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Abstract—Nowadays machines have become extremely smart,
there are a lot of existing services that seemed to be unexpectable
and futuristic decades or even a few years ago. However, artificial
intelligence is still far from human intelligence, machines do not
have feelings, consciousness, and intuition. How can we help
machines to learn about human feelings and understand their
needs better? People take their devices wherever they go, what
can devices tell us about their owners? Personal preferences and
needs are dependent on emotional and situational contexts.
Therefore, emotional and activity aware gadgets would be more
intuitive and provide more appropriate information to users.
Contemporary wearable devices involve wide-ranging sensors. In
this paper, I am going to present emotion and activity recognition
approaches. The experimental recognition system elaborated
during this research, enriched with sensor data collection and
machine learning algorithms. It is targeted to guess how users are
doing and what they are feeling. Such recognition systems can
find applications in different areas such as music
recommendations, personal safety or healthcare domains.

[. INTRODUCTION

Nowadays, the world is filled with a big number of devices
which provide a lot of various services. The amount of data is
growing continuously, machines become more intelligent and
can substitute human labor in many different areas. Machines
can process large amounts of information and can do it much
faster than humans. Even at the end of the last century, a Deep
Blue [1] chess machine won the world champion, Garry
Kasparov. In 2016 the Alpha Go [2] program won a
professional board game Go player. Machine learning
algorithms are constantly being improved and machines
become more human-like. However, robots are still robots,
they are lacking emotions, feelings, and critical thinking. At
the same time, some services can process data and retrieve
emotional information from various sources, for example,
Cloud Natural Language API [3], which retrieves meaningful
and structural information from texts, another example is IBM
Watson tone analyzer, which can understand the emotions and
communication style presented in the text. Along with this,
there is a significant development of various sensors in IoT
and wearable devices, which can provide more comprehensive
information to machines and help to learn more about the
environment around them.

Personal preferences and needs are always bound to
situational contexts such as activity, weather, time of the year,

mood and many others. If we ask someone or ourselves about
music preferences, most likely the answer would be similar to
this: “Depending on the mood or situation”. Recommendation
services and targeted advertisement are present in most
contemporary web services. Recent studies showed that a
user's personality can provide valuable information and
significantly improve the recommendation process. Capturing
the behavioral data from social networks in conjunction with
collaborating filtering can earn more about personality,
emotions, and adjust recommendations to fulfill personal
preferences and needs [4]. Almomani et al. [5] in their work
elaborate emotional, attentional, and rational models for
recommender systems. Tkalvcive et al. [6] describe the
significance of emotions in preferences, recommendations,
and consumption chain.

Emotional and activity-based recommendations can have
various applications, such as driving safety, music
recommendation and health and wellbeing support.

In this work, I present approaches for automated emotions
and activity capturing. The motivation is driven by the
understanding of the significant importance of emotional and
situational contexts in recommendations and the availability of
wide-ranging sensors in wearable and [oT devices. General
purposes of the emotions and activity capturing system are:
achieve maximum personalization in recommendations,
monitor emotional transitions while particular activity,
adjusting recommendations for particularly emotional and
situational contexts.

This research is targeted to describe which data can be
gathered from sensors and how to process it and retrieve
valuable information to clarify emotional and activity
contexts.

The following section shows the research motivation and
describes areas where emotion and activity capturing can be
applied. The third section is focused on sensors and data
processing approaches for activity and emotional recognition
and learning personalized contexts. The fourth section
illustrates the experimental prototype of the emotion and
activity recognition system. The final section of this study
shows the results of the research, limitations, possible
improvements, and further work.
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II. RESEARCH APPLICATIONS

Taking into account the importance of the physiological
conditions and emotional and activity contexts in everyday life
of people and the availability of the wide-ranging sensors in
contemporary wearable devices, there is an opportunity and
need for algorithms for processing such sensor-based data to
assist people and provide better services. In this section I am
going to review practical applications of the emotion and
activity recognition system, thereby highlighting the research
motivation.

