PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Relational Data Index Consolidation

Michal Kvet
University of Zilina
Zilina, Slovakia
Michal . Kvet@fri.uniza.sk

Abstract—A database index is an important object associated
with the table to provide an additional layer for data access. By
using the index, it is not necessary to scan the table block by
block to locate relevant data rows. On the contrary, reflecting the
usage of the tree structure it is possible to search for a record
with logarithmic complexity. The limitation of the index structure
is identified by the covering of the whole data set. If such a
requirement cannot be ensured, the index method cannot be
used, whereas some data portion does not need to be present in
the result set, although all query conditions are passed. A typical
example of such a problem is the NULL definition associated
with the object or attribute itself. This paper deals with the
existing solutions based on various transformation modules and
proposes its architecture extending the index by node pointing to
the undefined values.

1. INTRODUCTION

Information technologies and decision making are based on
provided data as the inputs. Quality, reliability, and
availability form the core part of the processing. Without
relevant data, no correct decision can be done, no robust
system can be developed. To ensure the complexity of the
system, it is inevitable to manage, process, and store data in a
performance suitable storage. Database systems are now the
most often used tool for data manipulation [4]. They provide
the interface between the data and information system,
respectively application itself. Data entering the system can
originate from various systems, delimited by the quality.
Similarly, sensor data can be routed by the non-fidelity
network provided by the wireless technology, often operated
by the ad-hoc networks. As a consequence, there can be
several data streams with various relevance factors. Data can
be delayed, non-trusted, or even do not fit the required
criterion or range. Such activity must be recorded and
evaluated, as well [8].

Relational database systems were created and firstly
introduced in the 60ties of the 20™ century. Their core
elements are entities and relationships between them as the
data diagram model. Data normalization ensures, that just the
controlled redundancy can be present, either as the result of
the entity relationships or created by the reports and outputs to
ensure easier, faster, and more proper management [3].

The performance of the relational database system is
enhanced by the data indexing, by which the relevant row can
be identified and located easily and effectively [5], [9]. A
database index is an optional structure, which can improve the

performance of the database query [4]. However, if there are
undefined values marked by the NULL symbol, a particular
reference does not need to be in the index resulting in the
necessity to scan the whole table, block by block sequentially
[11], [16], [18]. This paper deals with the existing data
structures with an emphasis on the system architecture in
MySQL database system and Oracle. The main difference
between these platforms is based on the way, they manage,
process, and identify NULL value in the data tuple. As you
can see reflecting the performance, Oracle does not manage
NULLs inside the index, at all. Vice versa, particular
undefined values are present in the MySQL system in some
specific architecture.

The main contribution of this paper is our own solution
managing undefined values in the index by using additional
node. In comparison with other transformation and locator
modules, which change the undefined values to the logical or
physical perspective. Thanks to that, relevant data can be
obtained regardless of the number of NULLs, with no
additional costs caused by transformations. Direct pointer to
the data brings extra power during the data retrieval and block
parsing process. Moreover, the proposed models provide the
benefit, if the database statistics are not up-to-date, as well.

Section 2 deals with the database architecture and loading
process definition from the physical storage to the instance
memory. Section 3 deals with the index and selectivity
supervised by the database optimizer. The impact of clustering
is specified in section 4. The author solution is proposed in
section 5, supported by the evaluation perspective managed in
section 6.

II. DATABASE ARCHITECTURE

The database server consists of two entities — the instance
and the database. The instance covers the memory structures
and background processes supervising the second entity —
database, which is reflected by the physical storage — files on
the disk. The interconnection between the instance and
database is defined by the system tables, tablespace, and
controlfile. Thanks to that, complete logical data abstraction
can be ensured [3], [12], [14].

The database instance is transient, holding data in the RAM
of the server, supervised and operated by the CPUs. Thus, by
shutting down the instance, particular data are removed. Vice
versa, database stores data indefinitely, therefore, background
processes must ensure proper management with no data loss.

ISSN 2305-7254

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Such a requirement is operated by the transaction logs, by
which the database can be recovered after the failure. Users
cannot directly access and manipulate the database itself,
individual requests are managed by the background processes
transferring relevant data blocks from the database into the
instance memory for the consecutive processing and result set
building.

