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Abstract—We are presenting a real-time traffic flow classifi-
cation model for maintaining QoS in dynamic networks such
as Software Defined Networks (SDN). In previous works, we
managed to achieve high accuracy (90-95%) on the database of
flows known for the model using Machine Learning (Supervised
Learning) methods but in a dynamic SDN new network applica-
tions and flows appear more often than usual. For detection of
new flows it is proposed to use the Agglomerative clustering
method, which has never been used to solve the problem of
network flow classification, because early approaches to traffic
clustering gave insufficient results and the speed of its operation
was too low. This paper offers a combination of different Machine
Learning methods in such a way that Agglomerative clustering is
responsible only for updating the class database, and Supervised
Learning methods are responsible for quickly classifying known
flows, which solves the problem of model speed. Clustering
accuracy is improved by automatically controlling the cluster
construction process by determining the distances between flows
using the Random Forest and Extra Trees methods. In the
experimental part of the study, three more most promising ways
of determining distances are given for comparison: Random
Trees Embedding, Euclidean and Manhattan distance. Results
of clustering of TCP and UDP applications for different number
of clusters and different size of the initial sample are presented.
Experimental studies confirm the effectiveness of using hierar-
chical clustering in traffic clustering tasks under the condition
of controlled cluster construction.

I. INTRODUCTION

Modern telecommunications networks transmit a large

amount of heterogeneous traffic and for each class of traffic

it is necessary to provide the corresponding requirements for

Quality of Service (QoS). The classification can be based

on applications, services, traffic types (voice, video, data)

or other characteristics. Early methods of automatic traffic

classification were based on defining applications by port, but

with the advent of dynamically changing ports, this approach

began to lead to a large number of errors. In this regard,

the analysis of DPI packets (Deep Packet Inspection) was

proposed. For this method, you must have access to the

application part of the packet but since networks often use

encryption, this approach does not always allow you to identify

the application. In addition in dynamically changing networks

such as SDN (Software Defined Networking) new applications

are sometimes added that are unfamiliar to the DPI tool.

Recently, to solve the problem of traffic classification, Machine

Learning (ML) methods are increasingly used, which allow

not only to effectively classify traffic and expand the database

of known flows, but also to analyze flows based only on the

statistical properties of flows.

Machine learning methods are divided into Supervised

Learning and Unsupervised Learning methods. In Supervised

Learning, each sample element has its own feature vector and

the label of the class it belongs to. The class label for flows

must be known in advance or determined using automatic

tools (nDPI, L7 filter, etc.), which introduces some problems

in the classification process, such as automatic markup errors

and the inability of the model to determine new classes that

are not represented in the training sample. For Unsupervised

Learning (unsupervised learning or clustering), a class label

is not required, and class divisions are based only on flow

characteristics. This approach allows you to introduce new pre-

viously unexplored classes but is less accurate than Supervised

Learning.

We are conducting a series of studies aimed at developing a

classifier of traffic flows using ML methods to maintain QoS

in a dynamic SDN network in real time [1], [2]. Due to the

specifics of the problem, the classifier must have the following

distinctive properties:

• Classification by a limited set of features based on the

properties of the first N packets, since it is not possible

to get information about the entire flow.

• Detection of new classes, i.e. clustering methods should

be applied.

• High accuracy of the results obtained.

• Ability to interpret classes for further link them to QoS

policies.

• The division into clusters is based on a dynamically

changing metric that is not predefined in advance, such

as the distance between clusters.

This paper is part of our research work and focuses on

clustering traffic flows. When clustering individual elements

of the original sample (in our case, flows) are represented on
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coordinate axes in N-dimensional space and grouped together

in clusters depending on the distance between them. One of

the tasks that arise in this case is to determine the method

of calculating distance between clusters. In this paper, we

consider the five most promising approaches to calculating

the distance between clusters, and then conduct experimental

studies using these methods to cluster traffic flows from the

real network and give a comparative assessment of their

performance. Despite the fact that the work is focused on the

tasks of the SDN network, the results of the work can be used

in other networks as well.

The paper is structured as follows: section I presents the

background and goals of the research, section II reviews

the most outstanding works of other researchers, and section

III provides brief theoretical information about the methods

used. Section IV presents the algorithm of our model and

the relationship between the methods used in it. Section V

presents the results of experimental studies for real network

traffic, and section VI presents conclusions and suggestions

for future work.

II. RELATED WORK

The article [3] provides an overview of some promising

works and approaches to the problems of traffic classification

using Supervised Learning methods, and in [4]- Unsupervised

Learning.

