
Speech Recognition for Mobile Linux Distrubitions
in the Case of Aurora OS

Alexey Andreev
Open Mobile Platform

St.Petersburg, Russia

a.andreev@omprussia.ru

Kirill Chuvilin
Open Mobile Platform

Moscow, Russia

k.chuvilin@omprussia.ru

Moscow Institute of Physics and Technology

Moscow, Russia

kirill.chuvilin@phystech.edu

Abstract—Aurora OS is a POSIX-compatible mobile Linux
distribution designed for enterprise and business purposes. The
main application area of devices based on Aurora OS is cor-
porations in Russia. For example, such devices are used by
field workers to receive tasks and send reports. The reports are
generated by filling out complex forms with a large number of
input fields and options to choose from. Speech recognition allows
to significantly speed up this process. Aurora OS has no built-
in tools to implement such functions, so developers of software
for field workers need to use a third-party solution. There are
several voice recognition engines for POSIX-compatible systems,
but only those that support the Russian language, can work
locally on devices, and have a free license are suitable for the
task. The only solution for the task that meets the criteria is the
Kaldi engine. However, it depends on libraries implemented using
Fortran, and Aurora OS does not support this programming
language. Therefore, it was necessary to develop a way to use
software implemented in Fortran in an environment that does not
have a native support for it. This paper proposes an approach
for solving such a problem, which can be applied to all similar
cases.

I. INTRODUCTION

A. Speech recognition on mobile devices

Automatic speech recognition (ASR) is convenient for many

aspects of mobile device use:

• switch the modes;

• setup the alarms volume and notification modes;

• launch available applications;

• control connected devices and sensors;

• call contacts.

For mobile operating systems aimed at the consumer market,

such solutions come by default: Siri for iOS and iPadOS

and Google Assistant for Android [1], [2]. They provide both

solutions for system UI and APIs for third-party developers to

interact with them.

The speech recognition feature (speech to text, STT) is also

in wide demand. It allows you to significantly speed up text

input, especially in cases where the use of other input methods

is difficult or limited. This is useful, for example, for the

following tasks:

• notes taking;

• composing of shorts messages;

• speech translation.

An example of such input solution is GBoard keyboard

application [3].

There are two approaches to ASR implementation: client-

server or local solution. In some cases, mixed approaches are

used. Client-server solution is often easier to implement. In

addition, the server provides more computing power than the

local device, which allows both speeding up recognition and

improving its quality. For example, Apple provides Speech

framework and Google provides Speech-to-Text Cloud. How-

ever, modern mobile devices are already able to recognize a

large number of voice commands or even to natural speech in

general. The recent updates from the Android and iOS also

introduce offline speech recognition on a device [4], [5].

In addition, it is often unacceptable in business tasks to

transfer sensitive information to the server.

B. The case of Aurora OS

Aurora OS is a POSIX-compatible Linux distribution de-

signed to be used on mobile devices in the B2B and the B2G

segments [6]. Several hundred thousand Aurora-based mobile

devices are now used in commercial projects with corporations

in Russia. There is a large number of tasks and situations in

which Aurora OS is a convenient solution. The main cases are

as follows:

• Employees working in the field use mobile devices to

receive tasks, prepare and send reports.

• Executives and line managers of organizations use mobile

devices to solve business tasks, including work with the

organizer, e-mail and applications for interaction with

information systems.

The examples of voice input discussed above are also

suitable for each of these cases. But for field workers, there

are a few additional tasks in which voice recognition can help

considerably:

• checking of field objects status;

• reports preparing.

A common situation for field workers is as follows. They

need to fill out a complex form with many fields and options

to select from. As a rule, this is due to the large number of

characteristics of the objects under study. The touch input in

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

such tasks could be noticeably slow or difficult comparing to

the voice input.

For example, similar voice navigation could also be used

in Smart TV voice interfaces. When a user of a Smart TV

does not have a full-featured keyboard and only a joystick

of the remote, selecting the nested menus with many selection

options could be very slow comparing to the voice commands,

where the user don’t have to manually scroll and switch all

the lists of possible options.

