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Abstract—Application of Multiple-input Multiple-output
(MIMO) technology provides high data rates in modern
standards of wireless communication. MIMO technology is
characterized by the use of dozens of antennas on the
transmitting and receiving sides, or even hundreds of antennas
for the so-called massive MIMO technology. Massive MIMO is
often considered as a key technology for SG New Radio (NR).
However, due to the increase in the number of antennas on the
receiving and transmitting sides, the computational complexity
of signal processing on the receiving side also increases. We
suggest a new algorithm for signal detection for massive MIMO
systems with lower computational complexity than the known
Minimum Mean Square Error (MMSE) equalizer.

1. INTRODUCTION

General use of MIMO technology in modern wireless
communication systems is caused by the fact that the use of
this technology allows to meet the demand of users in terms
of capacity and data rates of wireless data transmission
systems. In contrast to standard wireless communication
systems, which have one antenna on the transmitting and
receiving sides, when using MIMO technology, several
antennas are used on the transmitting and receiving sides
[1],[2]. In the simplest implementations of MIMO technology
the number of antennas can be 2 or 4 [2]. Such
implementations in spatial multiplexing mode make it
possible to achieve an increase by several times in data rates
compared to Single-input Single-output (SISO) systems [1].
However with the development of wireless communication
systems, and due to the increase in the required data transfer
rate, the potential of such MIMO systems has become
insufficient.

The next step in the development of MIMO technology
was the appearance of the massive MIMO technology, its
number of antennas can reach tens or even hundreds on both
the transmitting and the receiving sides [3]. Massive MIMO
technology was created to provide the ability to transfer data
at higher rates, as well as to increase network capacity [6].
This determines its application in the most modern wireless
communication standards.

On the other hand, in addition to the above mentioned
advantages, the computational complexity of signal

processing on the receiving side (detection) increases with the
application of the massive MIMO technology due to the
increase in the number of antennas, and, as a result, the
dimension of the channel matrix containing the transmission
coefficients between each transmitting and each receiving
antenna [4]. Thus, the application of known detection
algorithms becomes difficult or even impossible to
implement to ensure the required data rates.

We offer a new detection algorithm, which will reduce the
computational complexity of the signal processing on the
receiving side compared to the known MMSE algorithm in
wireless communication systems based on massive MIMO
technology.

II. MIMO SYSTEM MODEL

Fig. 1 shows a block diagram of a communication system
built using MIMO technology, which consists of M
transmitting antennas and N receiving antennas [2]. The
input of the modulator receives a binary stream of
information bits, which passes through the communication
channel after modulation.

Data Data
—— Modulator Demodulator [E—
birs bits

Fig. 1. MIMO structure

In spatial multiplexing mode each transmitting antenna
transmits an independent signal to each of the receiving
antennas [1],[2]. Thus, an increase of data rate is achieved
due to the transmission of different signals by different
antennas.

The signal that passed through the channel on the
receiving side must be processed with one of the known
detection algorithms, and then demodulated [1]-[4].
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Let us consider a mathematical model of the MIMO
system. The signal observed on the receiving side can be
expressed as follows:

y = Hx+n, )
where:
y — the observed vector of complex samples;
H - the matrix of complex transmission coefficients

(channel matrix) with the dimensionality NxM ;
x — the vector of transmitted complex information symbols;

n — complex random Gaussian noise vector in the
communication channel.

In general, the detection process is reduced to solving a
System of Linear Algebraic Equations (SLAE) (1) [1]-[4].
But the presence of a random component (noise vector) may
lead to errors while finding a solution Therefore, detection
algorithms are used to calculate the estimate of the vector of
transmitted characters on the receiving side [1]-[4].

III. MIMO SIGNAL DETECTION

In process of MIMO technology application, the signal
observed during reception represents a combination of
signals received from different transmitting antennas [1],[4].
After that the receiver must separate the signals received from
different receiving antennas using detection algorithms.

Detection of a signal on the receiving side with a known
channel matrix is one of the main issues in wireless
communication systems [1]-[4], [14]. The essence of this task
is to restore the transmitted signal x on the receiving side
from the observed vector of samples y. It is worth

mentioning that the calculation of estimate of the vector of
transmitted symbols on the receiving side must be processed
for a period not exceeding the duration of the information
symbol. Thus, as the data rate increases, this period shortens.

In wireless telecommunication systems based on MIMO
technology, there are some known algorithms used for
detection [1]-[5]. Using some of them allows to get high
resistance to noise, while the computational complexity of
such algorithms is high. Other algorithms, requiring less
number of computational operations to get estimate, on the
contrary, have worse characteristics resistance to noise.
Therefore, the algorithms that allow to receive higher
resistance to noise, often tend to become complex even when
using MIMO technology not to mention massive MIMO [14].