The processes making the instance are present during the
whole lifecycle of the instance. They are mostly self-
administering. Memory can be divided into two categories —
System Global Area (SGA) and Program Global Area (PGA).
SGA is shared among the whole instance covering the data
changes, parse activity, etc. In contrast, PGA is private to the
session holding the current environment, parameters, or local

data [1], [7].

From the physical perspective, data files, online redo log
files, and controlfile defining the structure can be highlighted.

Data to be operated are physically located in the data files
covered by the tablespaces characterizing their properties,
approaches, etc. If any data tuple is to be processed by any
operation, it must be loaded into the SGA memory structure —
Buffer cache. The granularity of the transfer between the
instance and database is the block itself, which can contain
multiple data rows [6].

Fig. 1 shows the single-instance database architecture. As
you can see in the graphical form, the user is represented by
the user process connected to the server process on the server-
side supervised by the instance. Background processes operate
instance and database and manage data transfer. Therefore,
each data point must be transferred into the instance to become
available to the server process. Thanks to that, optimization
pointing to the data manipulation on the physical storage and
instance is acrucial part influencing the whole system
performance. The ideal solution is to locate all data in the
memory for direct access. Such requirement is, however,
mostly infeasible, due to the need for huge memory space, but
determined by the system architecture, as well [3], [12]. The
requirement of the relational transaction is the durability, thus
committed data can never be lost. The data stored in the
memory are only temporary and they would be lost after the
failure. Therefore, it would be necessary to design a recovery
system pattern, that is already partially in place, defined by the
transaction logs, but this mechanism is too time and
technically demanding, whereas it is necessary to build the
memory to the state before the failure [11], [14].

It is defined either by the data locating, as well as data
transfer. The aim is straightforward — to lower the size
demands - the amount of the transferred data encapsulated by
the optimization of the data structure. A useful robust data
tuple locator is the index structure.

111

An index is an optionally created database object associated
with the table used primarily to increase query performance.
The main purpose of the insed to simplify and accelerate the

INDEX

216

process of data location and retrieval. Besides, it can be used
to ensure integrity rules. It can be created either implicitly (by
the definition of the primary key, respectively unique
constraint) or as the result of the explicit user definition to
ensure scalability and performance, to create an environment
for better optimizer decisions in the performance manner.

X X server-side
client-side

[A 1

. -
- |

user process b server process B d

operated by
background
processes

session components

database

Fig. 1. Server-client, session

In individual database systems, various index structures and
access principles can be identified, based on the B-tree [5],
[12], Bitmap [12], [19] or Hash architecture [19], with various
enhancements — unique key, reverse key, compression,
function-based, virtuality, invisibility, etc [8].

B+tree is the default and significantly widespread relational
database index structure. It is created automatically for the
primary key or unique set of attributes. It consists of the
balanced tree delimited by the root node, internal nodes, and
leaf nodes with the pointers to the data in the database
themselves. ROWID locator is a 10-byte pseudo column
returning the address of the row — data object number (1-32
bits), data file, in which the row resides (33-44 bits), data
block (45-64 bits), and position of the row inside the block
(65-80). Such value provides the fastest and easiest way to
locate data directly by the starting position of the tuple. For the
non-clustered environment, ROWID specification is always
unique [8], [9].

The limitation of the ROWID value definition is precision
and correctness. There is just the one-direction pointer from
the index to the database, meaning, that if the data are later
relocated (resulting in changing ROWID values), references
would locate incorrect data blocks, where the required data are
not present. To ensure the reliability, if the whole object is
moved, all ROWID values are denoted as non-relevant and the
index is marked as invalid. In such a situation, the index
cannot be used at all, forcing the user to rebuild it manually.

Data tuple can, however, change its position in different
granularity, as well as creating a migrated row. Namely, if the
data row is shifted from one data block to another, index
structures are not notified, but from the original data block, a
new pointer to block holding particular data is added. The
complexity of the reallocation problem and migrated row
definition can be found in [9]. Notice, that the rebalancing
methods can significantly influence performance, whereas
non-relevant data blocks are loaded into the memory and
parsed [9].

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Database optimizer is an autonomous process, which is
responsible for detecting and selecting the best suitable
method for data access and loading. It evaluates the available
index set, as well as statistics collected for each table [3], [4].
Thanks to that, the relevant data access method can be
selected, based on the heuristical approaches with very correct
result outputs.