Returning to the field workers, the temperature and the

weather conditions, in general, could also be crucial in terms

of the user experience. The text input via dictation could

significantly improve the mobile user experience. So the voice

input could be preferable not only in terms of the filling of

the predefined forms but also in recognizing the texts of the

natural speech, voice.

Solutions for field workers are developed by specialized

companies. And often the statement of work includes support

for all available versions of Aurora OS, including those

released several years ago. The vendor (Open Mobile Platform

LLC) provides support for old OS versions related only

to fixing critical problems and bugs, but not to expanding

functionality or embedding new libraries in the toolchain.

This article discusses the problem of implementing a third-

party solution for Aurora OS that supports automatic speech

recognition features.

Android and iOS solutions cannot be directly reused due to

Aorora OS is a POSIX-compatible Linux distribution so low-

level subroutines and libraries are incompatible. At the same

time Aurora OS differs from other mobile Linux distributions

in the inaccessibility of some build tools. For example, there

is no Fortran source code build capability in the standard

toolchains [7]. In the case of the speech recognition systems

discussed in this article, this is quite an important limitation.

It is also important to keep in mind that Aurora OS runs on

mobile devices, which do not have as extensive computing

resources as PCs or server solutions.

C. Solution design

Before discussing available solutions and formulating re-

quirements, the interaction between the application, the speech

recognition system and the API provided by the operating

system should be described (Fig. 1).

Aurora OS provides Qt as the main framework for third-

party software. Therefore, the QtMultimedia module (QAu-

dioRecorder, QAudioDecoder, QAudioProbe classes) is used

to capture sound [8]. This way it is possible to produce a

sound file or stream. Since the Aurora OS does not include

a speech recognition system, it must be supplied by the

application developer. Therefore, the application is responsible

for transferring the audio stream to the ASR system and

processing the result.

II. SPEECH RECOGNITION SYSTEM REQUIREMENTS

Before considering the available solutions and possible

approaches to the implementation of speech recognition, we

Fig. 1. Solution design

will formulate the requirements that must be met for the result

to satisfy the needs of the applied tasks.

A. Aurora OS support

The initial task is to implement speech recognition specifi-

cally for Aurora OS. Aurora SDK is used in software develop-

ment for this operating system. However, right now it does not

provide all the possible tools to build software, so we assume

that an additional toolchain can be used to build the necessary

components with the possibility to make the corresponding

changes in Aurora SDK later.

However, this requirement means that the resulting solution

and all necessary components must be able to run on current

devices controlled by the Aurora OS.

A common requirement for commercial software projects is

to support all the active OS versions, including those already

in use in projects. Due to contractual obligations, the vendor

(Open Mobile Platform LLC) provides only security updates

and critical fixes for the older releases. Therefore, significant

changes in the existing environment or the toolchain could

not be expected to meet the requirements of any external

development. These kinds of updates can only be released

with new versions of the OS. We will show later how this

affects Fortran support.

At the same time, it should be noted that the Aurora OS has

higher security requirements and blocks dependencies, which

can be potentially used for malicious purposes. In particular,

this means that custom builds of system libraries cannot be

included in the application package [9].

B. Multiple language support

The requirement is that at least English and Russian must

be supported. In practice, all speech-to-text (STT) engines

are focused on English support. The Russian language is

conditioned by the main customers of solutions based on

Aurora OS, these are corporations and state companies in the

Russian Federation.

Providing and maintaining the model of the local language

is a separate relatively huge task [10]–[14]. So the pragmatic

approach is to try first the solutions where multi-language

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 15 --

support is already available. The option to form the custom

model, vocabulary, or to adapt to the final subject area is also

very valuable due to the non-universality of existing solutions

and the possible limitations of the battery and processor

resources of the mobile equipment used.

C. On-device recognition

The requirement is that it must be possible to use the speech

recognition features without a stable network connection. This

is due, for example, to the fact that field workers are often in

regions without cellular coverage and other opportunities to

connect to the Internet.

Besides, some customers have higher requirements for the

security of data processing. Therefore, solutions that use

external servers for speech processing cannot be applied.

