PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

A Methodology for Testing the Microprocessor Core
of a System on Chip with a x86-Compatible
Microprocessor 11

In memory of prof. Koldaev V. D.

Evgeniy Saksonov
Moscow Technical University
of Communications and Informatics
Moscow, Russia
saksmiem @mail.ru

Abstract—This paper continues to discuss the problem of
functional testing of embedded microprocessors, started by the
authors in one of their previously published articles. Special
attention is paid to writing tests for logical and arithmetic
instructions. The main principles, adopted by the authors for
development of testing software for the system-on-a-chip called
“Kaskad-1, are given.

I. INTRODUCTION

While testing an embedded system, the requirements for its
testing software depend on the requirements for the embedded
system’s reliability. In the case when a microprocessor is
intended to use as part of a mission-critical system, i.e. such a
system that its failure may result in serious consequences, it is
necessary to use well elaborated methods for testing, based on
deep theoretical justifications. But it is often the case when
an embedded system’s processor failure does not result in
any dangerous implications; for such systems some difficult
procedures, like formal verification of their processor’s core,
are unnecessary.

The methodology for testing microprocessors, presented by
the authors in [1], is focused on writing tests quickly, con-
currently with the development of the hardware being tested.
A separate section of the article was dedicated to possible
pitfalls with the proposed methods’ implementation. In this
paper we review [1] and continue discussion on the problem
of functional testing of embedded microprocessors. Nowadays
this topic is quite well studied and is actively evolving due
to constant increase of microprocessor units’ difficulty and
constant expansion of use of embedded systems. We would
like to mention the article [2], giving a detailed explanation of
the theoretical basis for testing electrical circuits, the article
[3], where a general methodology of testing microprocessors
is presented, and the publication [4] as an example of a
paper with a description of formal verification procedures for
an exact processor (namely, ARM). Much more papers are
actually published on similar themes.

Speaking about confirmation in practice of the method-
ology suggested in [1] and in this article, we consider the

Mikhail Dyabin
“Kaskad” Ltd.
Moscow, Russia
dyabin@mail.ru

Artyom Reshetnikov
“Accord” Ltd.
Moscow, Russia
a_reshetnikov@hush.com

system-on-a-chip called “Kaskad-1”, whose testing software
was developed by the authors in accordance with the main
principles described below. The main purpose of the SoC
was to provide the possibility of data transmission through a
high-bandwidth radio channel using a built-in OFDM modem
[5]. This system uses an internally designed domestic x86-
compatible microprocessor as a network processor unit, which
was constantly upgraded along with strengthening the require-
ments to the data channel, provided by the system. While
the processor’s clock rate was being increasing, and while its
instruction pipeline was becoming more mature, new versions
of the device had to be tested often. Hence, it was natural
to improve testing software in order to speed up the overall
testing process and simplify the task of error localization.

II. THE MAIN PRINCIPLES OF TESTING X86-COMPATIBLE
MICROPROCESSOR’S INSTRUCTION SET

In this section we recall the main ideas, which were dis-
cussed in detail in [1], adopted by the authors for development
of testing software for the system-on-a-chip called “Kaskad-1".
The readers who are familiar with [1] may skip this fragment
and continue reading the next section of this article.

A. The general principles of testing built-in systems’-on-a-chip
MICroprocessors

While working on testing the system-on-a-chip called
“Kaskad-17, the authors wrote their programs in accordance
with the following principle:

Rule 1: before starting to write any tests, it is necessary
to analyze the tested system and to get a sense of which
vulnerabilities threaten the system and how the tests, being
under development, can protect this system from the detected
vulnerabilities.

Let us give a brief explanation to this rule. Which weak-
nesses does the tested system have? What kind of errors
can theoretically occur in this system? What errors are the

ISSN 2305-7254

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

most probable? Which errors lead to the most harmful con-
sequences? We think that the questions mentioned above
and similar questions must be under consideration before the
process of writing tests for the tested system starts. Moreover,
we assert while writing tests, it is necessary to regularly come
back to the questions mentioned above from time to time along
with any changes in the tested system are made.

In the other words, we assert tests for a system must be
developed alongside with the process of its evolution. First and
foremost, the most vulnerable feature of a system must be the
feature that is being tested at the current moment.