In the paper [5] instead of the Euclidean distance, a distance

matrix based on a Random forest is used, followed by cluster-

ing using the K-Medoids method. The study showed a signif-

icant improvement in distance-based clustering results using a

Random forest compared to Euclidean distance. However, it is

worth noting that to perform clustering using the K-Medoids

method, you need to have data on the number of clusters to

split, which is not possible in a dynamically changing network

in real time.

The authors [6] suggested using hierarchical clustering as

a way to extract and generalize statistical information about

traffic activity in high-capacity networks. In [7] hierarchical

clustering methods (AutoFocus and BIRCH) based on IP

addresses and other categorical heuristics allowed us to create

some basic traffic patterns. These and other works confirm the

effectiveness of using hierarchical methods in network traffic

analysis tasks.

In this paper, we suggest using Agglomerative clustering to

classify an application in real time, since it supports clustering

based on the distance between classes and thanks to its struc-

ture, it is possible to interpret the resulting clusters in terms

of QoS policy (unlike many other methods, e.g. DBSCAN).

To compare the accuracy of the results, we consider controlled

and uncontrolled ways to obtain a distance matrix for building

a model.

III. BACKGROUND

A. Agglomerative clustering

Agglomerative clustering [8] is one of the types of hi-

erarchical structures and can be represented as a dendrogram

that allows you to organize data ”from bottom to top”: initially,

each element of the sample is considered a separate cluster, as

the distance between clusters decreases, objects are combined

to form new clusters (Fig. 1).

Fig. 1. An example of a dendrogram of the eight samples

To perform clustering, you need to calculate the pairwise

distance between all elements and set a measure of the distance

between clusters. The matrix of pairwise distances can be

defined in different ways, which are conditionally divided into

two groups:

1) Unsupervised distance calculation: Euclidean distance,

Manhattan distance, Random Trees Embedding. With

this method of calculating distances, class labels are

not used and distances are calculated only based on the

feature matrix.

2) Controlled distance calculation: Random Forest, Ex-

tremely Randomized Trees. With this method, the sam-

ple is divided into supervised learning classes, and then

the distance between the sample elements is calculated.

The paper analyzes standard approaches to determining dis-

tances (Euclidean distance, Manhattan distance), since they are

effective in many Machine Learning problems and methods for

constructing a distance matrix based on Decision Trees, since

such algorithms show better results in traffic classification

problems compared to others.

To determine the measure of distances between clusters, the

complete linkage method was used, since it is recommended

when using non-standard approaches to determining distances.

In this approach, the distance between two clusters is the max-

imum distance between two elements from different clusters.

Agglomerative clustering allows you to adjust the number

of clusters depending on the distance between clusters. Thus,

unlike other common methods (K-means, spectral clustering,

etc.), you do not need to have knowledge about the number

of clusters before clustering. This feature makes it possible

not only to determine the optimal number of clusters for

the training sample but more importantly, it is possible to

introduce new classes into an existing model automatically,

adjusting only the distance between clusters.
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B. Machine Learning algorithms used to calculate the dis-
tance matrix

Decision Tree, DT is one of the basic machine learning

algorithms. It is a logical structure consisting of leaves and

nodes. A leaf is the terminal end of the tree and uniquely

determines whether the selection element belongs to a class.

At each node, a decision is made about which next node or

leaf to go to in order to classify the current item. To make

decisions, a conditional function is set in the node based on

some feature of the object. Binary trees are most widely used,

i.e. such that the conditional function divides objects into two

child nodes and / or leaves.

By itself DT is weak and unstable algorithms and copes well

only with simple tasks. However, it is often used in ensemble

algorithms, where it helps to achieve high accuracy by working

in conjunction with other trees or other models. The paper uses

Random Trees Embedding, Random Forest and Extra Trees

(Extremely Randomized Trees) as such ensembles.

The Random Forest (RF) and Extremely Randomized
Trees (ET) algorithms are a set of DTs that perform clas-

sification in parallel and independently of each other. The

final result of the prediction is chosen by a majority vote.

The main difference between RF and ET is the significantly

greater influence of the randomness factor when using ET.

RF performs sample splitting at nodes in the best way, while

ET does it randomly. Also, in RF, unlike ET, data is initially

loaded using the bootstrap method, which allows you to create

many others based on the existing selection and use them to

replace elements.

RF shows a more compact distribution of sample objects and

the model most often requires fewer trees. In most cases, RF

gives better classification results compared to ET. Despite this,

the ET construction results in a larger number of leaves, i.e.

the data is more sparse, which does not give an advantage in

classification, but affects the calculation of distances between

elements, which can be used in subsequent clustering.