D. Open-source commercial-friendly solution

This requirement actually means two conditions. First, the

project must be active. That is, maintainers must contribute

all critical comments and bug fixes to its source code fairly

promptly. Second, the license under which the project’s source

code and required resources are provided must allow free use

in third-party solutions. If at least one of these conditions is

not met, there is no way to build a stable solution using this

project.

III. REVIEW OF THE EXISTING PUBLIC ASR TOOLKITS

There are several POSIX-compliant ASR systems, all of

them have been tested to meet the formulated requirements.

The existing reviews and public discussions of such systems

were also taken into account [15]. Kaldi and Mozilla’s Open

Voice projects are mentioned as perspective in the work to

find possible alternatives for voice recognition in the browser

[16]. According to [17], Kaldi has leading algorithms and data

structures and shows high recognition speed and accuracy.

According to [18], Kaldi outperforms all the other recognition

toolkits (HDecode, Julius, pocketsphinx, Sphinx-4, and Kaldi),

providing training and decoding pipelines including the most

advanced techniques out of the box.

Many services applicable to operating systems from the

consumer market do not meet the requirements of working

in a private customer environment. Therefore, the following

solutions are excluded from consideration: Google Cloud

Speech-to-Text, Apple Speech framework, Wit.ai, Microsoft

Bing Voice Recognition, Houndify API, IBM Speech to Text,

Yandex SpeechKit, Amazon, Facebook. Nevertheless, it is

worth mentioning that there is an Aurora OS compatible

solution that uses Yandex Speech Kit to recognize voice

commands and control the mobile device [19].

There are also client-server solutions, that could be deployed

to a customer private environment. For example, Speech

Technology Center (STC, or SpeechPro) in Russia [20]. Such

solutions could fit some customer security requirements and

reduce the client mobile device requirements due to the need

for a solid connection to the network. That could be also a

limitation in terms of the possible coverage issues in some

exceptional cases.

There is also Jarvisen Translator from IFLYTEK. It is a

Chinese company that continuously excels in competitions

and provides on-device offline proprietary speech recognition

for many languages. Similar lightweight and accurate project

Cheetah from Picovoice is also proprietary [15], [21], [22].

Nvidia NeMO project is a toolkit for creating Conversa-

tional AI applications. The toolkit comes with extendable

collections of pre-built modules and ready-to-use models for

[23]:

• Automatic Speech Recognition (ASR);

• Natural Language Processing (NLP);

• Speech synthesis, or Text-To-Speech (TTS).

It is a fresh research project, should be optimized for the

modern NVidia GPUs, but not the mobile devices. Existing

pre-trained models for the Russian language are not found,

only the discussion [24].

The diagram (Fig. 2) shows a general client-server-based

solution in the trusted network where possible.

Fig. 2. A general client-server based solution in the trusted network

The best-case option is to be able to recognize the voice on

the actual device and open-source solution with public models.

A. CMUSphinx

CMUSphinx project licensed with BSD license, have Rus-

sian acoustic model and dictionary. To not be confused with

the parts of the toolkit, the documentation provides a list [25]:

1) Pocketsphinx is the lightweight recognizer library im-

plemented using C;

2) Sphinxbase is the support library required by Pocket-

sphinx;

3) Sphinx4 is the adjustable, modifiable recognizer imple-

mented using Java;

4) Sphinxtrain is the acoustic model training tools.

The main concepts of the project:

• Acoustic model is responsible for matching the sound of

the spoken phoneme.

• A dictionary is a file in which lexemes and phonemes

are mapped (a word and its transcription). It is needed to

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 16 --

convert phonemes recognized by the acoustic model into

lexemes.

• Grammar are formal rules that describe simple rules

for constructing sentences. The lexemes obtained in the

previous step try to match the grammar and if successful,

the result is displayed.

• A language model is a statistical model of a language.

It describes the probabilities of words and their combi-

nations. Thus, token recognition is about maximizing the

likelihood of a recognized phrase.

The project was suspended in favor of Kaldi project in end

of the 2019 [26].