Let us now look at the SoC “Kaskad-1" (see fig. 1) from
this point of view (one of the most modern versions of this
system is described in the paper [6]). In the projects, where this
system is really necessary and used, the first of all requirements
for its microprocessor is to correctly interact with the system’s
built-in OFDM-modem. To transfer data is what any programs,
really executed by this microprocessor, do most of the time;
while processing data is what other processor units do in the
final system (not the processor unit which is about to be tested).
Data is transmitted through DMA channels between the tested
processor and the modem in “Kaskad-1"; at the same time data
can be transmitted from many peripheral devices through other
DMA channels. The main task of the appropriate software is
to coordinate the work of all peripheral devices correctly.

We notice that such programs, which are executed on
“Kaskad-1” in practice, usually use a small restricted set of
processor instructions; although, these programs may face to
different unexpected situations, while interacting with devices,
and all of them must be processed by the software in the right
way. Our final aim is to make the system run these programs
correctly — we should always keep that in mind while writing
tests.

Hence, while doing the job of functional testing of the core
of the processor of the system “Kaskad-1”, special attention
should be paid not at separate microprocessor instructions, but
at processor’s work in general under condition of intensive data
exchange between different devices, built in the SoC. Tests for
the microprocessor “Kaskad-1"" must cover as much as possible
of different situations, which may arise in real programs, run in
practice, which interact with more than one peripheral devices
of the system.

It is clear that such tests must complete not a single iter-
ation, but many of them, because the errors of data exchange
between devices may occur after a few amount of time, due
to very specific conditions of their appearance. And now this
brings us to another principle, which may not seem evident to
people who are new in writing tests.

We shall notice that after an error in a processor core is
detected, the error must be localized, which means for the
program, which produces an error, it is necessary to simplify
its source code in such a way that it will be possible to point at
the exact lines of the code where microprocessor instructions
evidently produce incorrect result.

Strictly speaking, to localize a microprocessor error means
to make its testing program so simple that it would be possible
to run it inside a virtual environment, capable of modeling the
logic of the circuit containing the tested processor; and after

615

looking at the waveform after modeling it would be possible to
see incorrect processor’s behaviour clearly, at an exact moment
of time on the chart.

A localized testing program must become clear enough for
being sure the error definitely occurs in the tested micropro-
cessor, not the error is hardcoded into the program itself. But
how to reach such a clarity? This question goes beyond the
scope of this paper. We just notice that if the source code of a
testing program becomes too complicated, the process of error
localization in such a code would be very difficult task.

So, while working with a testing program in order to
simplify its code, since it is very easy to put there a new
mistake of completely software nature, we offer to take into
account the following rule:

Rule 2: testing programs should be written in such a
way that when using them, the process of error localization,
in case of any errors become detected, would be not very
difficult, if possible, but, at the same time, while doing the
Jjob of simplification of source code of these programs, a risk
of making new software mistakes would stay low.

B. Details on testing x86-compatible microprocessor’s in-
struction set

Certainly, while testing a processor core, it is of critical im-
portance to check separate instructions of the microprocessor.
Good tests must cover all microprocessor’s instructions and
all memory address modes by the values of input data sets.
For any instruction, in addition to input data from the set of
“the most frequent cases in practice”, tests must include all
theoretically correct “boundary cases”, which may be seldom,
but possible enough be met in command arguments.

In particular, if an exact command modifies microproces-
sor’s flags, then for each of the flags, affected by the tested
command, it is necessary to make sure, that the command
really modifies the flag in the correct way. And if a command
analyzes data located at the memory space (like, for example,
the x86’s instruction “Leave”, added to the architecture starting
from the processors Intel 80186 and Intel 80188), then for the
data, analyzed by the command, it is also necessary to cover
by tests as much of fundamentally different variants, as it is
possible.

The main difficulty, which someone meets while testing
instruction set of any microprocessor, is sometimes it is not
clear enough, which input data sets should consider as so
different that both of these data sets should be included into
the test being under development, and which of input data
sets are, vice versa, so similar under consideration that if the
tested instruction processes correctly one of these data sets,
then most probably the same instruction will process correctly
the other one data set, similar to the first one.