Among known wireless communication systems
detection algorithms using MIMO technology the following
algorithms can be distinguished:

1) Zero Forcing (ZF);
2) Minimum Mean Square Error (MMSE);
3) Maximum Likelihood (ML).

ML has the best characteristics of resistance to noise
among the listed algorithms [1]-[4]. The essence of this
method is that when calculating the estimate, the square of
the residual norm is minimized [2], [13]:
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X,, =arg min ||y —HX||2 R
xeX

where:

X" — is a discrete set of values of a M -dimensional
vector x of complex information symbols. The set of X is
determined by the type of modulation used in the system.
Finding the minimum by equation (2) implies a search for all
possible combinations of the vector of transmitted complex
information symbols. Thus, the computational complexity of
this detection algorithm depends on two parameters: the
number of transmitting antennas M and the modulation
order k used in the wireless communication system. For

example, using modulation with order k to calculate estimate

of the vector of transmitted symbols requires completing K"
elementary arithmetic operations, which becomes difficult to
implement when the values k and M are large. Taking this
into consideration, the usage area of this algorithm is limited
to MIMO communication systems with a low modulation
order and a small number of transmitting antennas [2].

The other two algorithms, ZF and MMSE, are linear
algorithms. Both of these algorithms are similar, but there is
a difference: the MMSE algorithm takes into account the
influence of noise in the communication channel.

When using ZF, the expression for calculating the
evaluation of the vector of transmitted characters looks like
this [2]:

%, =(H"H) H"y, 3)

where:

¥ is the Hermitian conjugate. In terms of computational

complexity, the most difficult ZF operation is the matrix
inversion (HHH) In this
complexity depends only on the dimension of the matrix H,

which means on the number of transmitting and receiving
antennas.

case, the computational

Another linear detection algorithm, the MMSE, has better
resistance to noise characteristics compared to the ZF, but the
complexity of calculating the estimate of the vector of
transmitted characters is approximately the same [2].

The expression for the MMSE detection algorithm is as
follows [2], [10], [12], [13]:

Ry =(H'H+25°1) By, )

where:

20° —is the aggregate dispersion of the real and imaginary
components of the Gaussian noise vector;
1 — identity matrix.

As can be seen from equations (3) and (4), the differences
between the ZF and the MMSE consist only in the fact that
when using the MMSE the aggregate dispersion of the real
and imaginary components of the Gaussian noise vector is
taken into account, that provides the MMSE algorithm higher




resistance to noise. The most complex operation in MMSE
algorithm 1is also the calculation of the inverse of
(H"H+20°1).

Thus, compared to the ML, the estimates obtained using
the ZF or the MMSE are the easiest to calculate. At the same
time, with less computational complexity, the resistance to
noise of the MMSE allows to consider it as the main
algorithm for MIMO systems. But when switching to massive
MIMO technology the complexity of this algorithm increases
due to the increasing number of antennas and its
implementation may be difficult, since the asymptotic
computational complexity of this algorithm has a cubic order.

IV.ITERATIVE DETECTOR FOR MASSIVE MIMO SYSTEMS

To reduce the computational complexity of signal
detection in massive MIMO systems, we propose an iterative
detection algorithm, the computational complexity of which
is lower than that of the known MMSE, while the noise
immunity is close to the MMSE.

As it was mentioned above, the most complex operation
in the MMSE algorithm is matrix inversion [2]. To reduce the
complexity of signal detection in systems using massive
technology MIMO, it is suggested to exclude the request
operation of matrix inversion from the algorithm for
calculating the estimate of the vector of transmitted symbols.

Next, we will use the following notation:
Y=H"y, T :(H”H+2021) .

Now let’s multiply both parts (4) by the matrix
T:(HHH+2021) as follows:

(H"H+20°1)R 5, = (H'H+25°1) (H'H+20°1)H

As a result we get the following expression which
represents a SLAE:
(H'H+20"1)R7 = Y . (5)
The solution of SLAE (5) is the estimate of the vector of
transmitted symbols on the receiving side.

Exact and iterative methods can be used to solve SLAE
(5). Exact methods allow us to get just the same estimate of
the vector of transmitted characters as when using the MMSE
(4). At the same time, the computational complexity of exact
methods will not reduce the complexity of the calculation
estimate of the vector of transmitted symbols. Thus, for the
solution of SLAE (5) it is suggested to use an iterative method
— stabilized biconjugate gradient method [7]-[10]. In case of
iterative methods application, it is possible to reduce the
number of arithmetic operations for finding the SLAE
solution by reducing the number of iterations, and this
solution for SLAE will be approximate.

