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Abstract—Cooperative robots became a very important re-
search topic due to their capability to accomplish tasks fast and
more efficiently. In order for cooperative robots to accomplish
their tasks, they need to be able to plan their paths in the
environment without any collision. Path planning for cooperative
robots with deep reinforcement learning is a new research
topic in robotics and artificial intelligence. Path planning via
deep reinforcement learning is an end to end method. The
robot directly receives the data from the sensor (usually high
dimensional images) and generates an optimal policy that plans a
safe path to the target. In this paper, we first present an overview
of reinforcement learning, deep learning, and deep reinforcement
learning. Then, we introduce methods used for path planning.
Finally, we discuss the challenges of deep reinforcement learning
path planning for cooperative robots.

I. INTRODUCTION

Cooperative Robots (CR) refer to a group of homogeneous

or heterogeneous software or hardware entities that

communicate with each other to solve a specific task.

CR became an important research area due to their ability to

solve complex tasks more efficiently as compared to a single

robot.

To solve the task by CR, the following steps have to be

performed [1]:

• Task decomposition: dividing the task into sub-tasks.

• Coalition formation: dividing the robots into different

teams .

• Task allocation: assigning a sub-task to each team.

• Control and planning: planning the optimal actions to

achieve the task and controlling the robots to guarantee

doing these actions.

One of the main challenges in CR is navigation since it is

a key and a precondition for advanced behaviors. Navigation

can be divided into four main sub-problems [2]:

• perception

• localization

• cognition

• path planning

The problem of perception (modelling the environment)

and localization has been ongoing for over two decades. The

wide used approach is simultaneous localization and mapping

(SLAM) algorithms [3]. Many SLAM algorithms have been

proposed for cooperative robots depending on the type of the

communication between the robots [4], [5].

The problem of multi robot path planning is well studied

using classical ways. Some researchers use graph-search

algorithms like A* to find the path for each robot individually

and re-plan paths of each robot when a conflict occurs.

[6]–[8]. Other research approaches are mainly divided into

two categories: (1) centralized methods: state spaces of all

robots are combined into one space, and then graph search

algorithms are used to find the path [9], [10]; (2) decentralized

methods: robots share information about their locations and

each robot plans its path to the goal taking into consideration

the locations of other robots [11], [12].

Deep Reinforcement Learning (DRL) has been widely

discussed in the literature [13], [14]. Many surveys on

cooperative robots have been published [15], [16], and some

surveys cover a wide range of methods for navigation for

multiple robots [17], [18]. Although these surveys usually

cover the basic elements of navigation, they are general and

not focused on the deep reinforcement learning methods for

path planning. In addition, new research approaches have

emerged. Therefore, A survey on path planning algorithms

based on DRL for cooperative robots would be actual and

demanded.

In this survey, we focus on the deep reinforcement learning

algorithms used to solve the problem of path planning for

cooperative mobile robots. The paper seeks to answer the

following research questions:

• RQ1: Which existing approaches exist in the area of

path planning in CR, what are their advantages and

limitations?

• RQ2: What challenges there exist in CR path planning?

The contribution of the paper is in providing a critical

state-of-the-art review in the area of CR path planning

and outlining actual for the moment problems that require
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attention from the scientific community.

This rest of the paper is organized as follows. In section II

we first review the principles of the Reinforcement Learning

(RL) with the main algorithms: value-based methods, policy-

based methods and actor-critic methods, then we briefly review

the Deep Learning (DL) and finally the DRL methods. In

section III we answer the first research question and introduce

the DRL methods for path planning. In section IV we answer

the second research question and present the main challenges

existing in DRL. Finally, the conclusion is presented.

II. BACKGROUND

A. Reinforcement Learning

RL is the technique to learn by trial and error. The learner

learn by interacting with the environment over a number of

steps. At each step, the learner gets the state of the envi-

ronment and applies an action based on its current behavior

(policy). Then it receives the next state and a reward which

evaluates the applied action. The learner’s goal is to modify

its policy in order to maximize the accumulated rewards. The

reinforcement learning can be formulated as a Markov Deci-

sion Process (MDP) if the observation about the environment

satisfies the Markov property Eq.1 [19]

P (st+1|st, st−1, st−2....s0) = P (st+1|st) (1)

where st is the state at time step t, which mean that the

environment response in the future depends only on the

current state and there is no need to store the past states once

the current state is known.