In practice it is not possible to test instructions by brute
force, i.e. to cover all of the possible parameter values by tests.
But in the most cases it is not necessary to take into account
literally all of the possible variants. For example, let we have
a task to check an instruction which transfers a value from a
microprocessor register into another register; such an action is
made by the instruction “Mov” in the architecture “x86”. The
question is: which input data sets are reasonable for including

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

16-bit Interrupt Direct memory Diaital sianal Crvotoarashic
x86-compatible |a»{ controller access controller rogessing unit vp ur?it P
processor core 36 lines 16 channels P 9
y h A A F ¥
Static RAM 3x 16-bit Watchdog Real time
512 Kbytes timers timer clock
\ 4 3 v t 3 : A 4 t v t A 4
> System bus Rl
A A A A A 7Y
h 4 v v v
Modem Ethernet Asynchronous Synchronous
(OFDM-256) MAC-level serial interface peripheral interface
10/100/1000 2xUART 2xSPI
v v
Parallel A port for an external
16-bit ports processor
3xGPIO I
Fig. 1. A block diagram of the SoC “Kaskad-1”

into a test, for, in case the final test runs successfully on a
sample of a tested device, someone may think data transferring
between registers of this exact sample device works correctly,
with high probability?

Remember we are not trying to solve the task of formal
verification of a processor core. Vice versa, in this example
such a program is required to be written, that it would be
possible, firstly, to debug microprocessor circuit at the stage of
its development by using the program, and secondly, it would
be possible to verify samples of the tested microprocessor after
its final devices become manufactured, by running the same
program.

Which cycles of the testing program should be made more
verbose? Which of the cycles can be, vice versa, shortened
because of the parameter values, not covered by the final cycle,
most probably will not produce any new errors (not being
detected by other parameter values, really included into the
cycle)? While developing functional tests someone constantly
face to similar questions.

In case of testing an instruction set it is necessary to
constantly make choice among different parameters, which
actually affect the result of a tested instruction: more impor-
tance should be given to some of the parameters, by the cost
of refusing to check what seems less important; in the other
words, some sets of input data have to be sacrificed for some
other sets to be included in a test. General recommendations on
how it is possible to make such choices were given above, in
the subsection A. Now it is time to speak in detail about exact
principles, adopted by the authors while developing testing
software for an exact system-on-a-chip called “Kaskad-1".

616

Well, say we need to develop a test for the “Mov” instruc-
tion of an x86-compatible microprocessor for the case when
data is transferred from a register into another register. The
task of composing this test can be divided into a bunch of
small subtasks.

The first thing we need to check is whether data are
transmitted into that register which is selected by the given
arguments of the command “Mov”. We may think a fragment of
code for solving this problem tests not the instruction “Mov”
itself, but the general mechanism of memory addressing. To
check addressing mechanism is a separate task. This task is
nowadays quite well studied; a few words on it are given
in section IV of the article [1]. The only thing we notice
is, depending on different factors (such as the maximum
allowed estimated time for testing software to run, the size
limits of a testing program, memory limits etc.), either the
decision may be taken to test memory addressing using a wide
class of microprocessor instructions, which also includes the
instruction “Mov” as one of its elements, or it is possible to
develop a separate test, focused on memory addressing mech-
anism, where just a strongly restricted set of microprocessor
instructions is used. In the last case someone assumes: if such a
test accomplishes its job on a sample of the tested device, most
probably the memory addressing mechanism works correctly
on the tested sample for any processor instructions, including
the instructions which were not used explicitly while running
the test.

Next, it is necessary to check whether in case of data trans-
mission from a source register into a destination register, every
time when a processor finishes execution of the corresponding
instruction, the destination register contains exactly the same

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

value which was in the source register at the moment when
the processor started to transfer data. Common sense dictates
that, if a value has been successfully transferred from a source
register into a destination register, then any other values will
also be transferred correctly from the same source register
into the same destination register. Hence, when the value in
a destination register is checked after transferring data from a
source register, the only important thing to verify is whether
the data has been actually transmitted, i.e. it should not happen
in the testing program that before processor starts to transmit
data a destination register already keeps the same value which
is also kept in the source register.

