PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

Neural ODE Machine Learning Method with
Embedded Numerical Method

Andrey Televnoy, Sergei Ivanov, Tatiana Zudilova, Tatiana Voitiuk
ITMO National Research University (ITMO University)
Saint Petersburg, Russian Federation
adtelev@mail.ru, serg_ie@mail.ru, zudilova@ifmo.spb.ru, tanya_4ever@mail.ru

Abstract—In the study, the authors examine the application of
the Neural ODE machine learning method to reduce the number
of neural network layers in order to minimize the problem of
fading gradients. It is proposed to implement in Neural ODE a
new scheme of the numerical Runge-Kutta method developed by
the authors. The mathematical substantiation of the proposed
numerical method, which guarantees the accuracy of the third
order, is presented in detail. A comparative analysis of the
training and computation time for Neural ODE with other
machine learning methods using a computational experiment.
The results of the experiment show that the proposed
modification of the Neural ODE can reduce the computation time
and the network training time.

[. INTRODUCTION

Currently, many different machine learning problems are
solved using neural networks. The topic of research carried out
in this area shows that the authors focus on a more substantive
study of the so-called deep learning. This principle uses readily
available big data to solve various kinds of tasks that
previously seemed overly complicated in terms of
computational resources. Increasing the depth of traditional
neural networks made it possible to significantly improve the
quality of their work, but also led to a number of computational
difficulties.

In just the past few years, many studies have been published
that illustrate the relationship between deep neural networks
and differential equations. The similarity of the behavior of
neural networks with the mathematical apparatus of differential
equations was established during similar studies.

A direct analogy can be drawn between the residual layers
of a neural network and differential equations. Computing the
output of the residual network block can be considered as one
iteration of the Euler method to solve the differential equation.
Neural Ordinary Differential Equations (Neural ODEs) [1] are
a new class of models that consider the limit of this
discretization step, naturally giving rise to an ODE that can be
optimised via black-box ODE solvers. The main distinguishing
feature of Neural ODE is that the computational model has a
continuous number of layers, thus setting a time-continuous
latent state transformation. This distinctive feature can be
useful in applications where information is received
periodically and the exact timing of information is important.
Thus, this advantage of Neural ODE can improve the
performance of prediction models in such applications. Another
advantage of this approach is the fewer parameters compared to

residual networks, since new parameters are not required for
each layer.

The fading gradient problem is one of the main problems
encountered in neural networks of great depth. It lies in the fact
that during training, the gradient practically does not reach the
input. This is because the gradient gets very close to zero
during the backpropagation algorithm. In the final result, it can
lead to the fact that the neural network will no longer be taught.
In this case, the input weight will be almost impossible to
change because this gradient practically does not exist, it is not
there.

The solution to this problem can be a different principle of
building a neural network. In this case, the so-called “residual
layer” is used as the main building block. Adding skip-
connections minimizes the negative impact of this problem.
The gradient has the ability to go through not only a non-linear
transformation of the layer, but also through an identity
transformation. This approach solves the problem of damped
gradients due to the fact that each layer of the neural network
has access to the untransformed gradient during the
backpropagation of the error.

Later, in the course of extended work with this approach,
the scientists found that the iterative update of the latent state of
the neural network is very similar to using the Euler method
when solving ordinary differential equations. Thus, in the
article [1], the authors proposed to parameterize the dynamics
of the latent state using a neural network. In this case, obtaining
the final hidden state requires the need to solve the banal
Cauchy problem. One of the obvious advantages of this
approach is that to solve such a problem, you can use various
accurate and efficient numerical methods that allow you to
explicitly set the required solution accuracy. In general, the
work of the authors [1] made a fundamental contribution to the
development of this area, since the authors additionally
described the ways of applying the approach proposed by them.

For example, Neural ODE can also be applied to supervised
learning problems. In this case, the residual neural networks are
replaced by neural ODEs. The authors conducted an
experiment comparing a neural network built using several
residual layers and a neural network with one neural ODE.
Experimental results showed that Neural ODE trained with
conjugate state computation performed better. In addition, it
has constant memory allocation costs.

