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Abstract—The rapid developments in the field of Artificial Intelli-
gence are bringing enhancements in the area of intelligent trans-
port systems by overcoming the challenges of safety concerns.
Traffic surveillance systems based on CCTV cameras can help
us to achieve safe and sustainable transport systems. Trajectory
estimation of vehicles is an important part of traffic surveillance
systems and self-driving cars. The task is challenging due to the
variations in illumination intensities, object sizes and real-time
detection. We propose tracking by detection based trajectory
estimation pipeline which consists of two stages: The first stage
is the detection and localization of vehicles and the second stage is
building associations in bounding boxes and track the associated
bounding boxes. We analyze the performance of the Mask RCNN
benchmark and YOLOv3 on the UA-DETRAC dataset and
evaluate certain metrics like Intersection over Union, Precision-
Recall curve, and Mean Average Precision. Experiments show
that Mask RCNN Benchmark outperforms YOLOv3 in terms of
accuracy. SORT tracker is applied on detected bounding boxes
to estimate trajectories. The tracker is evaluated using mean
absolute error. We demonstrate that the developed technique
works successfully in crowded and crossroad scenarios.

I. INTRODUCTION

An intelligent transport system must ensure all road users

the ability to move quickly, safely and accident-free on the

roads, intersections and highways. A special role is assigned

to the infrastructure of the intelligent transport system, which

is often equipped with a video surveillance system for traffic.

Artificial Intelligence (AI) can help us in a variety of ways

to solve the challenges of transport systems. Abduljabbar et
al. [1] presented a detailed overview on the applications of

AI in transportation systems. With the ever increasing trend

of urbanization, traffic in cities is being multiplied and there

is an urgent need for intelligent traffic surveillance systems.

Hence, there is a rapid growth in the number of closed-circuit

television (CCTV) cameras. They work 24 hours a day, 7 days

a week and hence, generate a large amount of visual data. This

data can serve as good source for traffic surveillance systems.

Trajectory estimation of vehicles is a well-known problem in

the field of Artificial Intelligence and Computer Vision. Track-

ing by detection technique has become the preferred choice in

the area of Multi-Object Tracking (MOT) [2] recently due to

the developments in the field of object detection.. Although

many trackers have been introduced in the modern literature

[3]–[5], but the Simple Online Realtime Tracker (SORT) [6]

stands out most among them because it is real time and

very accurate. However, it takes bounding box detections as

input which need to be estimated from a vehicle detector.

The development of Convolutional Neural Networks (CNN)

gave promising results for image classification. CNN based

classifiers outperformed the classical machine learning and

computer vision techniques. Many deep learning based object

detectors have been described in literature but You Only

Look once version 3 (YOLOv3) [7] and Mask region based

convolutional neural network (Mask RCNN) Benchmark [8]

stand out most among them because they give us good results

in terms of accuracy and speed.

Analyzing the suitable datasets, we find U niversity a t Al-

bany DEtection and TRACking (UA-DETRAC) [9] as a 
state of the art dataset in the area of vehicle detection and 
tracking. Fig. 1 shows some examples from this dataset 
which are clearly very complex. We are following track-

ing by detection pipeline in which first o f a ll, v ehicles are 
detected in each frame and then detected bounding boxes 
are tracked. Following the approach of [10], we decided to 
perform a thorough analysis of the performance of YOLOv3 
and Mask RCNN Benchmark using several evaluation metrics 
like Average IoU, PR curves, Average Precision (AP) and 
mean Average Precision (mAP). After that we will do the 
trajectory estimation of vehicles in a complex and crossroad 
scenario from this dataset and evaluate our tracker using Mean 
absolute error as done by [11]. The source code is available 
at https://github.com/hafizas101/Master-s-thesis

Fig. 1. Examples from UA-DETRAC dataset presenting complex and 
crowded scenarios.
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The survey [12] presents an overview of vision based vehicle

perception systems at road intersections. However, we do not

find significant work for crowded and crossroad scenarios

which are very complex because of large variations in scale,

lightning, occlusion and weather. We aim to address this gap

in this paper and hence, consider the complex vehicle datasets.