In fact, it is necessary to test every bit, whether it is
transferred from a register to a register correctly: the reason
is while manufacturing samples of a device, the errors may
occur which result in incorrect setting of separate bits of some
hardware variables used while running particular instructions
of a microprocessor. If the task were not to test a hardware im-
plementation of a device, but, for example, its implementation
as an emulator, it would be clear in this case that testing all
of the bits would become, more probably, unnecessary. Since
our task is to test a hardware implementation, a good enough
test should cover, by input data sets, all of the bits which may
affect the result of the tested instruction’s execution.

What is the simplest way to solve the problem mentioned
above? The general rule, adopted by the authors while testing
the system “Kaskad-17, is:

Rule 3: whatever instruction is tested, for all of its pa-
rameters, regardless of the values of the other parameters of
the same instruction, its test (if only it is possible at all) must
contain the values 0x00, 0x55, OxAA and OxFF — in case of
the parameter has the size of I byte, or the values 0x0000,
0x5555, 0xAAAA and OxFFFF — in case of the size of this
parameter equals 2 bytes.

Here, speaking about command parameters, we use the
term “parameter” in the most wide sense: we mean not
only the arguments passed to the command directly, but also
the values of any variables able in principle to affect the
result of command’s execution: they are processor flags, some
implicitly used memory cells, the instruction’s offset in the
memory space etc.

Of course, while testing an instruction like “Leave”, it is
not possible to follow the rule, given above, literally. There
are some other examples of commands when the number of
parameters, capable to change their result, is so huge that, even
if we restrict brute force with this rule, we obtain so much
amount of calculations, that after running such a test it would
be impossible to wait for it to be finished. For these cases the
authors offer not to refuse the rule completely, but to take it
into account and follow it within reasonable limits: the rule
still allows to iterate values for some parameters.

Of course, while testing arithmetic instructions some more
values must be included in a test. Here the authors suggest the
following:

Rule 4: regardless of whether an arithmetic instruction’s
arguments are signed or unsigned, its test must contain either
the values 0x00, 0x01, 0x7F, 0x80, 0x81 and OxFF — in case of
the size of the parameter to iterate equals I byte, or the values

617

0x0000, 0x0001, Ox7FFF, 0x8000, 0x8001 and OxFFFF — in
case of this parameter has the size of 2 bytes.

These values are “bound” for key ranges, that’s why it is a
good idea to use them for testing instructions as widely as it is
possible. But it is important to get in mind some instructions
have some more “bound” values, specific to these instructions;
all of them also must be included in tests, when possible.
Continuing further considerations, we would get into a well-
elaborated theory of composing tests, leaving the scope of this
paper.

Let us return to the task of developing a test for the
instruction “Mov”. There is one more block of variables whose
values also must be checked before coming to a conclusion
that data transferring from register to register works correctly.
Here we are speaking about the flags of a microprocessor.
The instruction “Mov” must leave all of the processor flags
untouched [7, application C]. At least, for all of the general-
purpose flags (a better way — for all microprocessor flags) it is
necessary to check that if, before running a command of data
transferring, a flag was set to 1, after running the command the
flag is still set to 1, and if, before running the same command,
this flag was set to 0, also: after data transferring is completed,
the state of the flag remains unchanged. All of the listed cases
must be included in a test for the “Mov” instruction at least
one time.

Only when all three kinds of check (addressing, values,
flags) are done by a testing program on a sample of the tested
device, we may conclude that the data transferring instruction
itself is, most probably, implemented without any errors for
the case of sending data from a register into a register on the
tested sample of the tested device. But such a conclusion does
not mean that sending a value from register to register will
always be completed successfully by the tested instruction: if
the tested hardware is not stable, it is quite possible, because
of different reasons, for such a transfer to fail in some specific
rare situations, which sometimes become difficult to localize.
Passing our test will only mean that if transferring a value
from a register into another register is done incorrectly, the
reason of the error most probably lays not in the tested
instruction’s implementation, but somewhere inside other units
of the processor’s core.

Let us now make the final remark:

Rule 5: while writing tests for an instruction set, it is criti-
cally important for the result of any step of the testing program
to be completely determined, according to a document, where
the tested system is described officially.