1) Driving safety: Traffic accidents happen every day,
many people suffer and even die on roads. A lot of accidents
happen due to the destruction or tiredness of drivers. The time
when cars will be fully automatic and will not require to be
managed by humans has not come yet and the topic of the
driver’s activity monitoring remains highly important and
relevant nowadays. Risk situations might be caused when
people are distracted on the smartphone or other devices while
driving or walking, Zaghetto et al. [7] present machine
learning approaches for detection inappropriate smartphone
usage in traffic. Sometimes drivers get tired or sleepy, their
attention and reaction are decreasing, but they continue
driving. Some people forget to use safety belts. All of these
cases might lead to dismal consequences. If wearable devices
would be able to detect risky situations and warn people in
time or in advance, it can help to save health, lives and prevent
many accident situations.

2) Music therapy and recommendations: In many cases,
our music preferences depend on situational and emotional
contexts. Contemporary music platforms offer easy online and
offline access to large amounts of music sources. However, it
leads to the problem of choice, sometimes it is hard to explore
new music and we listen to the same tracks again and again.
Large music services such as Spotify [8] offer pretty good
music recommendations, however, they are not always
adjusted to the current mood or activity context of a particular
listener. Emotions and activity-aware recommendation
systems would better understand the personal preferences of a
user to select appropriate music tracks. Music therapy methods
are popular and efficient in diseases and mental health
treatments [9]. Automatic emotions recognition in wearable
devices in conjunction with music therapy approaches [10],
[11] can help to detect and apply preventative intervention in
case of mental health problems such as depression.

3) Healthcare and wellbeing support: Innovative and
cutting-edge technologies are incorporating and adopting
continuously in the healthcare sector and wellbeing support.
Diseases related to the cardiovascular, respiratory system,
mental health, and vision and hearing problems are widespread
in the world. Population aging and raising elderly
demographics in many countries affect their socioeconomic in
terms of growing wellbeing and healthcare needs and costs
[12]. Many diseases can be properly treated or even prevented
by continuous monitoring. Contemporary technologies and
raised wearable devices and the popularity of smartphones
allow performing distant and continuous monitoring of
patients. Additionally, the usage of wearable device sensors
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can help to cover a wider audience and make treatment more
efficient.

4) Customer experience improvement: Analyzing of the
voice data while customer support calls may significantly
improve the support quality. If a support system or specialist is
aware of feelings and emotions of a customer at any point of
the call, they can adjust recommendations or the dialog flow
according and provide better services. Branding and
advertisement systems with the real-time emotional and
activity user data would be able to adjust their content
according to it. From one side it would help to select useful
content which is relevant at the moment. From another side
these adjustments can help to minimize annoying adds pushing
and spamming. Of course, monitoring personal data needs to
be transparent for users and with appropriate consents.

III. DATA PROCESSING

People take gadgets with them everywhere they go and
whatever they do (see Fig. 1). Contemporary devices such as
smartphones, smartwatches, tablets, and [oT devices have a
wide range of sensors that can provide data about motion,
rotation, ambient temperature, geolocation, atmosphere

pressure, and many others. In this chapter, I want to review
and investigate what kind of sensors and data from wearable
devices can help to learn more about emotions and activities.

Y

Fig. 1. Wearable devices during activities

The main objective of the emotion recognition system is to
gather information from the wearable devices, preprocess it for
the classification algorithms, and perform emotional and activity
recognition of a user. Fig.2 illustrates the general data
processing flow of the emotion and activity recognition flow. A
sensor and social-based data are gathered and preprocessed at
the first stage. The system should adopt gathered information to
a particular context. When the data is preprocessed and
machine learning models are trained features can be classified
into particular labels. The final result is expected to be
represented as activity and emotional labels.
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Fig. 2. Activity and emotions classification process

A. Global Positioning System

High-level activity recognition can be enforced with the data
gathered from the Global Positioning System (GPS), the
majority of contemporary wearable devices have geolocation
detection systems. With this system, we can determine the
location of the device on a map and define the movement speed.
Defining which objects are located near the device we can
estimate preliminary activities, for example, some public places
such as cafes, cinemas, gyms, museums and many others can
narrow the list of potential activities. The location-based on
highways and higher movement speed rates can tell that a user
is traveling in conjunction with accelerometer and gyroscope
data the system can judge if a person is driving or uses public
transportation.

Travelling trajectories and modes can be learned from the
monitoring and processing the sequential data of the location
changes [13].