One of the main aspects influencing the methods to access
the data is just the selectivity [4]. Selectivity represents the
degree of uniqueness of the data values contained within an
index. Selectivity (S) of the index (I) is the number of distinct
values (d) contained in the data set, divided by the total
number of records (n):

S(H)=d/n

Selectivity value ranges from 0 to 1. With the rise of the
selectivity value, index usage is more and more preferred.

The limitation of the selectivity calculation and index usage
is just the NULL values, which cannot be compared to each
other, sorted or positioned with emphasis on real existing
values. Portability of the NULL into the index definition is
therefore strictly limited resulting in complete non-availability
in the Oracle database. Vice versa, in the MySQL database,
undefined values can be part of the index, if suitable model
architecture is used.

IV. CLUSTERING

Physical data modeling and representation play an
important role in dealing with index and global access.
MySQL database system provides multiple formats of the data
organization. Reflecting on the history and evolution,
MyISAM structure manages data in a non-sorted manner by
providing a pointer to the data in the index. Nowadays, this
architecture is mostly used for reading operation preference
and provides table-level locking. On the opposite side, the
InnoDB solution can be identified as offering ACID
transaction categories, multi-versioning, and complex
relational integrity support. In comparison with MyISAM,
InnoDB is characterized by the clustered index. Thus, each
table must contain a unique non-nullable primary key, records
are stored in data pages according to the order of this identifier
(clustering key). If the clustering key is not specified
explicitly, InnoDB creates its own internal. All other indexes
are categorized as secondary [10], [15].

Although the searching on the clustering (primary) key is
remarkably fast and performance effective, whereas the data
row itself is directly accessible without data lookup operation
necessity, there is a strict requirement about the data nullity.
No undefined value can be present by the definition.
Therefore, the user must remove undefined values, either by
removing the data row completely or by transferring NULL
into another valid data value. As the consequence, data
retrieval must be aware of such a definition to provide user
consistent and correct data result set. Unfortunately, most of
the transformation processes must be maintained by the
developer explicitly.

3.1 Execution plan dealing with NULLS

ORACLE

The importance of the undefined value management is
claimed in the following description. In DBS Oracle, NULL
values are not present in the index, at all. Reflecting the
execution, if the condition is based on the specified NOT
NULL value, the optimizer can select access using the index.
In the following case, there is the following condition:

where ID=12
OPERATION OBJECT_MAME OPTIONS CARDINALTTY COST
@ SELECT STATEMENT 1 7
& BH TaBLE AccESS EXEC_TAB BY INDEX ... 1 2
. =08 INDEX EXEC_IND RANGE SCAN 1 1
: 2 Access Predicates
. D=1z

Fig. 2. Execution plan — valid, NOT NULL condition
However, if the condition is based on the NULL, execution
is routed into the sequential block scanning — Table Access

Full:

where ID IS NULL

217

OPERATION
=} SELECT STATEMENT
& TABLE ACCESS
. &-O¥ Filter Predicates
1D I5 NULL

OBJECT_NAME OFTIONS CARDIMALITY COST

il 104

EXEC_TAB FULL 4 104

Fig. 3. Execution plan — the NULL condition

e MySQL - MyISAM

MyISAM database architecture of the MySQL database
system can hold undefined NULL values directly inside the
index (fig. 4), however, there is just table-level locking

shifting the solution just for reading lookups.

Query cost: 0.35

query_block #1

0.35 1 row

Non-Unigue Key Lookup

exec fab
exec_ind

Fig. 4. Execution plan in MyISAM environment

e MySQL - InnoDB
InnoDB architecture cannot deal with undefined values, at

all, just as the result of the function baed clustering index.

3.2 Automatic data transformation and management
Existing solutions dealing with undefined values inside the
index are based on the transformation, by mapping NULL
value into the specific value. It can be done either by the
trigger definition of the dependency model [10], mapper
functions [9], or function-based indexes [4]. The limitation of
the function-based index is only one-direction — from the
database to the output, thus it is necessary to adjust the query

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

to reference a particular transformation function, otherwise,
the whole table is scanned. Moreover, after the processing, the
transformed value has to be replaced by the original
representation to provide the same results. In [17], NULL
value estimation methods are proposed to deal with the
granularity for incomplete systems. Dependencies and
interconnection factors are discussed in [10]. Partially
undefined conditions caused by nullity management are
discussed in [13]. Velocity factors and scalability aspects are
delimited in [15].