The key contributions of this paper are as follows:

1) Thorough analysis of YOLOv3 and Mask RCNN Bench-

mark on UA-DETRAC dataset

2) Demonstration of the success of tracking by detection

pipeline for tracking vehicles in crowded and crossroad

scenarios

The rest of the paper has been organized as follows: Section

II describes some research work related to our project. The-

oretical background and detailed methodology are explained

in section III. Section IV describes implementation details and

experimental setup of the project. Results have been discussed

and explained in section V. Finally, we conclude in section VI.

II. RELATED WORK

Recently there have been several research works that have tried

to build deep learning based vehicle detection and tracking

technologies using real world data from CCTV systems.

However most of the work [13]–[17] is limited to vehicle

detection and localization. Some work in the field of trajectory

estimation of vehicles can be found in [10], [11], [18]–[20].

Another similar work is from [21] who also used YOLOv3

with SORT tracker to track vehicles on CCTV video data

stream. Sastre et. al. [22] also adopted tracking by detection

pipeline by using modified version of Faster RCNN detector

with an extended kalman filter (EKF) [23] for intelligent

transportation systems. Similarly, the authors of [24] employed

YOLOv3 together with kalman filter to track vehicles in the

images captured by unmanned aerial vehicles (UAV).

As pointed in the first section, we are using YOLOv3 and

Mask RCNN Benchmark for vehicle detection. YOLOv3 is

the most recent and successful variant of a family of single

stage detectors [7], [25], [26]. YOLOv3 has become a popular

choice recently [13], [15], [27] because of robust performance

in speed and accuracy. YOLO is an acronym for You Only

Look Once. As the name suggests, this technique processes

the entire image only once using a fully convolutional neural

network. This network divides the image into regions and

predicts bounding boxes and corresponding class probabilities

based on the global context of the image. The predictions

are made using a single network evaluation unlike RCNN

networks [28]–[30] which require hundreds or thousands of

evaluations for a single image. Among two stage detectors,

Mask RCNN [31] is a very recent work which extended the

Faster RCNN by adding a branch for predicting an object

mask in parallel with the bounding box recognition experi-

encing a very small decrease in speed. Mask RCNN not only

combines both target detection and segmentation in one task

but also offers substantial improvement in detection accuracy

as compared to other target detectors.

In the area of tracking, an Intersection over Union (IoU)

tracker was proposed by E.Bochinski et. al. [32] which

associated those bounding boxes as a track using greedy

algorithm whose IoU value was greater than a particular

threshold. They further extended IoU tracker to Visual IoU

(V-IoU) tracker [33] by adding visual information which helps

IoU tracker to deal with missing detections and reduces the

number of ID switches and fragmentations. Then a real time

tracker was introduced in [6] which is called Simple Online

RealTime Tracker (SORT). It has become a very popular

choice recently [11], [19] because of robust performance in

speed and accuracy. It adopts frame by frame association and

uses Hungarian Algorithm [34] for finding the association of

vehicles in current frame with the previous frames and Kalman

Filter [35] for tracking the associated vehicles. They further

extended the SORT tracker to DeepSORT [36] tracker by

replacing the original association metric with a metric that

combines motion and appearance information from a pre-

trained model. Another work is from [37] who used SORT

algorithm to track objects from unmanned aerial vehicle (UAV)

using computationally efficient embedding devices. A very

recent work on the comparison of several tracking systems

is done by [38] for vehicle re-identification.

III. METHODOLOGY

This paper aims to find s mooth t rajectory o f v ehicles in 
crowded and crossroad scenarios. We propose tracking by 
detection scheme in which first of all we will find the bounding 
box locations of vehicles and then track each bounding box. 
Fig. 2 shows the block diagram of proposed methodology.