An ensemble of Random Trees Embedding (RTE) is a

construction of a forest based on an unsupervised sample, i.e.

it does not require the presence of training sequence class

labels.

C. Evaluation of clustering algorithm

The Adjusted Rand index (ARI) and the Adjusted Mutual
Information (AMI) measure the similarity of two assignments

(true and predicted), ignore permutations, and normalize all

values within [-1; 1], where -1 is bad labeling, 0 is random

labels, and 1 is the best match indicator. AMI is based on

a measure of Shannon’s information, and ARI is based on

comparisons between sample elements.

Homogeneity indicates that each cluster contains objects

belonging to only one class. By completeness you can de-

termine the proportion of a sample of one class belonging

to one cluster.V-measure is the harmonic mean between

Completeness and Homogeneity. All three characteristics are

normalized within [0; 1], where 1 corresponds to the best

result.

IV. METHODOLOGY

A. Traffic classification model
Our traffic classification model is shown in Fig. 2. In the

Fig. 2. Traffic classification model

data collection block (1), the time of arrival and its size are

recorded for a packet entering the network. After that, packets

are grouped into flows based on 5-tuple (IP addresses, port

source and destination and protocol). In order for the system

to work in real time, only the first 10-15 packets of the flow

are taken into account, and the classification results are applied

to subsequent packets [9].
Next, the feature matrix (2) is calculated for each flow.

The features are statistical properties of the flow: the length

of each packet, the interarrival time, and the characteristics

calculated based on them (median, variance, STD, minimum

and maximum values, bit and packet rates) [10].
The preprocessing (3) block works with outliers, normalizes

and scales the resulting feature matrix.
In the next classification block (4), Random Forest (or other

advanced Supervised Learning methods) is used to classify

traffic according to the classes known for the model [11]. If

the application is new and unfamiliar to the model, some errors

may occur at this stage, because the Supervised Learning

methods can only classify samples by classes that are known to

them. This assumption is made consciously in the model, since

further work on traffic management (5) is based on known

classes. However, the classification block (4) represents the

closest class for the new flow that has arrived, and as a result,

the corresponding Traffic Engineering (TE) rules apply to it.
While the classification block (4) decides which class to

assign the active flow to, and the TE block applies real-time

traffic management rules, a copy of the new flow information

from block (3) is sent to block (6). this is where the database

for all known flows is stored. Each sample is represented by its

own coordinates in N-dimensional space in accordance with

certain features.
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The subject of this article is block (7), which calculates

the distances between the available samples. For research

purposes, we consider five ways to construct a distance

matrix: two of them are standard and generally accepted

methods (Euclidean distance and Manhattan distance), and

the other three are based on methods of precomputed distances

(Random Forest, Extremely Randomized Trees and Ran-
dom Trees Embedding).

After constructing the distance matrix between samples, the

clustering block (8) divides the samples into clusters using

Agglomerative clustering. This approach makes it possible

not only to identify new clusters, but also to determine their

nearest neighbors. Information about the nearest neighbors can

be used in the TE(5) block.

After analyzing a certain number of new flows and creating

additional clusters, the classification block (4) learns new

classes, and the TE tools (6) define new rules for managing

flows. This approach for building a classifier model allows you

to use the speed of classification using Supervised Learning

methods and the ability to identify new flows using Unsuper-

vised Learning methods.

B. Distance matrix

The pairwise distance matrix specifies the relative distances

between all pairs of its elements. For its construction, Eu-

clidean or Manhattan distance is often used, calculated on the

basis of a feature matrix.

Euclidean distance (1)

d(p, q) =

√√√√
m∑
i=1

(pi − qi)2 (1)

where p and q are a pair of feature vectors of two flows, m
is number of features.

Manhattan distance (2)

d1(p, q) =
m∑
i=1

|pi − qi| (2)

In addition to the standard methods for calculating the

distance matrix, the distance matrix obtained using any other

methods, the so-called precompiled distance matrix, can also

be used. For this purpose classes are placed using the Super-

vised Learning methods, and the distances between clusters are

extracted based on the results obtained. In many situations,

this approach allows more efficient clustering than standard

methods.

The process of creating a distance matrix based on decision

trees (ET, RF, RTE) (Fig. 3) can be represented as the

following sequence of actions:

1) Calculation of the n × m feature matrix based on the

statistical characteristics of the flow, where n is the

number of flows, and m is the number of features.