The MDP can be represented as follows Eq.2

(S,A,R, ρ, γ) (2)

where S is the state space (st ∈ S), A is the action space

(at ∈ A), R is the reward space(rt ∈ R), ρ is the state

transition matrix (ρss′ = P [st+1 = s′|st = s]), and γ is the

discounted factor, which emphasizes on the importance of the

intermediate reward over the future rewards. In RL, there are

two main important concepts:

• The state value function: measures how good for the

learner to be in a state, described in Eq.3

Vπ(s) =
∑
a∈A

π(a|s)[r(s, a) + γ
∑
s′∈S

ρ(s′|s, a)Vπ(s
′)]

(3)

• The action value function: measures how good for the

learner to take a specific action, described in Eq.4

Qπ(s, a) = r(s, a)+γ
∑
s′∈S

ρ(s′|s, a)
∑
a∈A

π(a|s′)Qπ(s
′, a)

(4)

1) Value-based methods: Value-based methods depend on

estimating the value of being in a given state. The optimal

policy has the maximum value function Eq.5 and vice-versa.

V ∗(s) = max
π

Vπ(s) ∀s ∈ S (5)

Two main value-based methods are value-iteration and

Q-learning. Value iteration is used when the state transition is

known while the Q-learning is used when this information is

absence, in other words, the Q-learning used when the robot

doesn’t know the model of the environment.

The value-iteration tries to maximize the overall value

function Eq.6

Vk+1(s) = max
a∈A

[r(s, a) + γ
∑
s′∈S

ρ(s′|s, a)Vk(s
′)] (6)

The Q-learning algorithm updates the action value through

Bellman equation Eq.7:

Qk+1(s, a) = Qk(s, a) + α[rk + γmax
a

Qk(s
′, a)−Qk(s, a)]

(7)

where α is the learning rate.

2) Policy-based methods: The policy-based method doesn’t

evaluate the value-function, but instead it directly searches for

the optimal policy. The most used approach of policy-based

methods is RENFORCE (Monte Carlo policy gradient). The

policy is modelled with a function respect to θ (πθ(a|s)). The

idea can be summarized as optimizing θ which maximizes

the total return. The algorithm first initializes the parameter

θ arbitrary, then generates a trajectory following the policy

πtheta (S1, A1, R1, ....ST ), then it estimates the return Gt and

updates the policy parameter using gradient ascent (Eq.8) for

t = 1, 2, .., T .

θ = θ + ∇θα γt Gt ln(πθ(At|st)) (8)

3) Actor-critic methods: Actor-critic (AC) are hybrid meth-

ods, they learn the policy and the value function. The algorithm

is composed of two models, that may share parameters:

• Critic: updates the value function parameters (it could be

state-value function or action-value function)

• Actor: updates the policy parameters

The method depends on Temporal Difference (TD): it

calculates the TD error of the action-value and uses it to

update the action-value parameters. Fig. 1 shows the AC.
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Fig. 1: Actor-Criric reinforcement learning agent

Instead of discounted reward, the AC methods use the

advantage Eq. 9.

A = Q(s, a)− V (s) (9)

The idea of using advantage estimates rather than just dis-

counted returns is to allow the agent to determine not just

how good its actions were, but how much better they turned

out to be than expected. This allows the algorithm to focus on

where the network’s predictions were lacking.

B. Deep learning
Deep learning is a field of machine learning that uses

neural networks with several hidden layers to extract useful

patterns from data. Deep learning showed impressive progress

in many tasks like face recognition, image classification,

and speech recognition. The most important models in Deep

learning are Convolutional Neural Network (CNN), Recurrent

Neural Network (RNN), and generative models

• CNNs are known to perform very well in several areas

related to Computer Vision and Image Processing like

Image Classification and Segmentation, Object Detection,

and Video Processing. They use an advantage of applying

image related features called ”convolutions”, which can

automatically learn from data. Researches showed that

the performance of CNN improved by increasing the

networks’ width and depth. Since increasing the depth

can lead to exploding or vanishing gradients, He et. al.