Fig. 2. Block diagram of proposed methodology

First of all, images and annotation files are passed into the pre-

processing stage. The pre-processed images are passed through

a vehicle detector which returns bounding box locations for

cars and buses in all images. We are using YOLOv3 and Mask

RCNN for vehicle detection. These bounding box locations

______________________________________________________PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 415 ----------------------------------------------------------------------------



are fed to SORT tracker which gives us the trajectory of each

vehicle. In the following sections, we describe each module

in detail and provide theoretical background of our approach.

A. Mask RCNN

Mask RCNN is an instance segmentation technique that 
extends the features of faster RCNN. Mask RCNN adopts 
the same two stage strategy of Faster RCNN with the same 
first s tage of region proposal network (RPN). However in the 
second stage, it outputs a binary mask as well for each RoI 
in parallel to bounding box calculation and class prediction. 
The block scheme of Mask RCNN is shown in Fig. 3.

Fig. 3. Block scheme of Mask RCNN

First of all, image is passed through a pre-trained convolutional

neural network (CNN) to extract image features. Then it

uses another CNN called region proposal network to propose

regions of interest (RoI). These RoIs together with feature

maps are sent to RoI align layer so that each RoI gives fixed

size feature map. The feature map is sent to two branches.

One branch applies fully connected (FC) layer for object

classification and detection and the second branch uses full

convolutional network (FCN) to generate pixel wise mask.

B. YOLOv3

YOLOv3 is an object classifier which offers several significant

differences in comparison to its predecessors. Some of these

have been outlined as follows:

• YOLOv3 uses multi-label classification. So for a single

region of an image, YOLOv3 can predict ’pedestrian’ and

’child’ which are not mutually exclusive and probabilities

can sum up greater than 1. Hence, YOLOv3 replaces

softmax layer with independent logistic classifiers. In this

way computational complexity is reduced by avoiding the

softmax function.

• YOLOv3 uses binary cross entropy loss for each label

instead of mean square error. The cross entropy loss is

calculated as follows:

−
M∑
c=1

δx∈clog(p(x ∈ c)) (1)

Where, M is the number of classes and δx∈c is logistic

function that equals 1 when c is the correct class label

and log(p(x ∈ c)) is the natural logarithm of probability

that observation x belongs to class c.

The block diagram of YOLOv3 architecture is shown in 
Fig. 4. It consists of two main components:

1) Darknet-53 feature extractor

2) Feature pyramid network

Fig. 4. Block diagram of YOLOv3 architecture

First, image is passed into a large feature extractor that

consists of 53 convolutional layers architecture hence it is

called Darknet-53. This architecture consists of a series of

5 residual blocks and each residual block consists of 1 x 1

and 3 x 3 convolutional filters with several skip connections.

The second component is a feature pyramid network that

predicts boxes at 3 different scales. The network first applies

several convolutional layers at the output of feature extractor

which gives us semantic information for large sized objects

in the image. Then the feature map from 2 previous layers is

taken and upsampled by 2 times. The upsampled features are

concatenated with feature map from earlier in the network.

Several convolutional layers are applied at concatenated fea-

tures to give fine-grained semantic information for medium

scale objects. The process is repeated to get predictions for the

3rd scale. At each scale, the detection is done by applying 1*1

detection kernel on the semantic information consisting of a

3D tensor encoding bounding box coordinates, objectness and

class probabilities. Hence, the shape of the detection kernel is

1 x 1 x (3*(4+1+80)) = 1 x 1 x 255.
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C. Pre-processing and Detection pipeline
Fig. 5 shows the complete illustration of Pre-processing 
and Detection schemes.

Fig. 5. Illustration of Pre-processing and Detection schemes

1) Pre-processing: This is the first stage of the whole scheme

in which we assign a white pixel to all the pixels which corre-

spond to ignored region using data from annotation file. These 
ignored regions represent very far away or highly occluded 
regions in which vehicles don’t need to be detected. The 
Fig. 6 shows such an ignored region in white rectangular 
boundary in which there are large number of cars very far 
away and occluded. Therefore, the authors of this dataset have 
suggested to ignore this region.