ISSN 2305-7254

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

It should be noted that the authors did not ignore the normal
distribution problem. For example, in image processing tasks, it
is usually too simple. The distribution density of real data is
usually much more complex than a Gaussian. The authors
proposed to solve this problem by successively applying simple
reversible transformations to the model outputs [1].

The advantage of more efficient use of memory is one of
the benefits of using Neural ODE. By varying the uniform grid,
we can obtain an arbitrarily large number of residual blocks
with total weights. Moreover, you can use different step sizes
for training and testing. The number of calculations grows with
the number of grid elements, and the amount of allocated
memory remains constant. It is interesting that the results of the
presented author's experiment showed that the quality of the
solution with a smaller number of parameters is even better [1].
This advantage is also very important when working with real-
time systems, where computations are limited in time.

In modern generative models, the problem of made
collapsing is also acute. With it, the generator produces a
limited number of different samples, while not even covering
the entire training set. Such a neural network can only sample
points, while not giving out their density. The computational
model in [1] allows finding the density at the point of a new
distribution in linear time. Moreover, the transformations have
no restrictions.

In general, a lot of research is carried out with the aim of
improving methods for training neural networks. For example,
the authors of the article [2] proposed the so-called discrete-
time method of successive approximations (MSA), based on
Portnyagin's maximization principle. MSA also helps to
minimize the problem of fading gradients to some extent. This
method is illustrated by the example of its use for training a
class of non-traditional networks, i.e. networks with discrete
weights. The experimental results showed that MSA builds
fairly original trained models in the case of ternary networks.
The method also showed itself well in solving the optimization
problem (in terms of the error rate). All this makes its use in
some machine learning tasks attractive to some extent.

An attempt to solve the problem of gradient decay was also
found in work [3]. The authors of this article, approaching the
issue from a biological point of view, proposed their Least
Mean Squares (LMS) method, based on the accumulation of
information between different iterations. A characteristic
feature of the experiment is the authors' attempt to consider an
online learning case, in which learning occurs continuously and
the tests are sequential. The results showed that interference in
the learning process of a neural network depends on a number
of different factors and has a serious impact on the entire
concept of problem solving. The authors proposed
experimental protocols to minimize such interventions.
Protocols allow inferences to be drawn about the underlying
learning rules by observing the behavior of a neural network
throughout the learning process.

Like many other approaches to solving a particular
problem, Neural ODE may have its own disadvantages. In [4],
the authors concluded that there are functions that Neural ODE
is unable to provide. To address this limitation, so-called
Augmented Neural ODEs (ANODEs) were introduced. They
expand the space in which the ODE is solved. Thereby helping

452

the model to use extra dimensions to study higher-order
functions. Authors believe Augmented Neural ODEs are more
empirically robust and have lower computational costs
compared to traditional Neural ODEs. ANODEs overcome the
representational weaknesses of NODEs while maintaining all
their attractive properties. However, the authors noticed that
ANODESs, when working with excessively large augmented
dimensions, “the model tends to perform worse with higher
losses”.

Work [5] became a logical continuation of research on
ANODE:s. The authors examined the behavior of Second Order
Neural ODEs (SONODEs). The adjoint sensitivity method
shows that first-order optimization is more computationally
efficient. The extended theoretical methodology of the
ANODE:s class allowed us to consider higher-order dynamics
with a minimal number of augmented dimensions. This
opportunity allows us to conclude that the use of ANODEs is
possible in larger perspectives than previously thought by
scientists. SONODE:s are especially useful when working with
synthetic and real second-order dynamic systems.

The work [6] is also intended to expand the scope of Neural
ODE with the help of stochastic processes that simulate
discrete events. The authors introduce Neural Jump Stochastic
Differential Equations (Neural JSDEs) that “provide a data-
driven approach to learn continuous and discrete dynamic
behavior”. The authors believe that the downside of continuous
Neural ODE models is that they cannot include discrete events
(or inputs). Such discrete states or inputs can dramatically
change the latent state vector. A major advantage of Neural
JSDE:s is that they can be used to model a variety of marked
point processes. During the experiment, the authors
demonstrated the predictive capabilities of their approach on a
number of synthetic and real data sets when solving various
kinds of problems.