The following script shows the principle of the function-based
index usage. Input data are transformed for the index usage,
however, on the physical level, NULL pointer with no size
demands is present. Attribute set (att set), which can hold
undefined value is transformed wusing the function
null_transform for the index processing. On the database level,
nullity is present.

Create index ind _name
on table name(null_transform(att_set));

The next script shows a similar solution based on the
trigger. In that case, it is evident, that there are additional size
demands, whereas physical transformation is present.
Moreover, the user always needs to reference the transformed
value, original NULL is not present at all. Thus, it can cause
problems with incorrect evaluation, if the user, respectively
developer is not aware of such transformation, which is done
automatically, but the reverse representation - from the
database to the user must be handled manually. Architecture is
in fig. 5.

Create or replace trigger trig_name
Before insert or update on table name
For each row
Begin
if att_set IS NULL
then att_set:=null_transform(att_set);

end if}
End;
m
trigger
output | transformer
D =

/
Fig. 5. Transformation modules
Mapper functions introduced in [9] offers a bi-directional
solution. Fig. 6 shows the architecture. In comparison with the
architecture introduced in fig. 5, the mapper is located between
the database and instance. Physically, the NULL value with no

transformation

module

218

size demands is present. During the loading of data into the
memory, transformation is done, reflecting the indexing, in
which the transformed function is present. On the server-side,
before producing results set into the client site, the
transformed value is replaced by the original NULL notation.
Thanks to that, a function-based index reflecting the
transformation can be wused, however, from the client
perspective, no data change is present. The limitation of the
mapper module is just the transformation value representation.
Users must select an appropriate value to ensure, that
particular value cannot occur in real data, otherwise the data
interpretation would be corrupted. From the performance
perspective, there are the additional costs caused by the bi-
directional mapping. Moreover, the size of the block in the
database and mapped into the memory is not the same. As the
consequence, the transformed block does not need to fit the
Buffer cache block grid resulting in the necessity to allocate
additional block in the memory, which must be, however,
similarly, merged during the database write process [9].
Principles of the mapping with emphasis on the
implementation particularity can be found in [9].

OUTPUT .
instance

V. OWN SOLUTION

Fig. 6. Mapper

Fig. 6 shows the architectural perspective of the mapper,
which is present either during the data loading from the
physical database into the memory buffer cache, as well as
during the result set composition. As already described,
additional size demands are necessary to be present in the
memory buffer cache, whereas NULL value is transformed to
the physical value, which is memory located. In this paper, we
have implemented the existing mapper solution and propose
the following enhancements:

MODEL 1 significantly limits the necessity for block
splitting. Each data block consists of the header and data
themselves in the standard environment. In this perspective,
the data part is divided into two groups, one small space is
used for the mapping. Thus, the total available size of the
block is lowered, on the other hand, there is no necessity to
use the block rebalancing, if the particular transformation does
not fit the original block. Based on the experiments, the block
capacity is lowered to 90% of the original size [9]. Model 1
represents the existing solution; the rest models are part of this
paper contribution.

MODEL 2 improves the technique dynamically by
analyzing the table structure, NULL references, and data
dictionary. Based on the current table statistics, the system

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

estimates the ratio for holding NULL value transformation
during the loading process to remove, respectively
significantly limit the necessity for block splitting by the
mapping.

MODEL 3 extends the database statistics by forcing
Manageability Monitor (MMON) background process to
ensure an up-to-date image of the number of nullity presence
for each attribute. Thus, if any data change is present, such
activity fires the MMON process to reevaluate the NULL
pointer reference counter. Thanks to that, the original B-+tree
index based on the attribute set can be immediately used, if the
counter is set to the zero value for the particular indexed set.
By the management, it is ensured, that no other data tuple can
be present in the system, but not indexed due to the NULL
representation. On the other hand, reflecting section 6, it is
evident, that such activity has additional demands on the Data
Manipulation Language (DML) operations — Insert, Update,
and Delete.

