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Abstract—In this paper, we explore the applicability of CNN
for the classification of bearing defects. The approaches to the
CNN evaluation are discussed and the one that brings the
formulation of the diagnostic problem closer to real conditions is
purposed. We demonstrate problems associated with the practical
application of CNN in monitoring industrial equipment. We show
that hyperparameter optimization is able to improve training
process stability and consequently provide the reliability of the
CNN-based diagnostic method. Our early experiments indicate
a possibility of application CNN for failure diagnostics using
a vibration signal provided that the training data contains
a sufficient number of bearings with various types of faults,
ensuring high representativeness of the dataset.

I. INTRODUCTION

With the rising of the industrial Internet of things, big

data, and machine learning, intelligent systems of mechan-

ical equipment condition monitoring are increasingly being

developed [1]. Early detection of defects and failure prediction

allows preventing unscheduled downtime, economic loss, and

accidents. The rolling bearing damages are the most common

failures, therefore the problem of bearing fault detection is the

main one that attracts the attention of many researchers [2].

The Convolution Neural Networks (CNN) is one of the

most promising deep learning methods. Being a data-driven

approach CNN enables end-to-end learning without requiring

manual feature engineering. The application of CNN to bear-

ing fault detection has been investigated by many researchers

[3]–[9]. The impressive results are demonstrated, the reported

accuracy of the proposed methods often achieves almost 100%.

However, most of the works evaluate the accuracy of the model

on a dataset that includes signal samples for the same bearings

on which the training was carried out [3]–[6]. In the case of

applying the bearing fault detection method in practice, we

need to diagnose the bearing, which was not included in the

training dataset. That is, testing the model on data from the

same bearings on which it was trained is not correct, even

if the training and test datasets contain data obtained under

different conditions (rotation speed, load, time).

In the best case, we are able to collect a dataset containing

examples of failures that have already happened on this

equipment in order to train the model to diagnose or predict

similar failures of this equipment in the future. Regarding

the bearing diagnostics, to correctly evaluate the model, it

is necessary to separate the training and test data by bearing

instances, observing, as much as possible, an equal percentage

of bearing condition examples in both datasets.

In this paper, we explore the applicability of CNN for

the classification of bearing defects. To evaluate the CNN

accuracy, we use a separate test dataset containing those bear-

ings that were absent in the training and validation datasets.

This brings the formulation of the diagnostic problem closer

to real conditions and demonstrates the problems associated

with the practical application of CNN in monitoring industrial

equipment.

The rest of the paper is organized as follows. Section II

introduces our methodology for using CNN. Section III dis-

cusses experiments of applying CNN to the classification of

bearing defects. Section IV summarizes our early experimental

results.

II. METHODOLOGY

We use the Paderborn university dataset [10], which con-

tains 6 healthy bearings, 12 bearings with artificial damages,

and 14 with natural damages, caused by accelerated life tests.

The damage type is classified as inner race defect or outer race

defect. Hence, we will refer to the following bearing classes:

healthy (H), inner race defect (IR), and outer race defect (OR).

The dataset contains the records of next signals:

• vibration (acceleration of the bearing housing),

• motor current,

• radial force,

• load torque,

• rotational speed,

• oil temperature in the bearing module.

The 20 measurements of 4 seconds each were done for 4 op-

erating conditions. The operating conditions varied rotational

speed, load torque, and radial force.

To simulate the deployment of a CNN-based fault diagnostic

system, we chose four bearings of each class to the training

dataset and one of each class to the test dataset. Among the

faulty bearings, we chose only those with natural damage. The

names of selected bearings are given in Table I. We randomly

select 30% from the training dataset as the validation dataset.

As input data of CNN, we use spectrograms obtained by

Short-time Fourier transform (STFT). The spectrograms are

constructed from 256 one-sided spectra of vibration signal

segments of length 512, smoothed by the Hann window

function. No overlap between signal segments is applied.
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TABLE I. DATASET 
CATEGORIZATION

Set No. Healthy (H) Outer ring
damage (OR)

Inner ring
damage (IR)

1 K001 KA04 KI04
2 K002 KA15 KI14
3 K003 KA16 KI16
4 K004 KA22 KI18
5 K005 KA30 KI21

Hence, obtained spectrograms have a resolution of 257 along

the frequency axis and 256 along the time axis. Since the

signal sampling rate is 64 kHz, each spectrogram covers a

time interval of approximately 2 seconds. To match the size

of the spectrogram with the input of the CNN we resize

the spectrogram to 256x256 by bicubic interpolation and

normalize to an interval from 0 to 1. The examples of input

data (spectrograms) are shown in Fig. 1.

We use 2D CNN to classify bearing conditions by spec-

trograms of the vibration signal. The CNN was purposed by

Yann LeCun et al. [11] for image classification and is widely

used today. The CNN consists of multiple convolutions and

pooling layers that perform feature extraction followed by a

multilayer perceptron that performs classification.