The authors of the article [7] proposed Dynamics of
Attention for Focus Transition (DAFT) as a human prior for
machine reasoning. DAFT streamlines reasoning by modeling
it as a continuous dynamic system using ordinary neural
differential equations. Experiments have shown that DAFT
provides performance comparable to the original model with
fewer steps. The step size is determined using a new metric,
Total Length of Transition (TLT). TLT enables a direct
quantitative comparison between the quality of reasoning of
different models. The proposed approach is one of the forms of
Neural ODE extension and allows to solve incomparably more
complex problems.

The authors of the article [8] draw attention to the fact that
the work [1] lacks some frequently used regulation mechanisms
in discrete neural networks (for example, dropout, Gaussian
noise). At the same time, these regulatory mechanisms are
critical in reducing generalization errors as well as in
improving the robustness of neural networks to adversarial
attacks. They proposed a new continuous neural network
framework called Neural Stochastic Differential Equation
(Neural SDE) network, which “naturally incorporates various
commonly used regularization mechanisms based on random
noise injection”. According to the authors, “the Neural SDE
network can achieve better generalization than the Neural ODE
and is more resistant to adversarial and non-adversarial input
perturbations”. The authors have developed a new efficient

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

backpropagation method for calculating the gradient and
training the SDE neural network in a scalable way.

In [9], it is proposed to use spectral element methods for
fast and accurate learning of the Neural ODE. Several
unlimited subproblems have been proposed to be solved using
coordinate descents. They alternately minimize coefficients and
weights using standard backpropagation and gradient
techniques. The result of the work done by the authors is an
optimization scheme that is parallel in time and has low
memory costs. The experiment showed that “on training
surrogate models of small and medium-scale dynamical
systems shows that it is at least one order of magnitude faster at
reaching a comparable value of the loss function”.

Neural ODEs are the latest example of continuous deep
learning models that are primarily developed in the context of
continuous recurrent networks. The topic of adapting Neural
ODE for use in other tasks is raised in [10]. The work itself is
dedicated to the study and improvement of learning standard
recurrent neural networks (RNNs). The authors made a
successful attempt to generalize RNNs to have continuous-time
hidden dynamics defined by ordinary differential equations
(ODE-RNNs). The proposed ODE-RNN model has more
efficient parameterization with irregular sampling of data
points. None of the models presented by the authors require
importing data at the preprocessing stage. This characteristic
makes them suitable for interfacing with irregularly sampled
time series that are often used in many applications.

The authors of [11] set out to develop a Universal
Differential Equations (UDE) methodology that complements
scientific models using machine learning frameworks. Authors
present a “software that allows for combining existing
scientific simulation libraries with neural networks to train and
augment known models with data-driven components”. Hybrid
machine learning models combine the best of different
methodologies. They can lead to significant improvements in
problem solving efficiency. The materials presented in this
article cover many scientific disciplines and combine many
different approaches to modeling. This really meets the
universality requirement put forward by the authors.

Neural ODEs contribute to the theoretical bridging of the
gap between dynamic systems and deep learning. This is
accomplished by using a black box approach. However, we
may face a situation, which the decoding of the internal state of
the black box is required. The work [12] is devoted to handling
this situation. The authors propose a system — “theoretic
perspective with the aim of clarifying the influence of several
design choices on the underlying dynamics”. It allows
processing in an infinite-dimensional space and led the authors
to create another variant of the Neural ODE extension - Neural
ODE variant based on a spectral discretization (GaINODE).

Another variant of the Neural ODE is proposed by the
authors of the article [13], whose trajectories evolve on an
energy functional parametrised by a neural network. This
method provides robustness to input disturbances and low
computational load. The proposed adaptation law is based on a
gradient descent procedure covering both terminal and
backpropagated settings. The authors also proposed the
introduction of certain regularizers to facilitate the optimization
process.

453

The authors of the article [14] find an explanation for the
rather low performance of Neural ODE in comparison with
discrete-layered models. In their opinion, the reason for this
situation lies in the inaccuracy of the existing methods for
assessing the gradient. The authors suggest using the Adaptive
Checkpoint Adjoint (ACA) method for the solution. According
to their idea, ACA removes redundant components for shallow
computation graphs during the backtrack and supports an
adaptive solution. Experiments have shown that ACA
guarantees a two-fold reduction in the number of errors in half
the training time. Thus, the ACA-trained Neural ODE
outperforms traditional ResNet in both accuracy and reliability
of repeated iterations.