Proposed MODEL 4 reflects different optimization
techniques. Transformation of the NULL values is not based
on the physical change, just the logical perspective is used.
Thanks to that, it is not necessary to calculate and evaluate the
capacity of the block, whereas, during the transformation, the
size is not updated at all. Instead of direct data value
transformation, the only new pointer is used. The NULL
pointer object reference is stored in the instance memory
during the whole life cycle of the system (after the startup,
particular reference memory object is mounted automatically
by the Data Definition (DDL) trigger and released during the
instance closing). Thus, the size of the block remains the same,
during the transformation NULL value is pointed to the
memory object. Such reference is part of the index for the
consecutive processing and evaluation. The core proposed
solution is covered by MODEL 5.

In comparison with already described perspectives, this
implementation does not use the mapping at all. The NULL
definition is present either in the physical database, as well as
after the loading, which is straightforward, operated by the
direct loading without any additional formatting. Thanks to
that, the impact of the mapping module on the performance is
removed. However, how to ensure the reached performance?
The answer is based on extending the index approach by using
NULL elements, which are present there. Thanks to that,
statistics can remain using the original form defining just the
overview of the data structures and values resolution and
estimation. The database table index in model 5 extends the
B+ttree definition by using an external pattern physically
implemented by the nested structure holding NULL values. A
new node dealing with NULL values is present there. It can be
located either in the leftmost or rightmost part of the index.
The physical construction depends on the selection of the
parameter NULL position, which can hold NULLS FIRST or
NULLS_LAST values or even NONE. If NONE property is
selected, undefined values are not present in the index at all,
forcing the optimizer to select Table Access Full scanning.
The default value for the parameter NULL position depends
on on the ascending, or descending order of the values,
respectively:

219

Create index ind name
on table_name(att_set)
[NULL position= { NULLS FIRST,
NULLS LAST, NONE } J;

If a new undefined (NULL) value is to be indexed, a
particular node characterizing pointers to undefined values is
located in the first phase. As mentioned, it is implemented by
the nested table, thus in the second step, it is extended, the new
value is added to the last position:

Null_pointers.extend();
Null_pointers(null_pointers.last):=new_object;

As evident, NULL values are not sorted in any specific
order, just placed in the common nested table. Logically, the
newer data portion is placed on the right part of the nested
table, therefore wvalues are time delimited expressing
transaction flow. Thus, data are ordered in the date manner.

MODEL 6 extends Model 5 by using a position reflected
in the physical storage. Thanks to that, if the query consists of
the standard data tuple, as well as partially undefined values,
the database optimizer can locate blocks with multiple data
tuples present inside. Thus, if the optimization mode is to
provide any data portion as soon as possible, provided model
can benefit. Model 5 is optimized to get all data as soon as
possible. In contrast, the aim of the Model 6 is to provide at
least one data row almost immediately.

Models 5 and 6 are bi-directional by storing and evaluating
data as they were provided in the input with no transformation,
nor mapping necessity.

VL

Performance characteristics have been obtained by using
the Oracle 19c database system based on the relational
platform. For the evaluation, a table containing 10 attributes
originated from the sensors were used, delimited by the
composite primary key consisting of two attributes. The table
contained 1 million rows, 10% of them contained undefined
values. Two index structures were defined, one implicit
covered by the primary key, the second index extends the
primary key by covering attribute, which can hold NULL
value. The select statement was evaluated covering all
attribute values. The condition limited the amount of data to
10% of the whole data set. Data set management and structure
was introduced in [9].

RESULTS

The reference model for the evaluation and comparison was
MODEL 0 defined by the two B+tree indexes (primary key
and user-defined) with no undefined values special support.
Thus, in the results, this model reaches 100% of the processing
costs and size demands.

To evaluate the performance benefits, size demands, and
processing time of the Select statement is analyzed in this
paper. When dealing with the size of the whole structure,
Model 3 and Model 4 does not require any additional storage
capacity. In contrast to Model 1, where the smaller capacity of

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

the block is present due to the NULL value mapping into the
memory. The size of the data part of the block is lowered to
90%, the header remains the same. Size demands are 111,3%
in comparison with Model 0. Model 2 requires only 7.9% of
data storage extension, whereas the block capacity is
calculated dynamically. Proposed Models 5 and 6 use the
different strategies and store the NULL value pointers directly
in the index nodes. As shown, additional demands are 2,9%
for Model 5 and 2,8% for Model 6, respectively. Notice, that
by the nested table inside the additional NULL pointer node
optimization, the amount of 10% of NULL values requires just
2,9% of the storage extension. Fig. 7 shows the results of the
size demands analysis graphically.