2) construction of a forest of k trees based on the matrix

of features of the training sequence for ET and RF takes

place in a controlled mode.

3) Assigning each flow the index of the leave on which it

appeared on each of the trees. This step results in an

n× k leaves matrix.

4) Creating a matrix of pairwise proximity n × n, where

between each pair of flows, the total number of leaves

on which they appeared together among all trees, is

indicated. The leaves comparison process is performed

using One-Hot Encoding (representing each state using

a single trigger) and the product of the encoded index

matrix and its transposed form.

5) Getting the distance matrix by normalizing the proximity

matrix relative to the maximum value and subtracting its

values from one.

Thus, the result of this sequence of actions will be a matrix

of pairwise distances n×n, where its elements are distributed

within [0;1] and 1 is the maximum distance between flows,

and the diagonal consists of 0.

Fig. 3. Building a distance matrix based on Decision Trees

V. EXPERIMENTAL SETUP

A. Internet traffic dataset
For the experimental part of the study, we used 15-minute

traffic routes collected in January-February 2020 by the MAWI

research group as part of the WIDE project on a real network

section [12]. Traffic was divided into unidirectional flows by

5-tuple fields (source and destination IP addresses and ports,

TCP/UDP Protocol). Using the nDPI tool, it was possible

to perform the initial markup of traffic flow classes, which

were represented by application names. TCP and UDP traffic

were studied separately from each other. The TCP database

consisted of 1500 flows for each of the applications: DNS,

Apple (protocol for accessing Apple iCloud), IMAPS, HTTP,

SSH, Telnet. The UDP traffic database contains 250 flows

for each application: DNS, NTP, Quic, SNMP, STUN, and

UPnP. The first 15 packets of the flow were used to create

the feature matrix, and the arrival time and packet size were

recorded for each of them. Flows less than 15 packets long

were not considered. For more information about how to

collect individual statistical characteristics of packets without

creating an additional load on the network, see [9], [11].
The received data flows for each application were divided

into training (train) and test (test) arrays in the ratio of 80% to

20%. Controlled methods for constructing the distance matrix

(ET and RF) used a training array to build trees, and the

test array was built on the basis of existing trees without

using class labels. Unsupervised methods (RTE, Euclidean,

and Manhattan distance) did not use class labels when creating

distance matrices but for comparison with ET and RF, the

results of clustering the test and training arrays are shown

separately from each other.
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B. Test 1. Visualization of clusters using the tSNE method

The widely used ML visualization method t-SNE (t-

distributed Stochastic Neighbor Embedding) allows data to be

dimensioned down and displayed in two-dimensional space

so that points from one sample are most likely to be closer to

each other, and from different ones - farther away from friend.

The method is very dependent on random components and is

not an accurate determination of the distances between points

but it manages to get an idea of the possibility of clustering

and the dataset. In Fig. 4, 5 , the selected applications were

visualized using the t-SNE method. The circles mark the train

sequence samples, and the crosses mark the test. The figure

shows that the sample can be divided into clusters, although it

has intersections in some places - for example, for TCP - the

intersection of IMAPS, HTTP and Apple. The appearance of

such disputed zones can be caused not only by the difficulties

of clustering but also by the peculiarities of the operation of

the protocols, as well as possible errors in automatic marking.

Fig. 4. Visualization of TCP clusters using the tSNE method

Fig. 5. Visualization of UDP clusters using the tSNE method

C. Test 2. The dependence of the results of clustering on the
number of clusters for different distance matrices

Based on distance matrices obtained by five different meth-

ods (ET, RF, RE, Euclidean and Manhattan distance), Agglom-

erative clustering was performed with the number of clusters

varying from 6 to 45. Based on the results of clustering, it was

evaluated using the AMI, AMI, Completeness, Homogeneity,

and Measure methods (Fig. 6, 7). Clustering was performed

using the Scikit-learn library [13] of the Python programming

language.

Fig. 6, 7 shows the ARI and AMI dependencies on the

number of clusters for TCP applications. It can be seen that

the best ARI and AMI indicators for the training sequence of

TCP applications are achieved by the ET method (close to 1).

The RF performance is slightly worse but the RF model looks

less retrained, because the results for the test array for RF

are higher (0.8) than for ET (0.75). The ARI for RTE for both

arrays is zero and the AMI is 0.12, therefore, the RLE method

failed to correctly perform clustering. When calculating the

distances of Manhattan and Euclid, the results are not much

better – they are in the range of 0.15-0.25, which also shows

the unsuitability of these methods in this situation.