For example, by reading the application C of user’s manual
[7] of Intel 8OC186EC, we notice that the instruction “Test”
after being executed affects some microprocessor flags in the
following way:

e there are some flags whose values are changed de-
pending on the result of the command;

e some flags leave their state unchanged;

e the flag “AF” becomes not defined after running the
instruction “Test”.

So, if a program tests the instruction “Test” on a micropro-
cessor, whose architecture is x86-compatible, at the stage of

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

checking the values of flags the program may either verify
processor’s flags separately (this way is long, hence unreason-
able), or the program may put a definite value into the flag
“AF”, and when the state of all flags becomes determined, it
is possible for the program to verify them all at one time.

III. A FEW REMARKS ON WRITING A BOOTLOADER FOR
RUNNING TESTING SOFTWARE

When a tested microprocessor is emulated on an FPGA,
it is possible to burn software into ROM every time it is
necessary to run it. However, when a system-on-a-chip is
manufactured, it may be problematically to burn ROM every
time when it is necessary to run a new testing program. To
prepare a complicated program, containing a bit test, and to
burn it into ROM, is a bad idea since while manufacturing a
chip, some errors may occur which does not allow a program
to start — this moment is already mentioned in the previous
section. A bootloader, burnt into ROM, should be as easy as
possible. But what is “easy”? Speaking about this question, let
us consider a bootloader used by the authors in the system-on-
a-chip “Kaskad-1" and another bootloader of an experimental
system, where the previous loader failed to run; we discuss the
reasons and show how it was possible to solve the problem.

The bootloader of “Kaskad-1" starts its job with forced
minimum hardware initialization. After this, the program
checks whether a Flash-memory contains a program available
for running. If such a program is found, the bootloader just
copies the program into memory and passes the control to
the entry point of the program. This way is the main form
of using “Kaskad-1" after a chip is manufactured: there is a
fixed bootloader, and there is a program in a Flash-memory.
In any case, if there is no program in the Flash-memory, the
bootloader initializes a serial port, which also is included into
the system as a part, and waits for commands which can be
sent from, for example, a desktop computer: after connecting
a serial cable to both UARTS, obviously.

From this moment, different ways were tried by the au-
thors while testing different emulated circuits. There is the
protocol called XMODEM which is well-known and which
has some extensions like the protocol YMODEM. The main
advantages of XMODEM is its simplicity and abundance of
clients for desktop systems, so if you choose XMODEM to
be a bootloader of your embedded system, all you need is to
implement its embedded part, while a part to run on a desktop
is already written, user may choose anyone, maybe this way is
the most rapid for getting ready a system. One disadvantage of
the protocol must be taken into account: all it can is transfer
raw data. If you want to run a program, for example, you have
to prepare it in a fixed format, as soon as the bootloader of
your system expect data to be sent by XMODEM. You can
not change your program’s entry point, no way to just write
data into memory without jumping into the buffer in attempt
to run data as a program. Problems may occur if your system’s
RAM is not stable. Also, sometimes there is no need to run
a program on an embedded system to test some of its part: if
its bootloader supports more commands, then just receiving a
program and running it, it is possible to test some parts of the
system sending commands to bootloader and asking it to send
back their result.

618

Such is the bootloader actually used in the system-on-a-
chip “Kaskad-1". This bootloader understands the commands
like write a word into a port (the memory space and the
input/output port space are separate address spaces in the
architecture “x867), read a byte from port, write array into
memory and read array from memory etc. Data is loaded
there by using on of such commands. You may load a huge
program by sending a sequence of commands to the loader.
After the whole data is loaded into memory, the last command
is sent to the bootloader — which is, obviously, the command
of passing the control — and you program starts working. Since
the bootloader initializes a serial port, your program may use
it as standard input and output default streams. All commands
to bootloader contain two bytes: the first byte is a command
prefix, while the second byte is the code of the command to
execute. If a command requires parameters, they are given
later, according to format of an exact command. One other
nice feature of the bootloader is the possibility to calculate
a simple checksum of a given region of memory. So, if you
need to check whether your program is loaded correctly, before
passing the control to the program, you don’t need to read back
all data.

