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Abstract—The data sensing and communication technolo-
gies of Industrial Internet of Things (IIoT) enables monitoring
technical state and utilization conditions for industrial rotary
machinery. The monitoring system is based on multiple sensors
that embed or surround machinery unit under the observation.
The sensed data are used for diagnostics of the machinery
operation and utilization processes. In this paper, we construct
a digital profile for a given machinery. Its digital profile is
constructed from the sensed data as information model evolving in
time. Hence, detection of deviations in the digital profile provides
basic information on possible faults and other incorrections in
industrial rotary machinery. The NASA bearing dataset was used
to evaluate the proposed model efficiency.

I. INTRODUCTION

A. Background

According to the recent study [1], [2], an approach based on
CNN and DNN for bearing health classification has limitations:
feasibility study for datasets; model utilization. Moreover
in [3] the CNN-based approach showed 99% accuracy on the
test data. However, the unseen bearings in train stage, were
misclassified in the test stage.

The accuracy evaluation on unseen test data shows that
almost all the model configurations can detect a fault accu-
rately [4], but with unsuccessful fault classification (healthy,
inner, or outer ring defect). The best CNN model based on
time-domain features showed max accuracy at 75%. NN-based
pre-trained model utilization on open datasets does not guar-
antee the same accuracy, while each machinery unit is unique.
To solve that problem transfer learning [5] is implemented.

Another technique for conditional state monitoring is devi-
ation detection rather than classify defects or condition status.
This approach allows detecting deviations in the machinery
unit without a labeled dataset, just using unmarked sensory
data.

The rest of the paper is organized as follows. Section II in-
troduces our methodology for the deviation detection to apply
further in industrial rotary machinery diagnostics. Section III
describes our early experiments with the deviation detection
model. Section IV summarizes the results of this paper.

II. DEVIATION DETECTION BASED ON DIGITAL PROFILE

A. Deviation detection approach utilization

The proposed deviation detection model is based on refer-
ring digital profiles of a unit [6]. The reference digital profile

represents the technical state of the unit in normal operation
mode. The technique is divided into the following two steps
(modes).

1) Adaptation mode. The reference digital profile con-
struction with data from various sensors while the
equipment runs under normal conditions. This mode
requires the utilization of machinery in all allowed
operation modes, like a startup, running under load,
etc. Data normalization is required in case data are
presented as a feature vector.

2) Control mode. The model detects deviations by ap-
plying a comparison reference profile with the current
observations where the last one had made from data
obtained with the same sensors. Data normalization
is required in case data are presented as a feature
vector.

Additionally, let us introduce the ε coefficient. If the
difference between current and reference profile is more than ε,
we suppose, the machinery has deviations in the current state.
In this way operator attention must be paid. The border ratio
ε requires tuning for each machinery unit.

Technical conditional monitoring methods are based on
digital profiles. In this case, the deviation detection uses
matching the current data to the profile. No data markup is
required. The process of digital profile construction and update
goes automatically without staff and machinery halting.

Deviation detection model application showed in Fig. 1.
There are two digital profiles are used: reference — for
the healthy technical state, current — to compare with the
reference profile and detect deviations in the machinery unit.
Here, we extract a feature vector F [7] from heterogeneous
data. These data are obtained from sensors and used to create
a digital profile. The coefficient ε is applied to set detector
limits.

Deviation detection digital profile-based method allows
to modify reference profile (include new operation modes)
without model stop and reconfiguration. There are several ways
to create a digital profile:

• Autoencoders (deep, VAE) [8],

• Hopfield network provides patterns recognition [9]
that could be used as digital profiles.

• Complex models can be used for feature vectors as an
input, extracted from a raw signal.
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Fig. 1. Data flow diagram for a deviation detection model based on a feature vector

TABLE I. FEATURE VECTOR, EXTRACTED FROM A RAW SIGNAL

Feature name Formula

Root mean square rms =

√
1
n

i<n∑
i=0

x2
i

Mean value mean = 1
n

i<n∑
i=0

xi

Variance var = 1
n

i<n∑
i=0

(xi − mean)2

Maximum value max = max(xi)
Minimum value min = min(xi)

Kurtosis kurt =

i<n∑
i=0

(xi−mean)4

n∗var2
− 3

Line integral li =
i<n∑
i=0

|x(i+1) − xi|

Skewness sk =

1
n

i<n∑
i=0

(xi−mean)3(√√√√ 1
n

i<n∑
i=0

(xi−mean)2

)3

B. Input data preparation

To evaluate model accuracy the feature vector with time-
domain features was extracted from filtered vibration sensor
signal from NASA bearing dataset [10]. For rolling machinery
parts, like bearings, the data from the vibration sensor could
be selected as a base to build the reference digital profile.
The analog signal from vibration sensor was converted by
ADC (analog-to-digital converter) into a1, a2, . . . , am digital
samples. Each n samples from digital signal are taken to
extract N features x1, x2, . . . , xN , like RMS, mean, min and
max values, crest factor, variance, etc. [7]. Finally, 8 features
are presented in table I. Another approach of data preparation
is using spectrogram as input data for making profiles [11].

When the adaptation mode is set a vector of features is
extracted from a signal with n samples. We use this feature
vector to build a reference digital profile in the adaptation
mode.