Fig. 6. Area inside white rectangular boundary represents the region to be 
ignored

2) Detection: The pre-processed images are passed into an

object classifier that returns only the predictions of car and

bus in the image and ignores all other objects. UA-DETRAC

dataset provides four labels namely car, bus, van and others.

YOLOv3 and Mask RCNN both are trained on COCO dataset

[39] which does not have any category of vans. So, our vehicle

detectors cannot detect van. Therefore, we are considering only

those predictions whose label is a car or a bus. This function

returns a dictionary for each image. The dictionary consists of

a list of all vehicle category labels and a list of all rectangular

bounding boxes corresponding to each label. Each bounding

box itself is an array of x,y locations of top left and bottom

right vertices of the rectangle.

Image dictionary {
"category" : List of all vehicle labels in

the image.
"locations" : List of all rectangular

bounding boxes corresponding
to each label.

}

Then we loop through all images to create a prediction

dictionary which consists of a list of Image IDs and list of

corresponding image dictionaries.

Prediction Dictionary {
"image_id" : List of all Image IDs.
"frame_predictions" : List of all predicted

dictionaries.
}

Then we load ground truth labels and bounding box locations

from annotation data file and create a similar ground truth

dictionary consisting of a list of all image IDs and a list of

corresponding ground truth dictionaries.

Ground Dictionary {
"image_id" : List of all Image IDs.
"frame_ground" : List of all ground truth

dictionaries.
}

Then we calculate confusion matrix for both objects ”car” and

”bus”. Assuming ”car” as positive category, we check number

of ground truth bounding boxes and prediction boxes for each

image. Four possible situations arise:

1) If no ground truth bounding box location found and no

prediction made then it is counted as a true negative

(TN).

2) If ground truth bounding box is found but no prediction

is made then it is counted as a False negative (FN).

3) If ground truth bounding box is not found but prediction

is made then it is counted as a False positive (FP).

4) If atleast one ground truth bounding box is found and

atleast one prediction is made, then for every predicted

bounding box, we calculate Intersection over Union

(IoU). If IoU is greater than a particular IoU threshold,

then it is considered as true positive (TP) otherwise false

positive (FP).
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Finally, we calculate precision, recall, plot precision recall

(PR) curve and calculate average precision (AP).

D. SORT tracker

In general, object tracking consists of three main steps:

1) Take initial set of object detections and create a unique

ID for each of the initial detections.

2) Track each object as it moves around in frames and

maintain its unique ID.

3) Create new ID for new additions and remove the IDs of

disappeared objects.

Figure. 7 shows the block diagram of implemented SORT

tracker together with Kalman Filter loop. Trackers represent

previous frame detections whereas detections represent current

frame detections. First of all, Intersection over Union matrix is

calculated which represents the IoU values of bounding box of

current frame (detections) with each bounding box of previous

frame (trackers). Hungarian algorithm is applied on IoU matrix

to find matched and unmatched trackers and detections. After

obtaining the associated vehicles, Kalman Filter loop is used

to estimate current position better than the detection.

Fig. 7. SORT Tracker block diagram and Kalman Filter loop

1) In Update stage, Kalman gain is computed and our es-

timate is updated with measurement. Then we calculate

error covariance.

2) In Prediction stage, the next state and error covariance

matrices are predicted from current state, covariance

matrix and state matrix.

We are using constant velocity model of Kalman Filter in

which velocities are assigned to zero. The state consists

of bounding box coordinates and their derivatives. This is

described as:

X =
[
x1 ẋ1 y1 ẏ1 x2 ẋ2 y2 ẏ2

]
(2)

where, x1 and y1 are x and y coordinates of top left coordinate

while x2 and y2 are x and y coordinates of bottom right

coordinate. The state transition matrix φ would thus be 8 x

8 matrix and can thus be written as follows:

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 dt 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 dt 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 dt 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 dt
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where, dt is the time interval and is initialized as 0.2. Our mea-

surement z k matrix also consists of four variables because it

represents bounding box location.

z =
[
x1 y1 x2 y2

]
(4)

The measurement matrix H can thus be written as follows:

H =

⎡
⎢⎢⎣
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎦ (5)

The error covariance P matrix is initialized as follows:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 10 0 0 0 0 0
0 0 0 10 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Q is a noise matrix and is initialized as 8 x 8 unity matrix.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

We perform various experiments on the dataset in several

settings and measure some metrics like IoU, mAP and FPS.