Fig. 6. The dependences ARI of the number of clusters for TCP applications

Fig. 7. The dependences AMI of the number of clusters for TCP applications
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All the same conclusions are confirmed by the graphs of

Homogeneity, Completeness and V measure (Fig. 8-10). Such

a significant difference in the results of clustering by ET,

RF and RTE methods, Euclidean and Manhattan distances is

explained by the presence of cluster construction control for

ET and RF. For UDP applications the ET and RF methods

Fig. 8. The dependences Homogeneity of the number of clusters for TCP
applications

Fig. 9. The dependences Completeness of the number of clusters for TCP
applications

Fig. 10. The dependences V measure of the number of clusters for TCP
applications

show results of ARI and AMI within 0.95-1 (Fig. 11-12).

Similarly to the situation with clustering of TCP applications,

methods based on Manhattan and Euclidean distances do not

cope with the task and are within 0-0.25. ARI RTE for UDP

is slightly higher than for TCP-at the level of 0.3 - 0.4, and

AMI-0.65 - 0.75.

Fig. 11. The dependences ARI of the number of clusters for UDP applications

Fig. 12. The dependences AMI of the number of clusters for UDP applications

The uniformity of completeness and V-measure is also

higher in this case than for UDP (Fig. 13-15). This result

is explained by the cluster composition itself: in the case of

UDP, clusters are more distinguishable from each other than

in the case of TCP (Fig.8-10).

As the number of clusters increased, the ARI and AMI

decreased for RF and ET (from 1 to 0.75), while for the

other methods they increased slightly (0-0.2). As expected the

indicators of uniformity began to increase, and completeness

decreased. An excessive number of clusters is undesirable to

use in the model, because it causes situations when one cluster

is allocated for a single sample. In addition, the excessive

number of clusters is difficult to interpret from the point of

view of network management methods.
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Fig. 13. The dependences Homogeneity of the number of clusters for UDP
applications

Fig. 14. The dependences Completeness of the number of clusters for UDP
applications

Fig. 15. The dependences V measure of the number of clusters for UDP
applications

D. Test 3. The dependence of the clustering results from the
total number of flows for different distance matrixes

Fig. 16-17 shows the evaluation of application clustering

results depending on the total number of flows. Due to the

weak dependency, only ARI graphs are presented. For TCP

applications, the total number of flows varies from 600 to

9000, and for UDP - from 200 to 2700. The number of flows

from a single application in the samples is evenly distributed,

and the train and test arrays are divided in the ratio of 80:

20, respectively. The number of clusters in this experiment

remained fixed: 12 for TCP and 8 for UDP flows. The ET

Fig. 16. The dependences ARI of the number of flows for TCP applications

Fig. 17. The dependences ARI of the number of flows for UDP applications

and RF methods show stable results as the number of flows

increases. This indicates that the clusters are well distinguish-

able from each other by these methods. Uncontrolled methods

show some fluctuations in the results, but due to their low

accuracy, the use of these methods in the model is unjustified.
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VI. CONCLUSION

The paper offers a new traffic classification model that

differs from other models in the following properties:

• Real-time operation due to a unique feature matrix based

on the first 10-15 packets.

• Classification of any applications, including UDP and not

just TCP as in most works [11].

• Collection of statistical information about the flows is

performed without introducing additional load on the

network [9].

• High classification accuracy (above 90% for TCP and

above 95% for UDP) by improving accuracy at each stage

of the classifier operation.

• High speed of the model (about 2 ms for processing a

new request) due to the Supervised Learning methods.

• Discover new applications using Unsupervised Learning

methods.

• Information about the nearest neighbors of the new ap-

plication for the purpose of maintaining QoS during the

TE stage.

• Minimum distance as a dynamically changing metric of

cluster division for Agglomerative clustering as opposed

to works where the criterion for dividing into clusters is

their number.

• High accuracy of clustering due to the pre-calculated

distance matrix using Random Forest and Extremely

Randomized Trees methods.

Since the goals, conditions, experimental dataset, and fea-

tures of the model are significantly different from other works,

comparing the results with other authors may seem incorrect.

Instead, a comparison of the five most promising methods

for calculating the distance matrix is presented. It can only

be noted that the methods using the pre-calculated distance

matrix (ET and RF) showed better results compared to the

uncontrolled construction of the distance matrix, as well as

for network security problems in [5].

In future papers, it is planned to present results on automatic

addition of new clusters, analysis of the operating time of

various stages of the model, and TE methods for classified

flows.
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