[20] proposed a residual learning framework that solved

the degradation problem.

• RNNs are powerful in modelling sequences of data,

such as natural language and time series. Their main

advantages are:

– RNNs can process the input of any length,

– the size of the input doesn’t affect the model size.

– Computations take the historical information into

account.

– The weights are shared across time.

Although RNN is a very useful tool, it has major draw-

backs include:

– slow computations,

– difficulty to reach information from the remote past,

– inability to use future input for the current state

evaluation.

• Generative models are aimed to generate new samples

that have similar distribution to the training data. Good-

fellow et. al. [21] proposed Generative Adversarial Net-

work (GAN), which was composed of two main parts:

a generator G and a discriminator D. The generator

generates a new sample close to the real one while the

discriminator estimates the probability that the sample

comes from the input data. The training procedure for

G aims to maximize the probability of D making an

incorrect discrimination.

C. Deep reinforcement learning methods

1) Deep Q-network (DQN): The Deep Q-network is a TD

method, which uses neural networks to estimate the action

value function (Eq.4). DQN replaces the Q-table in the RL

Q-learning method by a deep network Fig. 2.

Fig. 2: The difference between Q-learning and DQN [22]

DQN reduces the correlation between the observation by

using dataset D = e1, e2, ...eT contains the robots experience

et = (st, at, rt, st+1), t ∈ [1, T ]. At each iteration i , the

learning update uses a TD-based loss function (Eq. 10).

Li(θi) = E(s,a,r,s′)∼D[(r+γmax
a′

Q(s′, a′, θ−i )−Q(s, a, θi))
2]

(10)

where θ−i ,θi are the parameters for the target network and

the Q-network respectively at iteration i. A major drawback

of DQN is that it can only handle low-dimensional discrete

action spaces.

2) Double DQN (DDQN): [23] uses two neural networks

(DQN and target network) to learn and predict the action the

agent needs to take at each time step. The DQN selects the

best action with the maximum Q-value of the next state Eq.

11

asel = max
a

Qq(st+1, a) (11)

The target network calculates the estimated Q-value of the

action selected by the DQN Eq.12.

qest = Qt(st+1, asel) (12)
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where Qt and Qq are the Q-value for the target network and

the DQN respectively. The Q-value of the DQN is updated

based on the estimated Q-value from the target network Eq.13.

Qq(st, a) = Rt+1 +Qt(st+1, asel) (13)

The update of the parameters of the target network is based

on the parameters of the DQN for several parameters, and

the update of the DQN is based on the Adam optimizer.

3) Deep Deterministic Policy Gradien (DDPG): DDPG

combines the DQN and the actor-critic approaches to learn

the policy. DDPG contains four neural networks: current actor

networks, target actor currents, current critic networks, and

target critic network. The goal of the DDPG is to maintain the

actor function which maps the state to action, and to learn the

critic function that estimates the value of state-action pairs.The

actor is updated as follows (Eq.14):

∇θμJ ≈ E(St|ρπ)[∇aQ(st, μ(st)|θQ) ∇θμμ(st|θμ) ] (14)

where ρπ are the transitions generated by a stochastic policy

π, μ(st|θμ) is the actor function, and Q(s, a) is the critic

function.

4) Trust Region Policy Optimization (TRPO): TRPO is a

policy gradient method, which allows control of the expected

improvement of policy during the optimization step. The goal

of TRPO is to solve the constrained optimization problem (Eq.

15) by optimizing the stochastic policy at each iteration k.

max
θ

Es∼ρθk
,a∼πθk

[
πθ(a|s)
πθk(a|s)

Aθk(s, a)]

S.T Es∼ρθk
[DKL(πθk(.|s)||πθ(.|s))] ≤ ΔKL

(15)

whereρθk is the discounted frequencies of visiting states

reduced by the policy πθ, Aθk(s, a) is the difference between

the empirical returns and the baseline, DKL is the KL

divergence between two policy distributions, and ΔKL a

parameter control of the maximum improvement of policy

during the optimization step.