The experiments have been performed on a low-end GPU

machine whose specifications are provided in Table I because

of unavailability of a good GPU.

TABLE I. SPECIFICATIONS OF MACHINE

System Configuration
Operating System Ubuntu 18.04

Processor 2.8 GHz Intel Core i7 7700 HQ
GPU NVIDIA GTX 1050 4GB Graphics card
RAM 8 GB

Hardware memory 500 GB
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A. UA-DETRAC Dataset

UA-DETRAC dataset is a challenging real-world dataset that

has multiple vehicles, multiple views, weather, scale and light.

It consists of 10 hours of videos captured using a Cannon EOS

550D camera at 24 different locations in Tianjin and Beijing.

The videos have been recorded at 25 frames per second (FPS).

Each image is 960 X 540. The dataset consists of 140131

frames in total out of which 138252 frames are labelled and

have annotations. Figure. 8 shows the number of different

vehicle categories of dataset in training and testing portions.

Figure 8. Number of different vehicle categories in training and testing portion

It is clear that majority of the vehicles are cars. For the

simplicity of algorithm and experiment, we only consider two

categories namely ”Car” and ”Bus”. All the bounding boxes

from ground truth data which have ”van” or ”others” as their

label, they are ignored. There are 60 sequences in training set

and 40 sequences in testing set.

While working with UA-DETRAC dataset, we found missing

annotations for several images. In the testing portion, we found

missing annotations only for sunny and night data images. The

sequence number and frame number details of these images

for test portion have been provided in Table II. We deleted

these images for our analysis since their annotations are not

available. In the training portion, we found missing annotations

for night, cloudy and rainy data images. The sequence number

and frame number details of these images for training portion

have been provided in Table III. No missing annotation has

been observed in Sunny data images in training portion.

B. YOLOv3 Implementation

We decided to run YOLOv3 using OpenCV deep neural 
networks (DNN) module because it gives much more flexi-

bility and control on the information returned by YOLOv3 
algorithm like bounding box locations, confidence scores etc. 
We utilized pretrained YOLOv3 weights and configuration file 
into OpenCV Deep neural network (DNN) module. However 
in order to use this method, the version of OpenCV must 
be greater than 3.4.2 because the older versions of OpenCV 
cannot load YOLO into their DNN module. Fig. 9 shows 
qualitative results of applying YOLOv3 on a crossroad image.

TABLE II. DISTRIBUTION OF IMAGES WHOSE ANNOTATIONS ARE MISSING IN 
TRAINING PORTION

Weather Sequence
ID

Frame numbers

Cloudy

MVI 39931 677-835, 977-1005
MVI 40152 1607-1610
MVI 40162 322-360
MVI 40211 222-235, 427-430, 447-455
MVI 40213 1167-1170, 1287-1290

Night

MVI 39761 542-610, 897-1080, 1297-1380
MVI 39781 337-340
MVI 39811 207-260, 342-510, 597-655, 717-

720, 787-1070
MVI 40851 162-295
MVI 40991 272-335, 1567-1655
MVI 40992 487-490, 1577-1590

Rainy MVI 63544 892-1095

TABLE III. DISTRIBUTION OF IMAGES WHOSE ANNOTATIONS ARE MISSING IN 
TESTING PORTION

Weather Sequence ID Frame numbers

Night
MVI 40743 1630
MVI 40763 1742-1745
MVI 40793 1960

Sunny
MVI 39051 992-1060
MVI 39211 477-570
MVI 39271 77-80

Fig. 9. Qualitative result of applying YOLOv3 on a pre-processed image. 
Black boxes correspond to ground truth objects and green colored boxes 
correspond to predicted objects. However, white boxes represent ignored 
region in the image.