The paper [15] is devoted to the application of Neural ODE
in problems of modeling the dynamics of continuous time.
According to the authors, their proposed new learning models
“characterize continuous-time dynamics and enable us to
develop high-performing policies using a small amount of
data”. In this case, the adaptation of Neural ODE to the solution
of this applied problem led to the fact that it was possible to
optimize the measurement schedules. And it also succeeded by
minimizing interactions with the environment while
maintaining optimal performance. According to the authors,
they were the first to extend the applicability of neural ODEs to
reinforcement learning (RL).

Finally, looking for an answer to the question “When are
Neural ODE Solutions Proper ODEs?” the work of the authors
is devoted [16]. The behavior of a trained neural network
directly depends on the numerical method embedded in it. If
the network is trained on a solver with too coarse sampling,
then when the solver is replaced, the error rate can increase
dramatically. Thus, it is necessary to carefully monitor the size
of the adaptive stride, otherwise the stride indicator may take
on some critical value. It can violate the whole concept of
Neural ODE, as it can violate the interpretation of the flow - a
combination of a vector field and a numerical method. The
authors proposed a step-by-step adaptation algorithm that
checks that the continuity property is preserved and adapts the
step size if necessary. Moreover, the algorithm ensures that the
proposed initial step is not too small. Failure to comply with
this condition would make such an algorithm not very
applicable in practice. To correctly determine the step size, the
algorithm requires taking into account a certain multiplicative
coefficient. Taking it into account, according to the authors, has
successfully proven itself in practice.

When presenting their concept, the authors of the original
article [1] noted the similarity of updating the hidden state of a
neural network with solving a differential equation by Euler's
method. However, today, it is generally known that Euler's
method has significant drawbacks. This method has a large
error, is computationally unstable and accumulates error at each
step, deviating from the integral curve. Therefore, a more
perfect modification must be used as a numerical method. It
must meet modern requirements for computing resources and
time resources.

The family of Runge-Kutta methods and their modifications
are widely used to solve nonlinear differential equations of
polynomial structure. As a rule, the Runge-Kutta methods of
the fourth and higher orders are used. To solve nonlinear

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

differential equations, it is necessary to use methods that
provide the required performance and accuracy of calculations
[17]. Therefore, the new scheme of the numerical method
proposed by the authors of this article was based on the Runge-
Kutta family of methods, which includes more efficient and
accurate numerical methods for solving differential equations.
The scheme should allow you to successfully apply all the
declared advantages of Neural ODE.

Thus, in the course of the research carried out by the
authors of this article, the authors have developed a new
scheme of the numerical method for implementation in Neural
ODE, based on the Runge-Kutta family of methods. The
proposed numerical method should provide guaranteed third-
order accuracy.

The analysis of previous experiments allowed us to
conclude that Neural ODE is a relevant and practically
applicable approach. This concept is relatively new, but is
already being actively studied and deserves closer study. The
first experiments confirm the applicability of Neural ODE in
practice and demonstrate results comparable to traditional
models. They have shown great promise in solving a number of
problems, including modeling continuous-time data and
building stream normalization with low computational costs.
Neural ODE achieves great success in free-form reversible
generative models, time series analysis and system
identification.

Using Neural ODE allows you to reach a certain trade-off
between the desired accuracy and training time. In turn, this
feature allows you to adapt the computational complexity of
the model for specific tasks and available computing resources.
The information we have so far about the results of
experiments in the field of Neural ODE suggests that Neural
ODE has promising prospects, despite the longer training time
for the model.

Section 2 of this article contains a description of the
implemented numerical method with a detailed presentation of
the mathematical apparatus. Section 3 presents the results of
the experiment, and Section 4 formulates the general
conclusions of the study.

II. IMPLEMENTED NUMERICAL METHOD

In this section, we present a description of the numerical
method and an estimation of the numerical model error based
on Runge-Kutta method.

The Runge-Kutta family of methods is a large class of
numerical methods for solving the Cauchy problem for
ordinary differential equations and their systems.