5) Asynchronous Advantage Actor-Critic (A3C): A3C

works well in parallel training, it uses the actor-critic frame-

work . In A3C, critics learn the value function while multiple

actors are trained and get synced with global parameters. The

A3C algorithm is illustrated in Algorithm 1.

III. DRL FOR CR PATH PLANNING

In this section we introduce the main learning schemes for

RL multi-robots and we answer the first research question

(RQ1) by introducing the main DRL approaches used for CR

path planning, its advantages, and limitations.

In general, there are three training schemes for RL that are

applied for CR.

• Centralized: The centralized approach assumes a specific

model for the actions and observations. In other words,

Algorithm 1 A3C algorithm

0: Define global parameters θ, w and similar thread-specific

parameters θ′, w’.
0: Initialize the time step t

0: While T ≤ TMax :

Reset gradients (dθ = 0, dw = 0 )

Synchronize global parameters (θ′ = θ, w′ = w)

Sample a starting statest , Tstart = t
While st �= Terminal and t− tstart ≤ tMax :

perform action At ∼ πθ′(At|st), recieve reward rt
Update t = t+ 1, T = T + 1

Initialize the return estimation:

R = Vw′(st) if st �= Terminal
R = 0 otherwise

For i = t− 1, ..tstart:
R = R+ γRi

dθ = dθ +∇θ′ log(πθ′(ai|si))(R− Vw′(si))
dw = dw + 2(R− Vw′(si)∇w′(R− Vw′(si))

Asynchronously update θ and w

it uses a centralized policy to map the observations of all

robots to actions. This is equivalent to Multi-agent Par-

tially Observable Markov Decision Process (MPOMDP)

policy. The main problem with this approach is that it

is centralized in training and execution, and that causes

exponential growth in the observations and actions spaces

with the number of robots. This problem is partially

solved by factorization of the actor space of the central-

ized CR.

• Decentralized: In this approach, each agent learn its own

policy that maps its own observations to actions. There

are two major downsides of this approach: (1) it adds

additional computational complexity for the RL task,

since the robots don’t share knowledge and each robot

learns its own policy; (2) for experience-based DRL,

changing and adjusting the policies can make the stored

experience quickly outdated, since it makes the dynamic

of the environment non-stationary.

• Shared parameters: If the CR are homogeneous, it is

more efficient when the robots share parameters of single

policy. This approach allows the policy to be trained using

the experience of all the robots simultaneously, but allows

different behaviours among the robots. In other words, the

planning is decentralized but the learning is not.

Here we address the main paper and milestone in the field

of path planning for CR.

Cruz et al. [24] proposed a method that combines the

DRL with the kernel smoothing to solve the path planning

algorithm in unknown environments. The kernel smoothing

uses the discrete action space without any prior knowledge

to approximate the state of the multi-agents, and that reduces

the number of states in the Q-table. The main drawback of

this algorithm is that the efficiency of the method decreases
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as the number of agents increases.

Panov et al. [25] suggested a deep neural implementation

of Q-network for path planning on square grids. To force the

robots to reach the goal with the shortest path, the reward

function is designed as follows (Eq. 16):

G(s, g, t) =

⎧⎨
⎩

αoptr
opt
t + αratr

rat
t + αeuqr

euq
t , pt → 1

robs, pt → 0
rtar, pt = g

(16)

where
∑

αi = 1, pt is the current position , g is the

goal position, roptt = lt − lt−1 is the change of optimal

distance l to the goal in view of obstacles, rratt = e−lt/l0

gives bigger rewards for cells that are close to the goal,

reuqt = |pt − g| − |pt−1 − g| force the robot to go directly to

the goal. If the robot current location is an obstacle (pt → 0),

it receives punishment robs. If it reaches the goal it receives

a big reward rtar. The neural network used to estimate the

Q-value consists of 3 convolution layers (3 × 3 filter size and

1 stride) with sigmoid and ReLU activation function , dropout

,5 full connected network accepting flatten output from

convolution layers. The paper proved that A*-like algorithms

are not suitable for path planning in complex scenes when

there are more than one target point and it is better to use

robust learning like the proposed DQN in such cases.