Another feature of the bootloader of “Kaskad-1” is the
possibility to work without any RAM at all. All of the
commands (except the command of passing the control: this
can be done only through a stack in x86) are executed without
saving any data in RAM memory, i.e. only processor registers
are used, until a direct command is given to the bootloader
where interaction with memory is intended. A traditional way
of calling to subroutines is using the command “Call”, which
saves return address on top of the stack before passing the
control at the address pointed by an argument. This method
is not used in the bootloader of “Kaskad-1": the register BP
is reserved here for saving the current return address. So
subroutines are called here without using any stack cells.

An important moment is initialize only the hardware which
is really necessary. In case some peripheral devices become
damaged in a sample of the device after manufacturing, it will
be still possible to use the other parts of the device and to
test what has gone wrong. The code of the bootloader also
contributes to the idea of getting ready as fast as it is possible
— for investigating of possible errors in case something gets
wrong with hardware. By the way, from the description of
commands given above it is easy to see that writing desktop
support for such a bootloader is a quite trivial task. At least,
this task stays trivial until the desktop software stays platform
dependent. In POSIX operating systems you don’t even need
to write programs: to write some easy scripts will be enough,
since the most difficult part of such a work is to initialize a
serial port in the correct way.

Once it was necessary to test an experimental system (not
x86-compatible) where a lot of its hardware contain multiple
errors. Not only its microprocessor had bugs, but also there
were bugs in memory, even its serial port’s implementation
contained a bug at te beginning of work. When a bootloader
was written analogous to the bootloader of “Kaskad-1", noth-
ing could be done with the system, because nothing was
working, and there was no idea in which units bugs were
localized.

Another bootloader command system was composed with

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

the purpose to get control over every single byte of transmitted
data. It was clear the UART channel was not reliable, so some
bytes were lost while sending them. The command system
took this into account and offered the possibility to undo
every command in case its result, which was sent to UART
automatically, was not accepted by a desktop client.

Let us talk about this bootloader in more detail. It has two
abstract variables: one of them is called data register, another
one is an address register. Of course, it was comfortable to
use processor registers to hold values of these variables — so
their names were born. After running any command of this
new bootloader, the least byte of the data register is sent back
automatically in order a desktop client can check its value. In
case the value received by UART is incorrect, it is possible
to send a command to undo, as it was mentioned above — so,
two more registers have to be reserved to backup main values.
Since it was not clear which processor instructions worked well
and which of them did not work, a lot of easy commands were
included into the bootloader’s command set: different boolean
operators, some primitive mathematical operators, shifts. There
is a command to send the value of the data register into the
address register. Some commands for reading from memory
and writing into memory use the contents of the address
register as the memory address of the cell to operate on. 16
fast commands shift left the contents of the data register and
write hexadecimal digits into its least 4 bits.

We do not give here full lists of the bootloaders’ commands
because we don’t aim to make this paper a manual. Moreover,
we describe a general methodology of testing, so a reader
can both follow our recommendations or refuse them if they
wish. However, after the bootloader, described above, was
burnt into ROM of this experimental circuit, by means of a
simple GNU/Linux terminal very soon it became clear what
exactly did not work in the system. While this system was
being evolved, such a difficult bootloader became less and less
useful. It was easy to check separate processor instructions
from POSIX terminal, but it was not trivial to write a utility
which sends data into memory of such a device: there was no
command in the bootloader for receiving an array since such
a command was dangerous when parts of its arguments could
be lost while sending them through UART. Later a special
mode of the bootloader was added which enables “dangerous”
commands.

In order to check the contents of the data register of this
bootloader from desktop, ternary logic is required to consider
undefined values of some bits. What is the ternary logic? How
do we extend the binary operations to the ternary case?

Every boolean variable can be either True of False. If we
know that a boolean variable a is True, we write a = 1, if we
know it’s False, we write: a = 0. If we don’t know whether
the variable a is True or it is False, we write: a =7. Now we
think of the variable a” as it can take three different values:
1, 0 and ?”. If a =7, we say that the variable a is Undefined.

Now it is clear what the ternary logic is and why it is useful.
Let we have two variables a and b. What is, for example,
the result of the conjunction @ and b if a is Undefined? It
depends on b. If b = 0, then it is necessary that (a and b = 0).
Otherwise, the result is Undefined.