C. Mask RCNN Implementation

We use Mask RCNN benchmark [8] which is actually the

implementation of Mask RCNN [31] object detection and

segmentation algorithms in PyTorch 1.0. PyTorch is a very low

level API as compared to Tensorflow and Keras and is focused

on direct work with array expressions. Hence, it is much faster

than Keras and Tensorflow. This makes Mask RCNN bench-

mark several times faster than the original implementation

of Mask RCNN for object detection and segmentation. The

algorithm generates bounding boxes and segmentation masks

for each instance of an object in the image. Figure. 10 shows

the qualitative result of applying Mask RCNN Benchmark

technique on a crossroad image.

D. SORT Tracker Implementation

SORT tracker consists of two main stages: The first stage is

data association which uses Hungarian algorithm to associate
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Fig. 10. Qualitative result of applying Mask RCNN Benchmark on a pre-
processed image. Black boxes correspond to ground truth objects and green 
colored boxes correspond to predicted objects. However, white boxes represent 
ignored region in the image.

the vehicles in current frame to the vehicles in previous frame.

The second stage is standard Kalman filter with constant

velocity motion and linear observation model where we take

the bounding coordinates (u, v, w, h) as direct observations of

the object state. An efficient implementation of SORT tracker

based vehicle tracking is provided by [40]. The implemented

SORT tracker can be described in pseudo-code of the Algo-

rithm 1.

Algorithm 1: SORT Tracker

Input: Detections as list of bounding box locations in

current frame

Output: Centroids of tracked bounding boxes.

1 if This is first frame then
2 Initialize an empty list of trackers

3 else
4 Extract the detections of previous frame as trackers

5 Find Intersection over Union between each tracking

and detection forming an IoU matrix

6 Use linear assignment function from sklearn module

to find matched vehicle indices using Hungarian

algorithm

7 if IoU for matched vehicles < 0.3 then
8 Assign them as unmatched trackers and detections.

9 else
10 Assign them as matched vehicles.

11 Initialize state and Kalman filter matrices to start a

Kalman filter loop for a vehicle.

12 Predict next state and update your state using current

detection as measurement.

13 if Consecutive matches > min hits and Consecutive
unmatched detections < maxDisappeared then

14 Compute and append centroid of this detection

Experiments for tracking have been performed on first 120

frames of sequence MVI 40852 from Cloudy portion of test

data. The reason to choose this sequence is that it represents a

crowded and crossroad scenario. We only need a small number

of frames to demonstrate our trajectory algorithm. Hence we

decided to work with first 120 frames in order to demonstrate 
tracking results. The resultant trajectory obtained from SORT 
tracker can be seen in Fig. 11 and video demo is available at 
https://youtu.be/HEjMSuSSheA

Fig. 11. Comparison of ground truth trajectory with trajectory based on 
SORT tracker. Black color path represents ground truth trajectory whereas 
green color path represents the generated trajectory from SORT tracker. White 
color rectangles represent the region to be ignored.

V. RESULTS AND DISCUSSIONS

Fig. 9 and Fig. 10 show the qualitative results of 
YOLOv3 and Mask RCNN algorithms on a challenging real 
scenario crossroad image from rainy portion of UA DETRAC 
test dataset. Black boxes indicate ground truth objects and in 
total there are 22 labelled cars, 1 bus and 1 van according 
to ground truth annotation file. S ince w e a re n ot considering 
vans in our experiments, hence we do not mark it as ground 
truth. YOLOv3 detects 19 cars in total one of them is actually 
a van which is considered as car by YOLOv3 algorithm. So, 
YOLOv3 fails to detect the bus and 4 cars. However, Mask 
RCNN is able to detect 20 cars and special thing is that it 
does not categorize van as car or bus. Bus is missed by both 
algorithms because it does not have a clear picture from the 
front. Both algorithms were trained on COCO dataset which 
has much higher number of front and back pictures of vehicles 
as compared to side pose. Also, it is noted that Mask RCNN 
is much better at recognizing small objects than YOLOv3 
because Mask RCNN is able to detect all far away cars but 
misses the front cars hidden behind a bus. Fig. 12 and 13 
give full statistics about the number of cars and buses 
respectively in ground truth and predictions made by both 
algorithms.