Lei et al. [26] used Double DQN for robots local path

planning in a high-dimensional space. The reward function

is designed to be 1 if the robot reaches the goal, -1 if it hits

an obstacle and -0.1 otherwise. In this case, the problem of

sparse reward is solved. The Q-network architecture consists

of 3 convolution layers (the kernel size of the first and second

layer is 2x2 with a stride of 2 and for the third layer is 5x5

with a stride of 1) and one fully connected layer.Also, the

state space of the sample pool expanded by inputting lattice

information and target coordinates in order to solve the path

planning algorithm .

Sui et al. [27] used parallel DQN for multi-agent path

planning. The double dueling DQN handled the training and

the testing for the multi-agents. The algorithm used for leader-

follower multi-robots like the case when the robots need to

follow the leader to a specific location to accomplish a certain

task. The reward function is designed as in Eq.17.

rt = rreach + rcollision + rformation (17)

where rt is immediate reward at time t, rreach is the reward to

get when reaching the goal(affect only the leader), rcollision
negative reward if leader or follower hit an obstacle, an

rformation is a reward to keep the follower robot and the

leader robot within a distance range to each other. The sub-

rewards are given as follows:

rcollision = (rL−avoid, rF−avoid)

rL−avoid = rF−avoid =

{ −1 if collision happens
0 no collision

rformation =

{
(1, 1) if formation remaining
(−1,−1) if formation broken

Two networks are used to control the leader and the follower.

Each on has the structure of three convolution layers. The

output of third layer is input to two streams of fully connected

layers (one estimates of the value, the other estimate the

advantage function)s of the four actions. Finally the two

streams are combined to generate the Q-value function.

Zheng et al. [28] proposed a hierarchical path planning

for multi-robots. The design consists of two parts, the upper

uses Deep Deterministic Policy Gradient (DDPG) algorithm

to achieve global path planning. While lower layer uses the

reciprocal velocity obstacles algorithm to achieve collision

avoidance. The paper proposes a framework of congestion

detection based RL. In this framework, a multi-agent system

model is considered for the leader grouping. Each leader find

the path for its followers.

Bae et al. [29] proposed multi-robot path planning

algorithm using Deep Q-learning combined with Convolution

Neural Network (CNN) algorithm. The proposed algorithms

uses empirical representation technique. Each agent takes an

image of the environment, the transmission layer transfers the

image information to the CNN (16 convolution and 3 fully

connected layers) taking into account the image area and

maintaining the relationship between objects on the screen.

The CNN uses the image information to extract the features

on the image-level (without the need to treat each pixel

independently). The Q value is learned for each robot, while

the CNN has the same input with a different expected value.

The algorithm used A* time to find the path as parameter to

measure the learning success (the algorithm is considered to

be successful if it reaches the goal in time shorter than A*).

An advantage of this algorithm is that it can be applied on

static and dynamic environments, but the training is slow and

it gives errors at the beginning of the learning.

Xue et al. [30] proposed an algorithm for avoiding collision

using a deep reinforcement learning method based on Double

DQN. The input of the algorithm is information including the

robots’ positions, the target position, and the obstacle size.The

output is the robots’ directions of movement. The reward

function is designed as follows (Eq. 18):

R(sc, a) = k(dgt−1 − dgt) +Robs − c timer +Rgoal (18)

where dg is the distance between the robot and the goal at time

t, Robs the collision penalty, timer: the time since the robot

starts (this to shorten the time needed to reach the target), and

Rgoal is the reward to reach the goal. The collision penalty

and the goal reward are as follows:

Robs =

{ −500 d < dmin
0 else
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Rgoal =

{
5 ifreachthegoal
0 else

where d and dmin are the current distance and the minimum

safe distance between the robot and the obstacle respectively.

Experiments show that the proposed method can navigate the

mobile robots to the desired target position without colliding

with any obstacle and other moving robots. The method was

successfully implemented on a physical robot platform.