To get the maximum effect from the application of
iterative method of solving SLAE (5) and to reduce the
computational complexity of obtaining an estimate of the
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vector of transmitted characters, it is necessary to fill in the
condition L << N, where L — is the maximum number of
iterations for solving SLAE. In addition, the stabilized
biconjugate gradient method contains two operations for
calculating the product of a matrix by a vector at each
iteration [7]-[10]. To reduce the computational complexity of
solution the SLAE it is suggested not to calculate the matrix

T= (HH H+20" 1) in advance, but to calculate the product
(HHH+2021) on the vector at each iteration of the
stabilized biconjugate gradient method.

Thus, the iterative detection algorithm can be described as
follows:

Algorithm 1 Description of the developed iterative
detection algorithm for massive MIMO systems
Input data: matrix H with the dimensionality NxM ,

diagonal matrix 20’1 with the dimensionality NxM,
vector Y with the dimensionality N .

Step 1. Selection of the initial approximation to the
solution of the SLAE 1% =0. Set the maximum number

of iterations L .

Step 2. To calculate the residual:
r® =Y - (H"H+20°T)%, =

=Y -H" (H&D, ) +20° (189, )

ITER

Since %2, =0, then r® =Y.

Step 3. Set the vector ¥, on condition (r“’), F“”);:o, as

follows: ¥ =r®.

Step 4. Set the base vector p” =r .
Step 5. Set /=0.

Step 6. Calculate:

q" = [H” (Hp(” ) 1267 (Ip‘”)} ,
v =[B7 (Bs")+20° (15 ],
(r“),?“”)

() =(0))?
(o)
(),

(v(”,s(”)

]
(V“),V(,))

) _

_ s —p® _ CH o0 _

a(l)q

S
If (1+1)<L, go to Step 7.
If (1+1)=L, go to Step 8.
Step 7. Calculate:

p(l) +aPs? .

(r(””,F(O)) a®

N Tz
— 1) 2

(r(”,r(o)) o

(1+1) _ L.(1+1) (1) (D) () (D) o (D)

pl =t p0p Y - 0 g

Set 1=(1+1).

Step 8. Set &,,,, =10 as solution.

r =g _ HOy® , ﬂd) —

Output data: vector %,,, with the dimensionality M .

The described detection algorithm can be used for
massive  MIMO systems, providing the reduction in
computational complexity compared to the known MMSE




algorithm (4). Next, we will draw the analysis of
computational complexity and resistance to noise of the
described iterative detection algorithm.

V. ANALYSIS OF RESISTANCE TO NOISE OF PROPOSED
ITERATIVE DETECTOR

To evaluate the effectiveness of the developed iterative
algorithm, a comparison of its resistance to noise with the
MMSE (4) for massive MIMO antennas configurations is
given below. Simulation conditions are in Table I.

TABLE I. SIMULATION CONDITIONS

Parameter Value
Channel MIMO
Fading Uncorrelated Rayleigh
Number of transmitting antennas 128;
256
Number of receiving antennas 128;
256
Architecture V-BLAST
Modulation 16-QAM
FEC Turbo-code with rate 1/2
Number of iterations for iterative detector 8;10; 12

Frame error rate for massive MIMO systems with 16-
QAM modulation and Forward Error Correction (FEC) for
antennas configuration 128x128 is shown on Fig. 2.

MIMO, Spatial Multiplexing:
N, =128, N =128; 16QAM; Code Rate = 1/2; Frame=3840(bit)

MMSE-LTE

Proposed-detector-8-iterations.

Proposed-detector-10-iterations
+— Proposed-detector-12-iterations

FER
3

-85 -8 -15 -7 -6.5
E/MN,, [dB)

Fig. 2. Comparison resistance to noise in massive MIMO system with
16-QAM and FEC for antennas configuration 128x128
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Fig. 2 shows that the resistance to noise in massive
MIMO systems with 16-QAM modulation in case of
application of the proposed iterative detection algorithm

Algorithm 1 is 0,9 dB by FER =107 compared to the known
MMSE algorithm (4).

Frame error rate for massive MIMO systems with 16-
QAM modulation and FEC for antennas configuration 256x
256 is shown on Fig. 3.

MIMO, Spatial Multiplexing:
Nu=253. Nm=256c 16QAM; Code Rate = 1/2; Frame=3840(bit)

T
MMSE-LTE
Proposed-detector-8-iterations.
Proposed-detector-10-iterations.