The architecture of CNN used in our experiments is shown

in Table II. We use CNN with 7 convolution layers (Conv2D)

and 2 fully-connected layers (Dense). After each convolution

layer, the max-pooling layer (MaxPool2D) is applied to reduce

the spatial size of the feature map. And before each fully-

connected layer, a dropout layer (Dropout) is applied to reduce

overfitting. The number of filters and the kernel size of

convolution layers are denoted as F and K respectively. The

index n defines the CNN width. During architecture search we

vary n from 0 to 4. The pooling size of max-pooling layers

is designated as P . The number of neurons in fully-connected

layers is denoted as N and the dropout rate of the dropout

layer is D.

We use the ReLU activation function in all convolution

layers and the first fully-connected layer. In the last fully-

connected layer we use the softmax activation function. We

apply L2 regularization to the weights of convolution layers

with a default factor of 0.01. We use Adam optimizer [12]

with a default learning rate of 0.0005 and categorical cross-

entropy loss function. The number of training epochs was set

to 100.

We use the next software stack. The Keras framework

with TensorFlow backend is used to implement and train

CNN. The Optuna framework is used for hyperparameter

optimization. The SciPy and OpenCV libraries are applied for

data preprocessing.

III. RESULTS AND DISCUSSION

We conduct a simple CNN architecture search by varying

its width n from 0 to 4 (see Table II). We use set 1-4 for train

and validation datasets and set 5 for testing, corresponding to

TABLE II. THE CNN 
ARCHITECTURE

Layer Output shape Hyperparameters
Input 256x256x1

Conv2D 256x256x2n F=2n, K=3x3, ReLU
MaxPool2D 128x128x2n P=2x2

Conv2D 128x128x2n+1 F=2n+1, K=3x3, ReLU

MaxPool2D 64x64x2n+1 P=2x2

Conv2D 64x64x2n+2 F=2n+2, K=3x3, ReLU

MaxPool2D 32x32x2n+2 P=2x2

Conv2D 32x32x2n+3 F=2n+3, K=3x3, ReLU

MaxPool2D 16x16x2n+3 P=2x2

Conv2D 16x16x2n+4 F=2n+4, K=3x3, ReLU

MaxPool2D 8x8x2n+4 P=2x2

Conv2D 8x8x2n+5 F=2n+5, K=3x3, ReLU

MaxPool2D 4x4x2n+5 P=2x2

Conv2D 4x4x2n+4 F=2n+4, K=3x3, ReLU

MaxPool2D 2x2x2n+4 P=2x2

Dropout 2n+6 D=0.2, ReLU

Dense 2n+6 N=2n+6

Dropout 2n+6 D=0.2
Dense 3 N=3, softmax

TABLE III. THE CNN ACCURACY FOR 
DIFFERENT n

n Train accuracy Validation accuracy Test accuracy
0 36% 26% 35%
1 34% 32% 28%
2 98% 97% 28%
3 98% 99.7% 74%
4 99.9% 99.7% 9%

Table I. The results of the CNN architecture search are shown

in Table III.

One can see, that when n is less than 2 the accuracy on all

datasets is at the level of a random decision. This indicates that

there is no convergence of the training process. When n = 2
the train and test accuracy exceeds 95%, but test accuracy is

very low, which suggests that the CNN has poor generalization

and is able to classify only those bearings on which it was

trained. With n = 3, the results are satisfactory and indicate

that CNN can be trained so that it is able to classify new

bearings. When n = 4, overfitting is observed.

Hence, we can mark two milestones when developing a

CNN for vibration diagnostics of bearings:

1) the CNN is able to classify data acquired from the same

bearings that were in the training dataset;

2) the CNN is able to classify data acquired from bearings

unseen before.

Only the second milestone would allow us to deploy CNN

in the production diagnostic system. But the first one also

remains necessary and may help steer the search in the right

direction.

During experiments, we observe instability in test accuracy

and loss between training trials. We show this effect for best-

performed CNN (with n = 3) in Fig. 2 an 3. One can see that

the test loss has a large magnitude and variance, and the test

accuracy sometimes exceeds 70%, and sometimes it remains
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(a) (c)                                                                                                                 (b)

Fig. 1. The spectrogram examples: healthy (a), outer race defect (b), and inner race defect (c)

Fig. 2. The optimization learning curve of 10 training trials of the same CNN

Fig. 3. The performance learning curve of 10 training trials of the same CNN

stable at the same level of about 30%. Such a variance in

trends from one training trial to another may be due to the

random initialization of CNN weights and the stochastic nature

of the training process. This instability suggests that the high

accuracy of the model is due to chance. To develop reliable

diagnostic methods, it is necessary to reduce this instability as

much as possible.

To reduce this variance, we have performed optimization

of training hyperparameters, introducing standard deviation of

test accuracy over 5 training trails as one of the objectives.

Hence, we set the multiobjective optimization task, where we

vary next hyperparameters:

• L2 regularization – from 0.001 to 0.1 (log scale);

• dropout (for two fully-connected layers) – from 0 to 0.7;

• learning rate – from 0.00001 to 0.001 (log scale).

We maximize two objectives:

1) mean validation accuracy,

2) mean test accuracy;

and minimize:

1) mean validation loss;

2) mean test loss;

3) standard deviation of test accuracy.