For Runge-Kutta methods, the calculation formulas are
uniquely determined by the Butcher table [18]. For the
Runge-Kutta method, the Butcher table has the form in

Eq. (1):

454

0
<
1/2 1/2 o
-1 2 3 a3 a3 (1
1 1/6 2/3 1/6 Cq 41 942 943
1/6 2/3 1/6 0 2 b2 b P

The calculation formulas of the third order Runge-Kutta
method in accordance with the table are presented in Eq. (2):

y'(x)=f(xp),
Yyl = Vn thy 1 6+2ky /3 +ky 16,x, 4 =x,+h
by = e vy)oky =B (o + 1/ 2, 3 +hy [2)
ley = (3 + Iy ypy + 2k —K))

2)

Let us present the Butcher table of the proposed method
based on the Runge-Kutta method. The Butcher table for the
proposed numerical method is presented in Eq. (3):

0
1/2 1/2
3/4 0 3/4 3)
1 1/6 1/3 1/2

1/6 1/3 1/2 0

The calculation formulas of the proposed method in
accordance with the Butcher table are presented in Eq. (4):

y'(x)=f(x,y),xn+1 =Xy +hy,
Vpal = Vg thy 16+ ky 134k /2,
ky :hnf(xn’yn)=
ky =hy f (x, +hy /2y, + ki 12)
ky =y f (3, +3hy, 14, y, +3ky 14),
ky =ty f (e + by vy 4k [6+ky 134Ky /2)

4)

To select an adaptive step, the author proposed calculation
formulas presented in Eq. (5):

-0.2

h,., =h 0.08(max|k /18 ~k, /18|) Q)

The error was determined by the method of Dormand and

Prens [19].

For the formulas of the Runge-Kutta methods, the equality
presented in Eq. (6):

Vou =0, AW F (v, h) =y, +>bk (6)

i=1

i-1

where k =h f(y, + zaifkf

j=l

) kl = hnf(y,,) s al/,b[- Butcher
table coefficients.

Method error at point x, , presented in Eq. (7):

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

=y, +hF(y,h)-y,)

Let us expand the error in the vicinity of the point x into

a Taylor series (see Eq. (8)):

© hl—l
e=h (F(yn,h,,)—zf'y(')j (8)
[
If ¢ = O(h”) , then the error for the Runge-Kutta formulas
of order p and presented in Eq. (9) [18]:

ES

s= WS,
n pt+j-1

Jj=1

©

where error function & = Zai(

i=1

differential (r+1) from f(y),i=1,...,n

”D}”” , D,-(M) order

r+l”

Substituting the error function, we get the formula for the
error (see Eq. (10)):

= ih:w‘ iaf(/)Df(p+j) (10)

j=1 i=1

For the Runge-Kutta formulas of order p error function
0. =0, r=1,..., p—1, which means (see Eq. (11)):

6‘("(Hl)zo’ i:l, VZI,.--,p_l (11)

cLn

D. Butcher in his work [18] gave formulas for calculating
(

the coefficients « 1) depending on the coefficient of the
Butcher table.

The author [18] proposed the choice of the adaptive step in
the form presented in Eq. (12):

hn+| = hn 008 (max|¢n+l

)" -
) -

=1, 0.08(max|k, /18— k, /18|)

=1 0.08(max|p, —v (12)

n+l

0.2

where @ =y -y =(k —k)/18.

The coefficients of the Butcher table, taking into account
the choice of the step, have the values presented in
Eq. (13):

455

c1=0,cz=l,c3=i,c4=1,
2 4
~]=i,52=l,~3=£,~4=0 (13)
18 3 18
azla =0,a IEQ :la :la :l
21 2’ 31 a5} 47 41 6’42 37 3 2’

D the Butcher

coefficients we obtain zero values for the coefficients (see Eq.

(14)).