Driving and traveling activity recognition might be
problematic unless GPS coordinates are not captured with
higher sampling rates to achieve sufficient prediction
accuracy. Luo et al. [14] propose a novel algorithm based on
Hidden Markov Model (HMM) which allows performing map
and route matching with geolocation data capturing at lower
sampling rates. Raymond et al. [15] in their work
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demonstrated the application of the HMM method to find the
sequence of roads which correspond to certain geolocation
points. Xie et al. [16] in their study designed an accurate off-
line map-matching system for a city network of trajectories
based on HMM.

HMM is a statistical model which is represented by sets of
hidden states {S4,S,,Ss,...,SN}, where N is the number of
states, these states randomly generate observations or visible
states {01,02,03,...,0M}, where M is the number of
observations. Observations represent the output of the model.
The process moves from one state to another making a
sequence of states (Sil,Si2,...,Sik,...), where Sik is a current
state at a time.

P(Si | Si1,Si, ---,S/k-l) = P(Si | S/k-]) (1
where P is a probability of each state is dependent on the
previous state.

A(@y), a;=P(Si|S), 1=ijsN 2)

where A represents state transition probability when process or
system transits from one state to another.

B(bi(vy), bi(vy) =P(0,|S), 1<vM 3)
where B is an observation probability distribution.
T =(m), m==P(S) 4
where 1 represents the initial state probability vector.
Compact HMM notation can be represented as:
M = (4,B,1) )

Therefore, geolocation points are considered as hidden
states and the trajectories or road sequences are considered as
observations. This method allows establishing matchings
between geolocation points of the device and trajectories
which can be bound in turn to a particular activity.

A discriminative relational Markov network can be used to
determine and label valuable places on a map, Bayesian
network can be utilized to detect transportation routings and
adjust errors in real-time [17]. Liao et al. [18] in their research
defined a framework of the activity recognition with extended
Relational Markov Networks.

Conditional Random Fields (CRF) [19] are used to
generalize activities according to the duration, time of the day,
day of the week, and other attributes (see Fig. 3). It involves
location data, time of the day temporal information, spatial
information gathered from the geographic databases, and some
global constraints representing usual places such as homes,
workplaces, etc. Zhao et al. [20] applied probabilistic topic
models to the various trip attributes such as destination, time of
the day, traveling and destination time, duration of staying, day
of the week and others. This approach helps to determine latent
activity patterns and traveling purposes.
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Fig. 3. Conditional Random Fields for activity recognition example

Conditional Random Fields [21] is the framework to create
probabilistic models for the labeling the sequential data.

In comparison with HMM which defines joint probability
P(O,S), CRF defines conditional probability P(S|O), where S
defines states and O observations. HMM has access only to the
current time observation while CRF has access to the
observation sequence at any given time (see Fig. 4).

4 N

HMM

Fig. 4. HMM and CRF comparison for activity recognition example

B. Accelerometer and gyroscope

Gyroscope captures rotations around each axis in radians.
The accelerometer measures the acceleration and motion of
the device in a three-dimensional coordinate system. It is
possible to obtain and visualize such information in graphs
(see the example in Fig. 5).

Accelerometers are frequently used to determine physical
activity in a health care. A lot of research has been done with
respect to supervised and unsupervised machine learning
models to process accelerometer data. Montoye et al. [22]
compared different supervised learning models with
accelerometer data and found that the random forest model
had higher accuracy in comparison with others. Zhang et al.

[23] in their studies developed algorithms suitable for
detection and classifying particular types of activities with
wrist-worn accelerometers. Statistical machine learning of
sleep and physical activity phenotypes from sensor data
research [24] showed that men spend more time in low and
high-intensity behaviors and women spend more time in
mixed behaviors. The data quality and further prediction
accuracy depend much on the data sampling frequency,
according to Bonomy [25] optimal data sampling frequency is
between 20 and 50 Hz.
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Fig. 5. Accelerometer data visualization