~— Proposed-detector-12-iterations

115 -1 105 10 95 4
E/MN,, [dB]

Figure 3. Comparison resistance to noise in massive MIMO system with
16-QAM and FEC for antennas configuration 256 x256

Fig. 3 shows that the application of the proposed iterative
detection algorithm Alg. in massive MIMO system with
antennas configuration 256x256 and FEC with modulation
16-QAM gives a loss of about 0,45 dB by level

FER =107 compared to the known MMSE algorithm (4).

VI. THE ANALYSIS OF COMPUTATIONAL COMPLEXITY OF
ITERATIVE DETECTOR

Table II shows the computational operations of the
iterative algorithm for detection of Alg.1 at each step of the
algorithm

TABLE II. COMPUTATIONAL COMPLEXITY OF ITERATIVE DETECTOR
ALGORITHM 1

Step Operation Computational Number

numbe complexity of

r repetitio
ns

Step I | y =gy z N)=7N*+N |

y SMMATVEC ( ) =
Step 6. g=Hp" ; Zysnurvec (N) =N +N L
u=H"g;
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f=Hs"; A [ () (0} Zonr (N) =N L-1
=H"f (r(””,F(O)) a®
- )%
(r(”,F(O)) o®
20° (187)=26"s" | Zyuupee (N)=2N L
: sO —Pv? Zygesun (N) =2N L
252 (Ip(l)) — 20_2p(1) 4 ﬁ(”p“) ;
. ONONy GIROMNT)
; pp7 -p 0"q
a"q® ; aVp"; As‘ Table II. shows the total complexity of the propoged
detection algorithm Alg.1 can be calculated by the following
equation:
PROR0 q
( ) L ZITERM[MO (N) = Z}MMATVEC (N) +
O FO) Zgu (N)=8N-2
( ) ’ VL% 4% Zs\parvec (N) 5* Zyumvec (N)+ +
(a”.¥); 4% Zgeu (N)+5% Zypegung (N)+2% Zpyy (N)
( () (I)) . +(L 1) * * ZNUMVEC (N) - 2 * ZSKAL (N)
vi?s) -
+3% Zypcsum (N) +2%Zpy (N) +2% Ly (N)
(v(”,v“)) )
By simplifying the equation (6), we get the following
u+20p"; Zypesun (N)=2N L expression:
w+20%" Zrewmo (N)=TN? + N +
28N? +4N +10N +
0 —aq?; iy g +
+32N-8+10N +2N
aPp? + Vs ; (L1 6N +16N -4+ _
+6N+2N+2N
20 [ aPpD 4 Vs ]
X" +[a"p" +as"] = TN? + N+ L#[28N7 + 58N 8]+ (L~ 1)*[32N - 4]
(7
(.7 ) (N)=N L Table III gives the comparison of the number of
T G P ti ired t lculate the estimate of th
a¥ =1t operations require o calculate e estimate o e
(a.7) application of the known MMSE algorithm (4) and the
proposed iterative detector Alg .1 for antennas configurations
(Vu) s(”) and 256x256.
o = ’
(V“) s V(”) TABLE III. COMPUTATIONAL COMPLEXITY OF KNOWN AND PROPOSED
DETECTOR FOR COMMUNICATION SYSTEMS WITHFEC
Step 7. vy pOpP; Zumwre ( N ) =2N L-1 Complexity of calculating estimate of the vector of The ratio
the transmitted symbols between
number of
()
@q Detector MMSE (4) Proposeq detector operations
Algorithm 1
proposed
(+1) =(0) « 7 N)=8N -2 L-1 detector
(r r ) > s (V) Antennas. Number of additions and Number .
configurati multilication of Algorithm 1
(r.¥) on wHpTications iterations | and MMSE (4)
16924 160 4 664 844 10 0,28
ol (F(HI),F(O)) Zpw (N) = L-1 2]
RO ( 0 7<0))
w r’,r 134 806
256%256 784 2] 22390 900 12 0,17
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VII. CONCLUSION

The developed iterative detection algorithm Alg .1 allows
to perform the procedure of calculating the vector estimation
of transmitted characters on the receiving side with less
computational complexity and acceptable losses in resistance
to noise compared to the known MMSE algorithm (4), which
is essential for wireless communication systems built on the
basis of massive MIMO technology.

Losses in resistance to noise during the application of the
developed detection algorithm Algorithm 1 in massive
MIMO systems with 16-QAM modulation and turbo-coding

(rate %) is 0,9 dB and 0,45 dB by FER =107 while reducing
the computational complexity by 3,6 and 6 times compared
to the known MMSE algorithm (4) for massive MIMO
antennas  configurations and 256x256,
respectively.

The scientific results in this work was supported by
Federal communication agency under Contract No. I1133-1-
26/13 «Development of the MIMO system for mobile
communicationsy.
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