Substituting into the formulas for «

i

" =3b ~1=b +b,+b +b, —1=0

1 1
al(z) = Zb,cl_ _E: cb +c,b, +c.b, +c,b, _E: 0

1 1
(3) 2
a :—Eb_c —-——=
: 25 e

1 1
:5(012 b, +022 b2+032 b, +c42 b4)—g:0

G) _
a,” =

1
b‘_al_,,c,, —g =b,a,c +ba,c +

i

(14)

1
+ba_c +ba,c +ba _c +ba.c. ——=0
6

373272 474171 474272 4774373

o _ 1
a,” = blcl,a!,/,ck/, - o =b,ca,c +bca,c +

i

1
+bca_c +bca c +bca_c +bca.c ——=0
8

37392 474%a 47402 47458173
(4 1 2
a):—Zba_c
3 b i
i

| &

For accuracy of the Runge-Kutta method, it is necessary
and sufficient to satisfy the conditions for the smallness of the
(»)

i

1
24

2 2 2
bZaZICI +b3a3lcl +b3a3202 +

1
—— =0
24

2 2 2
+b4a4lcl +b4a42C2 +b4a43c3

coefficients up to « ", since in the Taylor expansion of the

error, only the terms of the order /""" .[18-21]

Thus, in the Taylor series expansion of the error function,
the terms will be zero up to the fourth order. This confirms
that our proposed numerical method based on a modification
of the Runge-Kutta method has a guaranteed accuracy of the
third order.

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

III. COMPUTATIONAL EXPERIMENT

In this section, the experimental methods are presented, as
well as the results of the calculations performed.

The purpose of the experiment is to compare our proposed
Neural ODE with the integration of a numerical method based
on a modification of the Runge-Kutta method with already
existing standard machine learning methods.

The following methods were selected to participate in the
experiment: Gaussian Progress, Linear Regression, Random
Forest, Neural Network, Decision Tree, Neural ODE (with the
proposed modification). These methods are standard and most
commonly used in the field of machine learning.

The experiment was carried out on 300 examples of
solving a standard forecasting problem. Figures 1 and 2 show
the timing of training and calculations (units of time -
seconds).

Training Time

o

7E Neural Network
Gaussian Process
Linear Regression
Random Forest

Neural ODE

N W s M

50

)))) xan‘?ﬁéissmn Tree
100 150 200 250 SOtJJ:' P

Fig. 1. Training time

Evaluation Time

3.5F

\ Random Forest
3.0f

TN ———— o Gaussian Process
2.5¢
2.0t Neural Network
1.50 Linear Regressior
1.0F Neural ODE
0.5¢ Decision Tree

50100 150 200 280 308 mples

Fig. 2. Evaluation time

The results of the experiment allow us to conclude that the
proposed modification of the Neural ODE (under the given
experimental conditions) shows, relative to other methods, a
shorter computation time, comparable only to the indicators of
the Decision Tree method. This advantage of the method is
easy to explain and is confirmed by the very concept of this
approach: a decrease in the number of layers of the neural
network in order to minimize the problem of fading gradients.

Standard Neural Networks showed the maximum training
time, which is also explained by the large number of layers.

The Random Forest method shows one of the minimum
training times. However, it takes the longest to calculate.

It should be noted that only the Decision Tree methods and
the proposed modification of the Neural ODE showed
comparable results of training and computation times.

456

Separately comparing specifically Neural Network and
Neural ODE with an integrated numerical method, the
following conclusion is obvious: Neural ODE is more
preferable in terms of training time and computation time.

Thus, the experimental results have shown the operability
and computational efficiency of Neural ODE with the
proposed modification of the Runge-Kutta method.

IV. CONCLUSION

Using Neural ODE allows you to reach a certain trade-off
between the desired accuracy and training time. In turn, this
feature allows you to adapt the computational complexity of
the model for specific tasks and available computing
resources.

Within the framework of this work, a numerical method
based on a modification of the Runge-Kutta method was
presented.

An experiment was carried out to compare the Neural ODE
and the proposed numerical method integrated into it with
other standard machine learning methods. The experimental
results confirmed the practical applicability of the model
proposed by the authors. Neural ODE with an integrated
modification of the Runge-Kutta method with guaranteed
third-order accuracy showed the minimum training time and
computation time relative to other presented machine learning
methods.

Neural ODE is a relevant and practically applicable
approach. This concept is relatively new, but is already being
actively studied and deserves a closer study. We hope that
applying Neural ODE with our proposed numerical method
will improve the robustness and interpretability of the Neural
ODE concept. The results of our work are ways to make a
direct practical contribution to the development of the Neural
ODE methodology.