The objectives are calculated over 5 training trails of the

same CNN configuration. The 93 evaluation trials have been

done. The first 43 hyperparameters sets have been sampled

randomly and the rest 50 have been sampled by the MOTPE

algorithm [13].

Fig. 4 shows the resulting Pareto-front for the test accuracy

mean and standard deviation. The optimal configuration can

be considered as having the maximum mean accuracy, since

the standard deviation is relatively small, in comparison with

other configurations the mean accuracy of which is higher than

40%. Hyperparameters of this configuration:

• L2 regularization – 0.001697;

• dropout for the first layer – 0.2148;

• dropout for the second layer – 0.5096;

• learning rate – 5.302 · 10−5.

Fig. 5 and 6 shows the learning curves for the selected

optimal configuration. One can see that for all 5 trials similar

trends are observed, the training process is more stable in com-

parison with the one that was observed before the optimization

of the training hyperparameters (Fig. 2 and 3). Though the

test error is still rising, which indicates the overfitting of

the model, its maximum value is about two times less than

before optimization. The obtained results demonstrate the

applicability of optimization of training hyperparameters to

increase the stability of the training process and the reliability

of the model.

The confusion matrices for 5 training trials are shown in

Fig. 7. It can be seen that in most cases the model classifies the

health bearing (H) and inner ring defect (IR) with satisfactory
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Fig. 4. The Pareto-front: test accuracy mean vs test accuracy standard
deviation

Fig. 5. The optimization learning curve of 5 training trials of the same CNN
after hyperparameters optimization

Fig. 6. The performance learning curve of 5 training trials of the same CNN
after hyperparameters optimization

accuracy, but the accuracy of outer ring defect (OR) classifica-

tion is almost zero. This may indicate that the vibration signal

of the bearing KA30 (OR) defect is similar to IR defects from

the training dataset. In this case, data collection from more

bearings is required to improve the classification accuracy.

To check whether the selected architecture and training

hyperparameters are optimal only for the selected division of

the dataset into training and test sets, cross-validation was

carried out. According to Table I, data is split into 5 folds

(sets), 4 folds is used for training and validation datasets,

and 1 for test dataset, resulting in 5 combinations. For each

combination, training is repeated 5 times to evaluate training

process stability. Fig. 8 and 9 show the learning curves for each

combination. One can see that the general trends of the curves

remain the same within a combination. This suggests that the

chosen training hyperparameters ensure the stability of the

training process. The question of the possibility of selecting

more optimal parameters for each combination of training and

testing data remains open. Fig. 10 shows confusion matrices

for 5 combinations of training and testing data normalized

over the true conditions and averaged over 5 training trials.

The accuracy of classification is low and varies from one data

combination to another. Similar results for cross-validation of

CNN on the Paderborn university dataset were observed by

Pandhare et.al. [7].

The third experiment (fold 3 as test set) outstands among

others. The CNN accuracy on the test data exceeds 80%.

This may indicate that the mode of the defects in the test

dataset coincided with the mode of the defects in the training

dataset. This, in turn, demonstrates the possibility of diag-

nosing bearing defects in practice, when a diagnosed bearing

was not in the training dataset. The condition for such a

possibility is the presence in the training dataset of bearings

with a similar mode of defects. The likelihood of having such

bearings in the training dataset increases with the number

of bearings and the variety of their defects. Thus, in the

presence of a sufficiently large data set, it is possible to apply

CNN for failure diagnostics using a vibration signal. However,

collecting enough data for training is difficult in the case of

bearings. The task of diagnosing/classifying the state of units

that often fail or wear out seems to be more feasible. In this

case, it is possible to collect enough examples of faults and

then, by introducing CNN-based diagnostics, perform fault

detection in the early stages, as well as evaluate the remaining

useful life, if there is historical data on the fault progression.

In summary, our experimental results demonstrated the

possibility of application CNN to failure diagnostics using

a vibration signal provided that the training data contains a

sufficient number of bearings with various types of faults,

ensuring a high representativeness of dataset. However, since

in practice it is difficult to collect a sufficient amount of labeled

data, transfer learning methods can be considered for applying

CNN in such cases [14]–[16].

IV. CONCLUSION

In this paper, we focus on the problem of diagnosing

bearing faults using CNN. We discuss the approaches to the

evaluation of CNN accuracy in the context of bearing faults

diagnosing. We argue that for real application the model

quality should be evaluated on the bearing instances which

was not included in train data. We show, that training process
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Fig. 7. The confusion matrices for 5 training trials normalized over the true conditions

Fig. 8. The performance learning curve for 5 combinations of training and testing data

Fig. 9. The optimization learning curve for 5 combinations of training and testing data

Fig. 10. The confusion matrices for 5 combinations of training and testing data normalized over the true conditions and averaged over 5 training trials

stability should be checked since the stochastic nature of

the training process could lead to falsely successful results.

Hence, the training process stability should be increased as

much as possible to provide the reliability of the diagnostic

method. We demonstrate that a hyperparameter optimization

is an effective tool for increasing the stability of the neural

network training process, which would be difficult to achieve

by manual selection.
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