Lin et al. [31] proposed a DRL method to derive decentral-

ized policy for a team of robots. The learned policy directly

maps the raw laser data into a velocity command, which allow

the robots to cooperatively plan their motion to accomplish

the navigation task (reaching target positions and avoiding

obstacles) based on each robot’s observations. The reward

function is designed as follows (Eq.19):

R(st, at) = rc + ωgRg(st, at) + ωcRc(st, at)

+ ωfRf (st, at) + ωpRp(st, at)
(19)

Where rc is a negative constant to motivate robots to reach

the goal, and Rg(st, at), Rc(st, at), Rf (st, at), Rp(st, at)
are the rewards for reaching the goal position, avoiding

collisions, maintaining connectivity, and achieving smooth

motion of the robots, respectively. The proposed algorithm

used a mechanism of centralized learning and decentralized

execution. Through the learning, the robot interacts with the

environment and evolve team policy in trial and error manner.

In the execution stage, each robot takes its action depends on

its own observation.

Semnani et al. [32] proposed a hybrid algorithm of DRL

(GPU based A3C) and Force-based motion planning to

solve distributed motion planning problem in dense and

dynamic environments. The proposed approach improved the

performance of DRL by introducing a new reward function

that doesn’t only eliminate the requirements of pre-supervised

learning but also decreases the probability of collisions in

crowded environments.

Wang et al. [33] proposed a DRL-based multi-robot

cooperative algorithm to solve multi-robot coordination

problem. The algorithm solved the problem of source

competitions and obstacle avoidance. The input of the

algorithm is the image generated by each robot’s perspective,

and each robot’s reward. The algorithm used a neural network

structure modified from the Duel neural network structure

[34]. The Duel network structure uses two streams that

represent the state value function and the state-dependent

action advantage function, then merge the results of the

two streams. The proposed method can solve the resource

competition problem on the one hand and can solve the

static and dynamic obstacle avoidance problems between

multi-robot in real time on the other hand. The proposed

algorithm shows higher accuracy and robustness as compared

with DQN and DDQN.

Damani et al. [35] introduced a distributed reinforcement

learning framework for long-life multi-agent path planning.

In this framework, agents learn fully decentralized policies to

plan paths online in a partially observable world, based on

local information.The reward function is simply -0.3 at each

time step except for the goal which is +5 and for collision

-2 .This motivate agents to reach their goals quickly. The

researchers focused on achieving implicit agent coordination

by helping agents learn ideal behaviour through conventions.

Table I summarizes the main DRL approaches used in path

planning for CR, with the advantages and limitations of each

approach answering RQ1.

IV. MAIN CHALLENGES IN DRL FOR CR

This section presents the existing challenges in using DRL

for CR path planning thus answering RQ2. The challenges

mainly came from the complexity of the environment which

produce two main challenges: lack of generalization and slow

learning.

• Lack of generalization: The DRL methods for cooperative

robots use neural networks (mainly CNNs followed by

fully connected layer) to prepossess the sensor data,

extract the features and output the probability distribution

over the action. This methods produce very good results

on the trained environment, but they lack the generaliza-

tion. By generalization we mean the main two types:

– Generalization from one environment to another.

– Generalization from a simulation environment to a

real environment.

To solve the generalization problem researchers suggested

to save data from previous experiments to enhance the

robots’ reasoning [36].

• Slow learning (long training time): This problem came

from two reasons:

– The inputs of the path planning algorithms are the

sensory data (mainly images). This data increases

dramatically when the environment is complex (the

more complex the environment, the higher the num-

ber of interactions with the environment the robot

should achieve).

– The reward is sparse (the robots only get the reward

when they reach the goal)

To solve this problem, researchers suggested to use hier-

archy policy (divide the path-planning problem into sub-

problems, find the best policy to solve each sub-problem

then combine these policies into general policy) [37]–

[39]. Another important solution and a very hot topic in

research is the meta-learning principle. For CR path plan-

ning [40] meta learning approach uses a small amount

of data which does not only enhance the performance

of the DRL algorithm by reducing the training time but

also makes the algorithm more applicable on different

environment.
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TABLE I. DRL MAIN APPROACHES FOR CR PATH PLANNING

References Main features Advantages Limitations
[24] Q-learning with neural network and

smooth kernel estimation.
Not strongly affected by sensor fluctua-
tions.

