of deep learning-based models make it

hopeful that such models can become tractable in real

time without relying on hardware acceleration.

While perceptually-informed objective measures such

as PEAQ [31] have been developed for assessing the

quality of audio codecs, there is yet no consensus among

the research community on whether these methods could

prove reliable in evaluating the effectiveness of PLC al-

gorithms [32], [33]. Hence, we measure the performance

of both the proposed ML method and the AR baseline

as the average absolute error between the predicted

waveforms and actual ones. As described above, all

tests involve normalized waveforms such that the peak

is always one. This criterion avoids dependency on the

amplitude of the signal. In the testing scenario described,

we see that the ML-based approach outperforms the AR

model within certain regimes.

The 128 sample packet size used in the experiment

represents 8 ms of audio. The AR model comparison

was run with 1024 and 2048 samples of history (64 ms

and 128 ms, respectively) which were used for the

conditional maximum likelihood estimation of the re-

gression parameters via OLS. Its performance therefore

depends on both the amount of history and the order

p of the filter applied. AR(p) only achieves parity with

the ML method with a 128 ms window and order

above 57 as seen in Fig. 2. In our experiments, the

AR model appears effective in predicting short gaps of

missing audio (128 samples). However, AR(p) is able

to outperform the ML method only with a fairly high

number of regression parameters. If we were to test the

PLC system on the longer gaps of bursty packet losses,

Fig. 2. Average Mean Absolute Error (MAE) of the autoregressive
model AR(p) as a function of the number p of regression coefficients
estimated using the last 1024 and 2048 valid samples (solid and
dashed line, respectively) plotted against the average MAE of the
proposed machine learning method (dash-dotted line).

then either the number of parameters to be estimated

and thus the amount of history required would quickly

become unmanageable or the results may converge to a

zero signal after a few ms (a longer-term tendency for

AR models). In this respect, ML-based approaches could

provide an alternative solution.

VI. CONCLUSION

We described a neural network-based technique for

packet loss concealment, specifically designed to be

implemented in real-time audio streaming applications

for networked music performance. The novel hybrid ap-

proach proposed in this paper marries two key elements.

The first one is the spectral carry-forward of short-term

(2 s) mel-spectrum content from a sufficiently large

database of music recordings using latent vectors. The

second one is a technique for the correct synthesis of

a missing packet conditioned on a latent code. Used

together, these methods predict and generate a packet

which can be inserted in place of missing audio data.

We believe that with future improvements to computa-

tional power, machine learning-based PLC will become

pervasive for all types of audio signals. Investigations

of possible improvements to the latent representation,

as well as possible modifications of the synthesis block

are envisioned, possibly by replacing the fully-connected

neural network with a state-of-the-art recurrent module.

Validating the experimental results via subjective listen-

ing tests in a real-world NMP scenario, generalizing
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the approach to tackle a wide variety of audio signals

(including different musical instruments, genres, players

and recording environments) and extending it to predic-

tion of longer excerpts (for example, those occurring in

the case of bursty packet losses) will also be objectives

of further studies.
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