619

Considering the boolean operations in the same way, we
extend them to the ternary case and obtain the following tables:

and |0 | 7|1 or|0]7]1
0 [0l0]O 0j0[7]1
T 1077 Tl 7]1
1 071 1111
xor [0]7]1 not | —
0 [0|7]1 0 |1
RN 7?77
1 [117]0 0

Now, the next question: how to implement these tables? A
method is to do it directly. But it takes a lot of code and it
is not interesting. Another way is to use the Peirce’s arrow or
the Sheffer stroke. It is easy to check that if we define them
as

2 nor y = not (a or b)

x nand y = not (a and b)
then the following statements hold true:
not © = x nor x = x nand x (1)
x and y = (not x) nor (not y) = not (x nand y) (2)

2 or y =not (x nor y) = (not x) nand (not y) (3)

So, we could implement either the Peirce’s arrow (“nor’) or
the Sheffer stroke (“nand”) directly and to implement all other
operations using the formulas (1) — (3), without hardcoding the
tables for them. But what to do with the exclusive disjunction?
This is a very important operation because both the addition
of numbers and the subtraction use the exclusive disjunction.

If we say that the Peirce’s arrow requires a command,
then to calculate, for example, the negation, we also need
only one command: this command is the Peirce’s arrow, its
arguments are both the argument of the negation. To calculate
the conjunction, we need either 2 commands, if the Sheffer
stroke is used, or we need 3 commands in case of the Pierce’s
arrow. In the first case, the first command is “nand”, the second
command is “not” (remember “not” needs only one command).
In the second case the first two commands are “not”, and the
third command is “nor”. Analogously, the disjunction takes
either 2 or 3 commands.

If we use the most evidence formula for the exclusive
disjunction:

x xor y = (z and not y) or (y and not x)

then the operation becomes very slow, because we need to
calculate two negations (2 commands), 2 conjunctions (4 or 6
extra commands) and the disjunction (3 or 2 extra commands).
It is reasonable to implement the exclusive disjunction directly
or... to use other operations instead of the Peirce’s arrow and
the Sheffer stroke.

Really, if we implement the exclusive disjunction directly,
then we have two operations directly implemented: the other
one is either the Pierce’s arrow or the Sheffer stroke, or maybe
another one... What if there are two other operations which

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

make calculations more efficient, being implemented directly?
Let us implement, for example, both the Pierce’s arrow and the
Sheffer stroke. Won’t the formula for the exclusive disjunction
become much more simple?

A special program (more exactly, a script) was written,
looking for the shortest formula. It did not find any formula
which would take less than four commands. The shortest
formula is the following:

a xor y = (z nor y) nor not (z nand y)

But if we implement the conjunction and the Pierce’s arrow
directly, we need only 3 commands to calculate the exclusive
disjunction:

x xor y = (z nor y) nor (x and y)

For general calculations, it becomes even more efficient
than if the exclusive disjunction and the Pierce’s arrow be
directly implemented. The reason is the integer operation
“x 4+ 17. The conjunction is used to calculate the carry flag.
It means that 3 commands (the conjunction and two Pierce’s
arrows) are sufficient to calculate both the digit and the carry
flag. If we have, for example, the Pierce’s arrow and the
exclusive disjunction directly implemented, 4 commands are
required to calculate both the digit and the carry flag: a
command to calculate the exclusive disjunction for the digit
and 3 commands to calculate the conjunction for the carry
flag.

Let we have the Sheffer stroke and the exclusive disjunction
directly implemented. Then we also need only 3 commands to
calculate both the digit and the carry flag for the operation
“x 4+ 17. How to compare this implementation with the case
when the Pierce’s arrow and the conjunction are implemented
directly? The following evaluation can be considered.