The idea is to classify activities based on the accelerometer
data. There are available datasets [26] [27] that can be used for
model creation, training, and validation. The dataset [27] is an
updated version of the [26] and it has the following features:
Triaxial acceleration from the accelerometer and the estimated
body acceleration; ftriaxial angular velocity from the
gyroscope; 561-feature vector with time and frequency domain
variables; activity label and the subject identifier who acted.
The dataset represents the result measurements of the activity
observation of the 30 volunteers group from 19 to 48 years.
During the experiment each participant wore a waist-attached
Galaxy S2 smartphone and performed the following actions:
walking, walking downstairs and upstairs, sitting, standing,
laying down. Each activity has been performed twice, during
first time devices were attached to the left side of the belt,
while second-round participants attached the smartphones as
they preferred. The available dataset is preprocessed already,
preprocessing steps are: applying nose filters, subdividing the
data into fixed time windows, and gravitational and body
accelerations were separated using Butterworth low-pass filter
[28]. For predictive modeling, the dataset can be subdivided
into 70% training and 30% validation parts. Multilayer
perceptron, Recurrent Neural Network (RNN) with Long
Short Term Memory (LSTM), convolutional neural network
CNN 2D and their hybrids such as ConvLSTM or CNN-
LSTM are suitable for such kind of data prediction. According
to Jindong et al. [29], research RNN and LSTM are more
suitable for short activities recognition, while CNN better fits
long-term repetitive activities. Random Forest Classifier
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(RFC) can be employed for the labeling or classifying
activities based on triaxial accelerometer data.

Alternative HAR datasets are Activity Prediction and
Actitracker which represent measurements collected at
laboratory-controlled and real-world conditions respectively
[30], [31]. The activity classes of these datasets are: jogging,
walking, sitting, walking stairs, standing and lying down.

The task of activity recognition involves a transformation of
the sequential raw accelerometer data into feature vectors,
which can be subdivided into activity clusters. Structured
models such as HMMs and Conditional Random Fields
(CRFs) can be employed for such purposes [32], [33].
Unstructured models such as Support Vector Machines
(SVMs) can show equivalent performance while processing
the sequential data [32].

Normally activities consist of action sequences HMM can
be trained for each of the triaxial accelerometer data sequences
(x,y,z), then the action probability can be calculated using the
weighted sum of these values. Hierarchical HMM [34] is
presented in Fig. 6.

HMM HMM HMM HMM HMM HMM
on on on on on on
X Y Z X Y Z
accele- | accele- | accele- | ... accele- | accele- | accele-
rometer | rometer | rometer rometer | rometer || rometer
data data data data data data
L J L J
Y Y
Weighted sum Weighted sum
T
Selected
activity

Fig. 6. HMM on accelerometer data for the activity recognition

However, in HMM an observation can depend on a state at
a particular time, however in a real-world case an observation
can depend on states at different times, for example, different
activities might relay on similar motions and physical
movements, such as physical work and sport or running in a
gym and running to the bus stop. Such dependencies can be
modeled with CRFs.

It makes sense to segment the captured raw triaxial
accelerometer data and process it in time windows rather than
calculate values for each sample. This will reduce much the
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computation costs for the classification process and decrease
the noise uncertainties. Features that can be extracted from
accelerometer data are entropy, coherence, energy, standard
deviation and correlation in a time window. Then extracted
features can be classified and labeled corresponding to an
appropriate activity (see Fig. 7).
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Fig. 7. Feature extraction and activity clustering from the accelerometer data

To continuously extend the knowledge of the model with
input data incremental learning approaches can be employed.
This will allow to continuously improve recognition
performance in real-time and achieve higher personalization
by tuning the model according to the particular inbound data.
Siirtola and Ronning [35] presented incremental learning-
based methods for human activities recognition
personalization. Ntalampiras and Roveri [36] in their research
proposed an incremental learning mechanism for human
activity recognition, using HMMs, based on publicly available
datasets of six human activities: walking downstairs, walking
upstairs, walking, sitting, standing and laying. Learn++ is an
incremental learning algorithm suitable for both supervised
and unsupervised learning approaches, such as decision trees
NNs or SVMs. Polikar and Upda [37] in their research
introduced an incremental learning mechanism based on
Learn++ algorithm for training neural networks such as
Multilayer ~ Perceptron  (MLP), which also allows
accommodating new previously unseen classes from the data.

The activity recognition accuracy of neural networks is
considerably high when the sensor data is collected among a
particular set of users. However, when the audience becomes
wider, the accuracy decreases because human movements and
motions might be different for the same activities, people have
different habits and manners to walk, seat, run and other
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activities. Ding et al. [38] propose approaches for
improvement of deep learning human activity recognition by
adopting the process with transfer learning.