B. Kaldi

Kaldi is a toolkit for speech recognition implemented using

C++. Kaldi is similar in aims and scope to Hidden Markov

Model Toolkit (HTK is a proprietary software toolkit for

handling Hidden Markov Models). The Kaldi goal is to have

modern and flexible code, implemented using C++, that is easy

to modify and extend. Important features include:

• integration at code level with Finite State Transducers

(FSTs) using OpenFst library;

• extensive linear algebra support (via BLAS and LAPACK

routines);

• extensible design (the decoder could work from any

suitable source of scores, such as a neural net);

• open license (Apache 2.0, which is one of the least

restrictive licenses available);

• complete recipes.

The goal of the project is to make available complete

recipes for building speech recognition systems, that work

from widely available databases such as those provided by the

Linguistic Data Consortium (LDC). The projects support linear

transforms, MMI, boosted MMI and MCE discriminative

training, and also feature-space discriminative training (like

fMPE, but based on boosted MMI) [27].

Kaldi has working recipes for Wall Street Journal and

Resource Management, and also for Switchboard. The Switch-

board recipe is not yet giving state-of-the-art results, due to

vocabulary and language model issues, the developers don’t

use any external data sources for this [27].

Also, the project has a higher-level wrapper. So-called

VOSK API and Russian language dataset from the Alpha

Cephei company contributors [28]. VOSK API offline speech

recognition is based on Kaldi, due to low resource require-

ments can be used on mobile [15]:

• Supports 17 languages and dialects: English, Indian En-

glish, German, French, Spanish, Portuguese, Chinese,

Russian, Turkish, Vietnamese, Italian, Dutch, Catalan,

Arabic, Greek, Farsi, Filipino.

• Works offline, even on lightweight devices: ARM devel-

oper boards, Android and iOS devices.

• Provides Python wrapper.

• Portable per-language models are only 50Mb each, but

there are much bigger server models available.

• Provides streaming API for the best user experience.

• There are bindings for different programming languages

(Java, C#, JavaScript, etc.).

• Allows quick reconfiguration of vocabulary for best ac-

curacy.

• Supports speaker identification beside simple speech

recognition.

The contributions to the OpenFST project from Alpha

Cephei developer could also be found: for example, binary

search optimizations to improve reachability speed [29].

C. DeepSpeech

DeepSpeech project licensed with Mozilla Public License

2.0. It doesn’t have a public Russian language model for now,

since it requires a lot of training data to set up the model

[30]. Project DeepSpeech uses Google’s TensorFlow project

to make the implementation easier. It uses a model trained by

machine learning techniques based on Baidu’s Deep Speech

research paper [31]. At the moment of the research step,

the Common Voice Mozilla dataset for the Russian language

contained about 72 hours of speech. At the moment of the

writing, it already contains about 130 hours of the speech. The

English Corpus contains about 2000 hours and still growing.

There is also Mozilla discourse discussion and experiments

from George Fedoseev’s dataset for training using YouTube

videos with captions, that are not upstreamed: 21% WER on

voxforge-ru-test set of Russian speech [32].

Similar techniques are used with Google Android’s on-

device recognition, while the models are not explicitly public

now, there is public research project for learning purposes. It

assumes GBoard uses TensorFlow Lite library so the model

could be used with TensorFlow and maybe even LWTNN

based projects [33].

DeepSpeech also support TensorFlow Lite [34]. The Ten-

sorFlow lite is known to run on SailfishOS, the predecessor of

the Aurora OS platform. But currently, the Russian language

dataset is not enough hours to implement the appropriate

recognition as described earlier.

D. Facebook Flashlight

Flashlights ASR application (formerly the wav2letter) pro-

vides training and inference capabilities for end-to-end speech

recognition systems. Outside of original research conducted

with Flashlight and wav2letter, the codebase contains up-to-

date implementations of recent architectures and developments

in the speech domain.

It is a fresh innovative research project, existing pre-trained

models for the Russian language are not found. It is expected

to require a lot of computation resources [15].

E. ESPnet

ESPnet is an end-to-end speech processing toolkit, mainly

focuses on end-to-end speech recognition and end-to-end text-

to-speech. ESPnet uses chainer and pytorch as a main deep

learning engine, and also follows Kaldi style data processing,

feature extraction/format, and recipes to provide a complete

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 17 --

setup for speech recognition and other speech processing

experiments [35]. It is a fresh research project, existing pre-

trained models for the Russian language are not found.