The number of cars detected by Mask RCNN is even greater

than number of cars in ground truth for sunny data. This is

also possible in some rare case as can be observed in Figure.

14 where few distant cars are detected by algorithm but they

are not found in ground truth annotation. So this is a feature

not a bug of the algorithm.

We evaluate algorithms on several metrics which have been

detailed as follows.

A. Intersection over Union (IoU)

This metric measures the accuracy of predicted bounding

boxes. First, we measure the area of intersection between
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Fig. 12. Comparison of the number of cars in ground truth and predictions

Fig. 13. Comparison of the number of buses in ground truth and predictions

Fig. 14. Block boxes represent ground truth and blue boxes represent 
detection by Mask RCNN. Few distant cars have been detected by Mask 
RCNN but not found in ground truth

predicted and ground truth bounding boxes. IoU is computed

by taking the ratio of Area of intersection by total area of

boxes. We measure Intersection over union values with respect

to all ground truth bounding boxes in each frame and take

arithmetic mean of all of them. We perform analysis according

to the weather. Table IV shows average IoU values for cars

and buses using both techniques for different weathers.

B. Precision Recall curve

Precision recall curve is a metric introduced by Pascal VOC

paper [41]. In this curve we find precision and recall with

respect to every prediction and then plot recall on x-axis and

TABLE IV. AVERAGE IOU VALUES USING BOTH TECHNIQUES ON DIFFERENT WEATHERS

Technique Vehicle Cloudy Night Rainy Sunny

YOLOv3 Cars 0.7927 0.7999 0.7784 0.7695
Buses 0.7404 0.8080 0.7720 0.7610

Mask RCNN Cars 0.8234 0.8334 0.8150 0.7923
Buses 0.7788 0.7994 0.8186 0.7648

precision on y-axis. Precision is the ability of the model to

identify correct positive predictions.

Precision =
TP

TP + FP
=

TP

Total predictions
(7)

Recall is the ability of object detector to find all relevant

ground truths.

Recall =
TP

TP + FN
=

TP

Total ground truth
(8)

Hence, in order to calculate this metric, we need to compute

true positive (TP) and false positive (FP) values. Figure. 5

shows a block scheme of proposed methodology for calculat-

ing TP and FP. Then we compute precision and recall for every

detection and from which we obtain precision recall curve. The

Figure. 15 shows a PR curve for test portion cloudy weather

data for different IoU threshold (0.5, 0.6, 0.7, 0.8 and 0.9).

Fig. 15. PR-curve obtained by applying YOLOv3 on Cloudy data on cars 
for different IoU thresholds (0.5, 0.6, 0.7, 0.8 and 0.9)

C. Average Precision (AP)

Another way to measure the performance of object detectors

is Average precision which corresponds to area under the

precision-recall curve for a particular class which in our case

is cars. This gives us a single number to identify performance

instead of a curve. Since the precision recall curve has a

very rough zig-zag shape so first this curve is interpolated to

form rectangles. The total area of these rectangles corresponds

to average precision (AP). Tables V and VI present the

average precision values for different weathers at different IoU

thresholds using both techniques.

D. Mean Average Precision (mAP)

Mean average precision is simply an arithmetic mean of

average precisions for all classes. Following the evaluation

protocol suggested by [9], mAP at 0.7 IoU threshold is
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TABLE V. AVERAGE PRECISION (AP) USING YOLOV3

Vehicle Weather 0.5 0.6 0.7 0.8 0.9

Cars

Cloudy data 0.6970 0.6536 0.5430 0.2990 0.0210
Night data 0.6983 0.6541 0.5430 0.2472 0.0122
Rainy data 0.5846 0.5440 0.4396 0.1946 0.0087
Sunny data 0.6918 0.6257 0.5076 0.2401 0.0081