In this study, each feature must be normalized by Equa-
tion 1

xi =
xi − (Xmini − b)

(Xmaxi + b)− (Xmini − b)
(1)

Additionally, maximum and minimum feature values could
be expanded by the b coefficient, with Equation 2. This is
used in case xi > Xmaxi, or xi < Xmini. Here C — is an
“expansion“ coefficient (from 0 to 1).

b = C ∗ (Fmaxi − Fmini)/2 (2)

C. The proposed model description

Let us describe how the proposed model works. Firstly we
must determine the number of features xi in the feature vector
F . After normalization, we denote all possible pairs npairs

amount of the features in F with the following Equation 3:

npairs =
(nfeatures − 1) ∗ nfeatures

2
(3)

where nfeatures — is a length of feature vector F .

In the adaptation mode, for each feature pair in F , the two-
dimensional array B1, . . . , Bnpairs

is created with size m ∗
m, where m determinates by available RAM, and required
precision (optimal value is 100). Each Bi array — is a table
representation of two-variable function 4:

ncases = f(xi, xj) (4)

where xi and xj — a pair of two normalized features from
F , ncases — indicates how many times a pair of xi and xj

features occured in total during all uptime in the adaptation
mode. Normalized feature values are used as indices for array
Bk. The number of B arrays equals npairs: B1, . . . , Bnpairs .
All cells in Bk must be initiated with a zero value.

The adaptation mode aims to record normalized feature
pairs. This is implemented by incrementing the value in the
appropriate cell of Bk array with indices xi and xj . For each
feature pair xi and xj new case records as follows 5:

Bk[xi][xj ] = Bk[xi][xj ] + 1 (5)

The Bi array can be visualized as a surface and shown in
Fig. 2
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Fig. 2. Visualization of the array Bk for pair of features “RMS” and “line
integral”

Fig. 3. Processing array Bk for pair of features xi = 5 and xj = 6, with
3 ∗ 3 kernel

In the adaptation mode, the machinery unit is operated
under normal conditions in different modes, except breakdown.
This is used to gather as much data as we can about the normal
condition.

When the model is fit enough for some time, it sets by
staff into the control mode (applying a comparison reference
profile with the current observation). In this control mode, the
feature vector F is calculated, likewise in the adaptation mode.
After that, all feature pairs npairs were denoted. Then all
B1, . . . , Bnpairs

arrays are observed. Example of processing
Bk array for some feature pair xi and xj shown on the Fig. 3.

In the control mode, we analyze the Bk array, with search
kernel n ∗n. If inside the kernel n ∗n with a center in Bk[xi,
xj] found a value that bigger or equal P -border (this value
must be defined by the user), the “check” was successful.
Otherwise, the counterfailed, increases by one. After analysis
of all B1, . . . , Bnpairs

for all pairs in F , we calculate the
metrics M by the following equation 6:

M =
counterfailed

npairs
(6)

If the metrics M is nearby zero value, the technical state
represents a good condition, otherwise, M → 1 indicates devi-
ations in normal operation mode. Introduced early coefficient
ε clearly shows deviations for the case: M > ε.

III. EARLY EXPERIMENTS

We used NASA bearing dataset to evaluate model perfor-
mance in the deviation detection task. This dataset consists
of three experiments for rolling bearings and describes a

Fig. 4. Deviation detector test on NASA bearing dataset

Fig. 5. “RMS” value from each feature vector F

test-to-failure experiment. The second bearing with the first
ADC channel was selected as input data. Bearing failure was
occurred after exceeding the designed lifetime of the bearing
which is more than 100 million revolutions. The dataset for this
bearing consists of individual files. These files are 1-second
vibration signal snapshots recorded at specific intervals. Each
file consists of 20,480 points with the sampling rate set at
20 kHz. Eight features from every 984 files were extracted:
F1, . . . , F984 with I. After that, we used F1, . . . , F49 vectors
to evaluate the minimum and maximum values for each feature
in Fi. Other F50, . . . , F349 feature vectors were used to fit the
model in the adaptation mode. The last F350, . . . , F984 were
applied in the control mode to evaluate metrics M . The results
of the model test presented in Fig. 4.

RMS and Kurtosis feature values were selected as a refer-
ence from the feature vector F in Fig. 5 and Fig. 6.

Here red dotted lines visualize deviations on the feature
value plots. It can be noticed that the proposed model for the
first time detected deviation at the 540-th file (F540), otherwise
according to feature value plots deviations could be detected
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Fig. 6. “Kurtosis” value from each feature vector F

more lately. The technique based on the pair feature analysis
can detect deviations more earlier.

Additionally, the model can be improved by normalizing
features with machinery shaft RPM. Moreover we cat use
function f = M(t) to analyze time-series sequences. In this
case, a one-shot rise for M could be marked as fake and will
not be take into account. The model accuracy can be improved
by using more feature pairs or use feature by three, instead of
two.

IV. CONCLUSION

This short paper considered the opportunities of technical
conditional monitoring methods for rotary machinery diagnos-
tics. We identified the basic research problems for selecting
a digital profile construction method, transforming raw sensed
data, and applying the deviation detection model. We proposed
a new deviation detection model based on feature extraction.
Testing results showed the ability of the model to detect
abnormal conditions during normal operation mode.
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