IV. THE BUILDING SPECIFICITIES

Kaldi is the only project that satisfies the requirements of

this paper. Therefore, further steps will be described in its

context. However, many features, such as the dependence on

Fortran, are applicable to other solutions as well.

The main specialty of the Kaldi project is that the de-

velopers are not actively maintaining the releases, tags, or

versions. The maintainers and lead contributors are also the

researchers. They do not want to lose the dynamics of the

project supporting any historical versions. So the last version

of the repository is used as the current and the only one.

And the owners of the repository are not ready to maintain

or to back-port any contributions for previous versions to not

increase maintenance workload [36]. It could be interpreted

as a rolling-release project with the very continuous style of

development.

The next thing that needs to be taken into account is the

build system. While CMake build system was introduced more

than a year ago, handling the third-party libraries for the

target Linux distribution could be tricky due to the usage

of the internal download tools in the build scripts [37]. For

example, the default script of the repository could contain

the logic to manually download the exact upstream commit

of some of the build dependencies. The maintainers of the

distributive-specific packages should take it into account since

the build environment options to download any additional files

during the build process are limited and should be pre-defined

during the start of the process due to security and maintenance

reasons.

Also, the future contribution for the Kaldi project could be

to introduce pkg-config files to simplify the packaging and

linking. Anyway, it’s already possible to build the dependen-

cies as shared libraries and manually track the changes and

contribute in case of any of the handy build tools are missing

in the dependencies.

A. External matrix libraries

There are also dependencies for linear algebra operations.

This is a fairly common requirement for all methods and

libraries that use machine learning. The matrix code in Kaldi is

mostly a wrapper on top of the linear-algebra libraries BLAS

and LAPACK [38]:

1) BLAS is a set of subroutine declarations that correspond

to low-level matrix-vector operations.

2) CBLAS is the C language interface to BLAS.

3) LAPACK is a set of linear-algebra routines, originally

implemented using Fortran. It includes higher-level rou-

tines than BLAS, such as matrix inversion, SVD, etc.

4) CLAPACK is a version of LAPACK that has been

converted from Fortan to C automatically using the f2c

utility.

All the math sobroutins could be implemented via:

• The GNU Scientific Library (GSL), software library in C

for numerical computations in applied mathematics and

science (not integrated with Kaldi).

• Eigen is the C++ template library for linear algebra: ma-

trices, vectors, numerical solvers, and related algorithms

(not replaces LAPACK for Kaldi).

• Intel Math Kernel Library (MKL) is a library of op-

timized math routines for science, engineering, and fi-

nancial applications. Its core provides math functions

including BLAS, LAPACK, ScaLAPACK, sparse solvers,

fast Fourier transforms, and vector math (is not available

for ARM).

• Automatically Tuned Linear Algebra Software (Atlas) is

the library for linear algebra. It provides an open source

implementation of BLAS APIs for C and Fortran77 (not

replaces LAPACK for Kaldi).

• OpenBLAS — an open-source (BSD-3-Clause License)

implementation of the BLAS and LAPACK APIs with

many hand-crafted optimizations for specific processor

types. It is developed at the Lab of Parallel Software and

Computational Science, ISCAS.

• blasfeo — Basic linear algebra subroutines for embedded

optimization (work-in-progress implementation).

• blis — BLAS-like Library Instantiation Software Frame-

work. The framework was designed to isolate essential

kernels of computation that, when optimized, immedi-

ately enable optimized implementations of most of its

commonly used and computationally intensive operations

(work-in-progress implementation).

However in practice, some of them are closed-source (not

mentioned), some of them are CPU architecture-specific, and

some of them are not integrated with Kaldi or not ready yet.

So, OpenBLAS is currently the main solution for ARM-based

devices with Aurora OS.