The efficiency of the method decreases as
the number of agents increases.

[25] DQN (the neural network for estimation of
the Q-value consisting of 3 convolutional
layers and 5 fully connected layers).

Efficient when the representation of the
environment map is a grid and the map
is small.

1. Overestimation of the action value
(robots need to estimate Q-value first then
update it in unknown environments; the
convergence to optimal policy isn’t guar-
anteed for noisy input data).
2. Grid-based representation of the envi-
ronment is required

[26] [30] Double DQN. The architecture of the Q-
network and the target network is CNN (3
convolutional layers and 1 fully connected
layer).

1. Reduces the overestimations.
2. Capable to perform data acquisition
and network training in parallel, which
improves the training efficiency of the
network.

1. Lacks generalization.
2. Discrete number of actions.

[27] Double dueling DQN. Two separate net-
works for the leader and the follower with
the same structure (3 convolutional layer
and 2 steams of fully connected layers to
estimate the value and advantage function,
that combined together to estimate the Q-
value function).

1. Reduces the overestimations more effi-
ciently than Double DQN.
2. Good generalization for new and
rapidly changing environments.

The reward function is designed specifi-
cally for the leader-follower type of robots
and for 1 leader 1 follower robots, so the
algorithm fails when robots have to take
different paths or when there is more than
one follower.

[28] Hierarchical path planning method. Deep
Deterministic Policy Gradient (DDPG) for
global path planning, and reciprocal veloc-
ity obstacles algorithm for collision avoid-
ance.

1. Efficient in complex environment.
2. Can be used for more than one leader
and more than one follower robots.
3. Can be applied to both simulated and
real environments.

The approach is limited to the leader-
follower type of robots.

[29] DQN. The neural network consists of 16
convolutional and 3 fully connected lay-
ers.

Memory requirements for storing opera-
tions and values obtained by using A*
algorithm for learning are small.

Ideal movements without taking into con-
sideration the dynamic of the robots are
considered, so it is not applicable to real
world tasks.

[31] Centralized learning and decentralized ex-
ecution

1. Effective and applicable to real world
tasks.
2. Does not require building an obstacle
map of the environment.

1. Long training time.
2. Validated only on a small number of
agents.

[32] Hybrid algorithm of DRL (GPU based
A3C) and Force-based motion planning.

1. High performance of path planning in
terms of percentage of successful scenar-
ios and time.
2. Applicable to 2D and 3D simulation
environments.

1. The algorithm doe not generalize
(works only in simulated environments).
2. Discrete outputs (number of actions)
are generated what makes the agent move-
ments inflexible.

[33] Dueling network-based deep reinforce-
ment learning.

1. Higher accuracy as compared to DQN
and DDQN.
2. Effective and robust solution for CR
path planning.

1. Only applicable to 2D planes, the train-
ing time significantly increases in complex
3D spaces.
2. Lacks generalization.

[35] Combination of distributed reinforcement
learning and imitation (learning while
watching other experiments) with im-
provements in the training code (Ray-
based training code).

1. The algorithm is suitable for large num-
ber of robots.
2. The planning is done online.
3. The training time is less than of the
other approaches.

There is no connection between the robots
(each robot plans its path depending on its
local observation), so the robots don’t use
the advantages of multi-robot systems.

V. CONCLUSION

Path planning is a fundamental technology for robots,

artificial games and unmanned vehicles. Path planning

methods based on deep reinforcement learning has drawn

a lot of attention from researchers over the last decade.

The main contribution of this paper is providing a critical

state-of-the-art review of DRL path planning approaches for

cooperative robots. We answered two research questions,

namely (i) analyzed existing approaches in the area and

identified their advantages and limitations in CR path

planning, and (ii) identified and discussed challenges that are

still existing in cooperative robots DRL path planning.

We hope that this paper will benefit researchers in the field

of navigation and path planning.
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