C. Camera

Recognition of facial expressions is essential for humans,
however, could we pass the same ability to machines? Bagheri
et al. [39] in their research described a model for emotion
recognition from facial muscle activity. Human emotions which
can be determined by facial activity can be classified into
various categories, for example, sadness, disgust, neutral, anger,
surprise, etc. Changes and transitions in points of facial features
can be converted to vector values, Fig. 8 illustrates key points of
the smiley and neutral or even sad facial emotions.

Fig. 8. Facial expression key points
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Fig. 9. Facial emotion recognitions

The initial image preprocessing step includes cropping,
scaling, applying appropriate filters, and removing the
background. After that, more informative parts have to be
retrieved by texture, edges and color analyses such as
Histogram of oriented gradients (HOG), Scale-invariant
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Feature Transform (SIFT), Local Binary Patterns (LBP), etc.
This stage is also known as facial feature extraction when key
points of a face are determined. When facial features are
extracted, the model training takes place, let’s have a brief
look at models that are suitable for this data processing task.
Multiclass Support Vector Machines (SVM) is a supervised
machine learning algorithm, which performs well in image
classification, however, to perform better with facial features,
images should be preprocessed more properly, with consistent
illumination and appropriate position of the head, which is
hard to achieve in a real-world image capturing. CNN
performs better in such situations because it applies
segmentation of the image and processing it in chunks.
Incremental learning such as RNN bases not only on the data
extracted from the current image but also on the previous
inputs and the data processing experience. Fig. 9 illustrates the
whole image processing flow for facial emotion recognition.

IV. EXPERIMENTAL PROTOTYPE

The working prototype has been elaborated and tailored to
this research to validate the approaches described in the
previous chapter. The kernel of the system is represented by
the web service which feeds the data from the user wearable
device application. The mobile application can work in a
background mode and send notifications when the emotion or
activity can be recognized based on collected data. The idea is
to allow normal usage of the smartphone, without annoying
surveys and filling forms, in this case, the application looks
more natural and does not impose like a research tool.

The activity and emotions recognition system rely on three
main data sources: geolocation data, accelerometer and image
capturing. Discriminative relational and hidden Makarov
models are used to perform map-matching, process latitude
and longitude device point transitions and determine valuable
labeled points on the map. CRFs are applied to adjust traveling
recognitions with respect to the trip duration, time of the day
and day of the week. RFC and CNN are selected to process the
triaxial accelerometer data for activity recognition. Models are
trained with publicly available datasets [26], [27], [30]. Facial
emotions recognition relies mainly on image processing as
described at Fig.8.

As the application captures sensor-based data from the
accelerometer, gyroscope, and global positioning system,
appropriate permission, appropriate permissions and consent
from the user are required to be configured at application
settings. From time to time the application captures images
from the frontal camera, when this happens, the user is
notified about it and has options to confirm, delete or view the
photo which has been captured. Collected data is forwarded to
the web service where it is prepared and processed with steps
described in the previous section. When the current activity
and emotional contexts are predicted, the classified labels are
forwarded back to the mobile application, which shows a
notification with an appropriate message. At this step the user
has options to confirm or reject predicted values, this feedback
is sent to the web service and the personalized model is
adjusted according to it.
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Accelerometer-based activity recognition: after the system
was trained on publicly available datasets [26], [27], [30] it
was trained and tested using real accelerometer data, by 2
volunteers, while each activity was repeated several times (see
Table 1) during 4 days with accelerometers attached to the
wrist and on a hip (in a pocket). Two types of devices were
used: smartphones and smartwatches. Activities are: walking,
standing, lying down, cycling, jumping, sit-ups, running,

washing hands, brushing teeth, driving. During experiments,
CNN showed an overall recognition accuracy of 83%, while
LSTM was a bit lower 71%. CNN performs better for
recognition of longer activities with repetitive motions and
physical movements, such as driving, cycling, walking,
running, while LSTM showed better results on recognition of
shorter duration activities.