Let we have a long sequence of boolean operations: for
example, some conjunctions, some disjunctions, some nega-
tions. The operations are distributed arbitrary in the sequence,
but every two of the operations can be found in the sequence
the same number of times. So, for example, we have 10
negations, 10 conjunctions and 10 disjunctions. In the case
when the Pierce’s arrow and the conjunction are implemented
directly, the sequence will take 40 commands. But in the
case when the Sheffer stroke and the exclusive disjunction are
implemented directly, 60 commands will be required. We see
that the first implementation becomes more efficient than the
second one. Another example is 10 negations, 10 disjunctions,
10 conjunctions and 10 operations “x + 1”. Again the first
implementation becomes more efficient: 70 commands vs 90
commands.

Though the Sheffer stroke and the Pierce’s arrow are both
basises for the binary logic functions, the formulas for the
exclusive disjunction (hence, for the operations “x + 1” and
“x — 17) are quite long. So, it is reasonable to implement

620

some two operations directly, not only one. What are these
two operations? In the case of ternary logic, it is better to take
the Peirce’s arrow and the conjunction. In the case of binary
logic, it is even much better to take the anti-implication and
the disjunction.

IV. CONCLUSION

One of the core questions, which this paper was dedicated
to, is which input data sets should be included in tests: consider
two different input data sets for testing the same processor
instruction; when should they be regarded as so similar as
successful completion of a test for one of these data sets will
most probably mean the same instruction works correctly with
the other input data set? It has been demonstrated in the article,
by considering a specific example of the instruction “mov”,
how it is possible to find answers for such questions.

Although our practical methodology did not require any
mathematical methods, we see in the end of paper using of
discrete mathematics helps to make computer programs more
efficient. By considering the data register and the address reg-
ister of a bootloader as abstract variables we in fact used math
modeling. Nowadays different parts of mathematics appear in
programming more and more often. The papers [8] and [9]
give some more examples of how discrete mathematics and
math modeling can help to solve practical problems.

REFERENCES

[1] M. Dyabin, A.V. Reshetnikov and E.A. Saksonov, “A methodology
for testing the microprocessor core of a system on chip with a x86-
compatible microprocessor” (in Russian), Problems of Perspective Micro-
and Nanoelectronic Systems Development, issue 3, 2020, pp. 172-179.

[2] T.A. Chegis and S.V. Yablonsky, “Logical methods of control of work of
electrical schemes” (in Russian), Trudy MIAN SSSR, vol. 51, 1958, pp.
270-360.

[3] S.G. Bobkov, “A methodology for testing circuits for the “Baget” series
of computers” (in Russian), Programmnyye producty I sistemy, no. 3,
2007, pp. 2-5.

[4] V.A. Patankar, A. Jain and R.E. Bryant, “Formal verification of an ARM
processor”, in Proc. Twelfth International Conference on VLSI Design.
Goa, India, 1999, pp. 282-287.

[S] A.V. Arkhipkin “Data communications equipment for a complex with a
light class UAV” (in Russian), in Trudy II nauchno-prakticheskoy kon-
ferentsii “Perspektivy razvitiya I primeneniya kompleksov s bespilotnymi
letatelnymi apparatami”. Kongress-tsentr parka “Patriot”, Moskovskaya
oblast, 14 Apr 2017, pp. 29-34.

[6] V.Ya. Arkhipkin, M.I. Dyabin, V.V. Erokhin and Yu.L. Leokhin, “Design-
ing a high-performance SoC based on a 16-bit processor core”, Problems
of Perspective Micro- and Nanoelectronic Systems Development, issue 4,
2020, pp. 134-139.

[7]1 Intel Corporation, SOCIS86EC/80C188EC microprocessor user’s manual,
Intel Corp., 1995., 515 p.

[8] E.A. Saksonov, Yu.L. Leokhin and P.V. Panfilov, “Structural Synthe-
sis of the IoT System for the Fog Computing”, 2019 24th Confer-
ence of Open Innovations Association (FRUCT), Proceedings of the
2019 International Conference on, (FRUCT) 2019, pp. 381-387. DOIL:
10.23919/FRUCT.2019.8711934.

[9] V.N. Azarov, E.A. Saksonov and Yu.L. Leokhin, “Analysis of Information
Structure of the Corporate Network of Enterprise”, Quality Management,
Transport and Information Security, Information Technologies, 2018
IEEE International Conference on, (IT&QM&IS) 2018, pp. 9-12. DOIL:
10.1109/ITMQIS.2018.8524906.