Size [%]

11,3
107,49

l
100 I I 100 100
L] M1 M2 M3 M4

Fig. 7. Results - Size demands (%)

FR] WRE

M5

The second keystone reflecting the performance strategy is
delimited by the Select statement processing time. Based on
the defined environment and data set, fig. 8 shows the reached
results. Similarly, the reference is Model 0 with no support for
dealing with the NULL values, either physically, as well as in
the index structure. Thus, the index access method cannot be
used, at all, instead, TAF scanning is performed. In that case,
therefore, 100% of data blocks associated with the table must
be loaded into the memory for the consecutive parsing and
evaluation. Model 1 lowers the processing time to 34,8%, by
using mapping during the loading. Dynamic data block size in
Model 2 brings additional benefit, whereas the total amount of
the blocks is lowered. In comparison with Model 1, the
proposed Model 2 lowers the costs by 10,6%. Model 3 forces
the system to store up-to-date statistics reflecting the current
situation of the NULL attribute value amount. Thanks to that,
the processing time is lowered to 27,5% with regards to Model
0. Comparing the results with Model 2, it brings a 10,6%
benefit. Similarly to Model 3, defined Model 4 does not need
the physical storage extension, at all. Just the pointer to the
specific memory object initialized during the instance startup
is present. Thanks to that, undefined values can be located
through this element. Although it is not part of the index and
stored physically, the processing time of the Model 4 requires
only 25,4% in comparison with Model 0. Vice versa, dealing
with the Model 3, memory pointer mapping lowers the
processing time by 7,6%.

220

Select - processing time [%)]

120
100

&0

40
20,

M5

17,9

Mo

25,4
ﬂ I

M4

100
34,8 .

I I . ”

0 I I

MO M1 M2 M3

Fig. 8. Results — Select statement processing time (%)

Models 5 and 6 locate NULL value positions directly in the
index, thus there is no transformation necessity, however, the
size of the index has to be increased by adding a new node,
either in the leftmost or rightmost part of the index, based on
the definition. Thanks to that, if the clustered key for the
NULL value specification is time element expressed by the
transaction (Model 5), the processing time is lowered to the
20,4%. ROWID value as the key used in Model 6 expresses
just 17,9% of the processing time. The main benefit, in
comparison with Model 5 is based on the ability to directly
access a record on physical storage. If there are multiple
records in a particular block, the benefit can be even greater,
because the block will be processed and parsed completely,
but only once, thus the amount of the data transported by the
block granularity from the database to the instance memory
via the I/ O interface is significantly lowered.

VIL

Nowadays, it is evident, that the number of data is
significantly rising over time. With the growth, another aspect
dealing with the performance of the system should be
highlighted. Data are produced from various sources with
various quality, reliability, and availability. Many times,
undefined values caused by the delay, connection outage, or
improper communication channel throughputs are present.
These values and states cannot be ignored and should be
stored in a specific manner.

CONCLUSIONS

Index structures are mostly based on the B+tree and
provide a relevant solution for data access. In many database
systems, however, NULL values are not present in the index.
A typical example is formed by the most complex system
Oracle. To ensure performance and robustness, particular non-
reliable or undefined values marked by the NULL symbol
must be either transformed to another value available for the
indexing or the principle of the index must be changed to
provide space for the NULL inside it.

In this paper, several architectures and models are
introduced and performance is analyzed. They can be divided
into two categories based on the implementation. The first

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

category deals with the physical transformation. A NULL
value can be notified either during the loading process, in that
case, it is triggered or the physical transformation can be done
during the loading from the database into the memory buffer
cache or vice versa. Such solutions are robust and offer
significant performance benefits, however, there is still an
option to improve the performance. Therefore, the second
category was introduced, which is based on the index storage
extension by the node holding NULL values in the nested
table. Based on the experiments and reached results, in
comparison with the first category, the performance of the data
retrieval can be improved up to 50%, just with only minimal
additional costs at the database storage level (up to 3%).