TABLE I. RESULTS ACTIVITY RECOGNITION, TRAINING MODE, ACCELEROMETER DATA

Activity Duration per time Repeating number CNN recognition accuracy LSTM recognition accuracy
walking S min. 20 93% 88%
standing 2 min. 20 70% 45%
lying down 2-5 min. 20 58% 64%
cycling ~3-5 min. 15 86% 75%
jumping 2 min. 15 91% 85%
sit-ups 2 min 15 90% 77%
running 3 min. 10 91% 79%
washing hands ~1 min. 30 80% 70%
brushing teeth ~1 min 8 79% 73%
driving ~10-15 min. 10 87% 55%

Geolocation based activity recognition: HMM and CRF
modelling approaches were used for the rode matching on a
map. The process involved the following procedures:
considered geolocation transitions at a higher speed
(>30km/h), selection of the road candidates located nearby the
initial location point of the device (considered as initial state),
candidate road selection placed near the set of location points
during the trip (state space), geolocation points are considered
as observations, calculation of transition and observation
probabilities and linking the data to the road sequences with
respect to the time of the day, trip duration, intervals between

trips and days of the week. Actual trips are: 30 km 2 times per
day from Monday to Friday during 3 weeks, 5 trips in a city
area around 15 km, 4 trips on a high way, 200 km per each
trip. Experiment showed the following outcomes: travelling
activity recognition requires GPS data capturing every several
minutes, more frequent better accuracy, map matching
algorithms have higher performance on a highways during
longer trips. The data processing and delays in internet
connection might lead to problems in map matching during
short distance trips.

TABLE II. RESULTS ACTIVITY RECOGNITION, REAL LIFE MODE

Activity Emotion Activity guessed Emotion guessed correctly Total notifications
correctly

Driving Neutral 11 7 14
Driving - 8 10
Reading Disgust 1 2 5
Gym Happy 6 5 9
Walking Happy 15 7 15
At work Neutral 15 14 17
- Sad - 5 19
Music listening Happy 20 17 20

387




PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

The second stage of experiments was performed by a
group of three voluntaries during the period of two weeks.
Observation results are presented in the Table 2. During the
observation period participants used their smartphones
normally. Periodically the system pushed notification with
emotional and activity predictions. From the Table 1 we can
see the notifications which have been pushed. At the
moment overall activity recognition accuracy is 76%,
emotions prediction accuracy is 52%. Activity prediction has
higher rates, which is caused by the fact that some types of
activities are clearer to recognize by sensors. For example,
walking or sport activities are based on the data from
accelerometer. Work activity and driving is mainly based on
the location system, with detecting displacement and
coordinates of the work place. Information that user listen to
the music is determined by the data fetched from the media
players integrations. Emotions predictions are done with
processing of the sound data and images captured when user
places the phone in front of a face with appropriate consent
notifications.

V. CONCLUSION AND FUTURE WORK

Situational and emotional factors play significant roles in
our lives, depending on the situation people have particular
needs and preferences. Personalization and proper
understanding of the user's feelings and surrounding situations
allow machines to adapt their performance, select appropriate
content, and provide better services in an automated manner.
In this paper, I proposed an emotion and activity recognition
approaches using the data from wearable device sensors. The
solution of this study is targeted to maximize benefits from the
gadgets using experience. By processing the data from various
sensors such as accelerometer, gyroscope, GPS, and camera,
the system attempts to guess the activity and the emotions of
the user. At this moment the developed working prototype
only notifies the user of what has been predicted. The
systematic responsive feedback to the system predictions is
provided by the confirmation questions which come together
with notifications. Such feedback allows the system to adjust
predictions, validate their accuracy, and evaluate the
performance of the system. The knowledge base of the
recognition system is based on model training on existing
datasets. During the usage experience, predictions are tuned
according to it, which gives the system a better understanding
of each particular user.

The principal data collection and processing approaches for
emotion and activity recognition were covered in this paper
and the experimental prototype was developed. Results of a
basic validation of the recognition system are presented in the
previous chapter, however, it is a trial working model, which
requires a lot of further elaboration and testing on a wider
audience. The accuracy sensor is varying on different device
types, the solution needs to be tested on different devices,
which will require further adjustments and tunings of the
service. Further elaborations for healthcare applications, such
as health and wellbeing support and monitoring systems, will
require incorporation of the additional data and features to the
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system such as heart rate and blood pressure sensors. It will
also require additional research and collaboration with medical
specialists. In further developments the proposed solution can
be integrated with recommendation systems to select content
suitable for the appropriate situational contexts, it can be used
for advertising or music playlist creation systems.
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