REFERENCES

T.Q. Chen, Y. Rubanova, J. Bettencourt and D.K. Duvenaud, “Neural
ordinary differential equations”, in Advances in neural information
processing systems, 2018, pp. 6571-6583.

Q. Li and S. Hao, “An optimal control approach to deep learning and
applications to discrete-weight neural networks”, Web:
https://arxiv.org/abs/1803.01299.

C. Beer and O. Barak, “One Step Back, Two Steps Forward:
Interference and Learning in Recurrent Neural Networks”, in Neural
Computation, vol. 31, Aug. 2019, pp. 1985-2003.

E. Dupont, A. Doucet and Y.W. Teh, “Augmented Neural ODEs”,
Web: https://arxiv.org/abs/1904.01681.

A. Norcliffe, C. Bodnar, B. Day, N. Simidjievski and P. Lio, “On
Second Order Behaviour in Augmented Neural ODEs”, Web:
https://arxiv.org/abs/2006.07220.

J. Jia and A. Benson, “Neural Jump Stochastic Differential
Equations”, Web: https://arxiv.org/abs/1905.10403.

W. Kim and Y. Lee, “Learning Dynamics of Attention: Human Prior
for Interpretable Machine Reasoning”, in Advances in Neural
Information Processing Systems, 2019, pp. 6019-6030.

X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar and C.-J. Hsieh, “Neural
SDE: Stabilizing Neural ODE Networks with Stochastic Noise”,
Web: https://arxiv.org/abs/1906.02355.

A. Quaglino, M. Gallieri, J. Masci and J. Koutn'ik, “SNODE:
Spectral Discretization of Neural ODEs for System Identification”,
Web: https://arxiv.org/abs/1906.07038.

Y. Rubanova, T.Q. Chen and D. Duvenaud, “Latent odes for
irregularly-sampled time series”, Web:
https://arxiv.org/abs/1907.03907.

(1]

(2]

(3]

[4]
(5]

(6]
(7]

(8]

(9]

[10]

[11] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R.
Supekar, D. Skinner and A. Ramadhan, “Universal Differential
Equations for Scientific Machine Learning”, Web:
https://arxiv.org/abs/2001.04385.

[12] S. Massaroli, M. Poli, J. Park, A. Yamashita and H. Asama,
“Dissecting Neural ODEs”, Web: https://arxiv.org/abs/2002.08071.

[13] S. Massaroli, M. Poli, M. Bin, J. Park, A. Yamashita and H. Asama,
“Stable Neural Flows”, Web: https://arxiv.org/abs/2003.08063.

[14] J. Zhuang, N. Dvornek, X. Li, S. Tatikonda, X. Papademetris and J.
Duncan, “Adaptive Checkpoint Adjoint Method for Gradient
Estimation in Neural ODE”, Web: https://arxiv.org/abs/2006.02493.

[15] J. Du, J. Futoma and F. Doshi-Velez, “Model-based Reinforcement
Learning for Semi-Markov Decision Processes with Neural ODEs”,
Web: https://arxiv.org/abs/2006.16210.

457

PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

[16] K. Ott, P. Katiyar, P. Hennig and M. Tiemann, “When are Neural
ODE Solutions Proper ODEs?”, Web:
https://arxiv.org/abs/2007.15386.

[17] S.E. Ivanov, “A numerical method for solving differential equations
of a polynomial structure based on modification of the Runghe-Kutta
method”, in J. Scientific Horizons, vol. 11,2018, pp. 16-22.

[18] J.C. Butcher, “Coefficients for the study of Runge-Kutta integration
processes”, in J. of Comp. and Appl. Math., 1963, pp. 185-201.

[19] J.R. Dormand and P.J. Prince, “A Family of Embedded Runge-Kutia
Formulae”, in J. Australian Math. Soc., vol. 6, 1980, pp. 19-26.

[20] J.C. Butcher, “On Runge-Kutta processes of high order”, in J.
Australian Math. Soc., vol. 4, 1964, pp. 179-194.

[21] J.R. Dormand and P.J. Prince, “New Runge-Kutta algorithms for
numerical simulation in dynamical astronomy”, in Celestial
Mechanics, vol. 18, 1978, pp. 223-232.