Buses

Cloudy data 0.4432 0.3820 0.2557 0.1130 0.0060
Night data 0.8319 0.8022 0.7360 0.4967 0.0794
Rainy data 0.6675 0.5780 0.4440 0.1196 0.0120
Sunny data 0.5874 0.5014 0.3994 0.1854 0.0052

TABLE VI. AVERAGE PRECISION (AP) USING MASK RCNN BENCHMARK

Vehicle Weather 0.5 0.6 0.7 0.8 0.9

Cars

Cloudy data 0.6955 0.6588 0.5930 0.4454 0.0830
Night data 0.7279 0.6840 0.6114 0.3948 0.0560
Rainy data 0.6278 0.5857 0.5036 0.3368 0.0475
Sunny data 0.7079 0.6677 0.6040 0.4290 0.0490

Buses

Cloudy data 0.5970 0.5660 0.4882 0.3209 0.0221
Night data 0.7833 0.7122 0.5612 0.3600 0.0616
Rainy data 0.6174 0.5780 0.4450 0.3340 0.0020
Sunny data 0.5926 0.5050 0.4307 0.3023 0.0306

considered as evaluation metric. We take the arithmetic mean 
of average precision at 0.7 IoU thresholds for all weathers 
and present our results in Fig. 16. It is absolutely clear that 
Mask RCNN Benchmark outperforms YOLOv3 in all weather 
conditions in terms of accuracy.

Fig. 16. Mean Average Precision (mAP) results of both techniques on UA-
DETRAC test dataset)

E. Tracking Evaluation

The performance of tracker is analyzed by reporting mean

absolute error as already done by [11]. Hence, we measure the

root mean square error (RMSE) between detected trajectory

and ground truth trajectory. For each trajectory point, we

calculate the Euclidean distances between point of trajectory

and ground truth points of all frames corresponding to the

trajectory. The minimum distance corresponds to the loss

for this trajectory point. Hence, total loss of each frame is

calculated by the sum of losses for all trajectory points and

can be described by the following equation:

l =

M∑
c=1

min(
√

(xc − xg) + (yc − yg))
N
g=1 (9)

where, M is the number of trajectory points in a frame and N

is the total number of frames The total loss of tracker is the

sum of losses for all frames.

L =

N∑
i=1

li (10)

The results are reported in Table VII. The values represent the 
root mean square distance error per detection in units of pixels 
between detected and ground truth trajectories for different 
weathers on UA-DETRAC dataset.

TABLE VII. RMS ERROR PER DETECTION IN UNITS OF PIXELS BETWEEN 
DETECTED AND GROUND TRUTH TRAJECTORIES FOR DIFFERENT WEATHERS ON UA-

DETRAC DATASET

Tracker Detector Cloudy Night Rainy Sunny

SORT YOLOv3 15 16 20 16
Mask RCNN 13 14 15 13

VI. CONCLUSIONS AND FUTURE RECOMMENDATIONS

We implemented the task of trajectory estimation of vehicles

in crowded and crossroad scenarios. We adopted tracking by

detection scheme in which initially vehicles were detected in

each frame and then tracked. We did an analysis of YOLOv3

and Mask RCNN Benchmark using several metrics like IoU,

PR curves, Average Precision (AP) and mean Average Preci-

sion (mAP). Experiments show that Mask RCNN Benchmark

outperforms YOLOv3 in terms of accuracy. The bounding

boxes are tracked using SORT tracker. Experiments show that

the developed pipeline works well for crowded and crossroad

scenarios. All the source code and video demos are available

at https://github.com/hafizas101/Master-s-thesis

Despite the achieved results, there is still room for further

improvements. The performance of detection needs to be im-

proved for vehicles with side view. YOLOv3 and Mask RCNN

have been found to be much lesser efficient at recognizing

vehicles from side pose in comparison to front or back pose.

The speed of our method on our low-end machine is around 2

FPS which is far away from being real-time. Most of the time

is taken in the detection process. Hence, accurate and fast

detectors are need particularly trained for vehicle detection

task to leverage the real potential of tracking by detection

scheme.
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