Research on the undefined value management forms an
important role to ensure the performance of the database
system. In the future environment, the nested table module
dealing with pointers to the non-valid data portion would be
experimented, based on either clustering key structure and
significance. Moreover, we would like to revalidate NULL
with the temporal evolution monitoring changes, to predict the
consistent value to estimate undefinition.

ACKNOWLEDGMENT

This publication was realized with the support of the
Operational Programme Integrated Infrastructure in frame of
the project: Intelligent systems for UAV real-time operation
and data processing, code ITMS2014+: 313011V422 and co-
financed by the European Regional Development Found.

REFERENCES

[1] Abdalla, H. I.: A synchronized design technique for efficient data
distribution, Computers in Human Behavior, Volume 30, 2014, pp.
427-435

Behounek, L., Novak, V.: Towards Fuzzy Patrial Logic. In 2015

IEEE Internal Symposium on Multiple-Valued Logic, 2015.

(2]
[3] Bryla, B.: Oracle Database 12¢ The Complete Reference, Oracle
Press, 2013, ISBN — 978-0071801751

Burleson, D. K.: Oracle High-Performance SQL Tuning, Oracle Press,
2001, ISBN - 9780072190588

Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational
database schema evolution: An industrial case study, IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2018, Spain, 2018, pp. 635-644

(5]

221

(]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Eisa, 1., Salem, R., Abdelkader, H.: A fragmentation algorithm for
storage management in cloud database environment, Proceedings of
ICCES 2017 12th International Conference on Computer Engineering
and Systems, Egypt, 2018

Ivanova, E., Sokolinsky, L. B.: Join decomposition based on
fragmented column indices, Lobachevskii Journal of Mathematics,
Volume 37, Issue 3, 2016

Kvet, M., Matiasko, K.: Concept of dynamic index management in
temporal approach using intelligent transport systems. In: Recent
advances in information systems and technologies: Volume I. -
Cham: Springer, 2017. - ISBN 978-3-319-56534-7. - S. 549-560.-
(Advances in intelligent systems and computing, Vol. 569. - ISSN
2194-5357).

Kvet, M.: Managing, locating and evaluating undefined values in
relational databases. 2020

Lien, Y.: Multivalued Dependencies With Null Values In Relational
Data Bases. In Fifth International Conference on Very Large Data
Base, 1979.

Mirza, G.: Null Value Conflict: Formal Definition and Resolution,
13th International Conference on Frontiers of Information
Technology (FIT), 2015.

Moreira, J., Duarte, J., Dias, P.: Modeling and representing real-
world spatio-temporal data in databases, Leibniz International
Proceedings in Informatics, LIPIcs, Volume 142, 2019

Shiryaev, V., Klepach, D., Romanova, A.: Implementation of the
Algorithm for Estimating the State Vector of a Dynamic System in
Undefined Conditions. In 27" Saint Peterburg International
Conference on Integrated Navigation Systems, 2020.

Smolinski, M.: Impact of storage space configuration on transaction
processing performance for relational database in PostgreSQL, 14th
International Conference on Beyond Databases, Architectures and
Structures, BDAS, 2018

Ochs, A. R., et al.: Databases to Efficiently Manage Medium Sized,
Low Velocity, Multidimensional Data in Tissue Engineering, Journal
of visualized experiments JOVE, Issue 153, 2019

Steingartner, W., Eged, J., Radakovic, D., Novitzka, V.: Some
innovations of teaching the course on Data structures and algorithms.
In 15th International Scientific Conference on Informatics, 2019.

Xia, Z., Hanyan, Y, Mingzhu, X.: Null Value Estimation Method
Based on Information Granularity for Incomplete Information System.
In Third International Symposium on Intelligent Information
Technology Application, 2009.

Qi, C.: Research on null-value estimation algorithm based on
predicted value. In IEEE 5th International Conference on Software
Engineering and Service Science, 2014.

Vinayakumar, R. Soman, K., Menon, P.: DB-Learn: Studying
Relational Algebra Concepts by Snapping Blocks, International
Conference on Computing, Communication and Networking
Technologies, ICCCNT 2018, India, 2018