B. Fortran support

The main specialty of the modern ASR projects is that linear

algebra dependency libraries are dependent on Fortran. And

also for the other math-related libraries, like python-numpy

and python-scipy. They provide an interface to BLAS and

LAPACK for which the reference implementation is done us-

ing Fortran [39], [40]. Aurora OS is currently missing Fortran

compiler due to build system optimizations. This speeds up the

GCC build by a factor of two on armv7l architecture [7]. Such

optimization allows to reduce the load on the infrastructure

noticeably, considering that the GCC build is a dependency

for many other tasks.

However, the exclusion of Fortran from the OS environment

and the build tools means that third-party developers cannot

use it directly. As stated in the requirements, a toolchain

change cannot be done for the already released OS versions.

Therefore, the native Fortran support cannot be expected.

At the same time, third-party developers cannot use their

own build of the Fortran-enabled gcc compiler to build the

entire project, because this will lead to changes in the de-

pendencies of system libraries. And the application package

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 18 --

including the necessary dependencies will be blocked by the

security mechanisms.

The project to the automatic port of the LAPACK Fortran

code to C code was recently mirrored by VOSK project as

a github repository [41]. An attempt to use this method is

described in the section VI.

There is also a research project called llvm-fortran, but

LLVM is not provided for the Aurora OS repos out of the

box.

C. Compilation

To build the Kaldi project in a custom way the appropriate

compiler is needed. For example, linaro gcc/gfortran 8.3, same

version as the target system (for example, Aurora 3.3.0 target).

The QEMU or Aurora SDK VirtualBox image and Docker

tools could be used on the x86 machines.

1) Firstly the rootfs should be deployed.

2) OpenBLAS/LAPACK are builded with the make tool

specifying the sysroot and the path to the compilers.

3) OpenFST requires autoconf in rootfs to be installed from

the repositories (for example, via QEMU). The issue

with the Kaldi tools scripts is that build script could

not find libfst-ngram library. So the manual build is

similar to OpenBLAS with configure and make tools,

skipping the tests in the manual build environment

similar to Kaldi for Android compilation approach [42].

The mentioned build tools issues could be fixed in the

long-term.

4) Finally the Kaldi itself could be built via CMake speci-

fying OpenBLAS as MATHLIB parameter.

5) Simple C language-based example from VOSK API

repos could be built after that. With recent updates of

the repos, f2c tool could be used to skip the Fortran

dependency and convert Fortran-based functions to the

C functions. An attempt to use this method is described

in the section VI.

6) After that the VOSK API could be used in the end-user

Silica-based native Aurora GUI application.

The diagram (Fig. 3) shows the notable runtime and build

dependenices of the final client GUI application.

The f2c project ports the LAPACK logic to the C program-

ming language [41]. It is used to solve the issues with the lack

of Fortran compiler project. After building all the necessary

dependencies, the next libraries is going to be linked with the

example project:

lpthread, lfstngram, lkaldi-base,

lkaldi-chain, lkaldi-decoder, lkaldi-feat,

lkaldi-cudamatrix, lkaldi-fstext,

lkaldi-gmm, lkaldi-hmm, lkaldi-ivector,

lkaldi-kws, lkaldi-lat, lkaldi-lm,

lkaldi-matrix, lkaldi-nnet, lkaldi-nnet2,

lkaldi-nnet3, lkaldi-online, lkaldi-online2,

lkaldi-rnnlm, lkaldi-sgmm2,

lkaldi-transform, lkaldi-tree, lkaldi-util.

Fig. 3. Notable runtime and build dependencies of the final client application

And the higher-level API of the VOSK project provide

three general classes to work with the prepared models:

KaldiRecognizer, SpkModel (speaker model), Model.

With that classes it is possible to specify the grammar, the

direct path to the model files and to work both with the files

and the direct speech from the audio device to get both partial

and final results of the recognition.

Fig. 4 shows VOSK API classes that could be used in a

client application.

Fig. 4. VOSK API

V. AN APPLYING EXAMPLE OF THE BUILDING RESULTS

The expected components of the demo project after the

building of the libraries are: appropriate test wav file, language

model [43], vosk wrapper, kaldi, openfst, openblas/lapack.

The minimal initialization of the VOSK recognizer contains

two main steps:

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 19 --

1) Set the source of the Model (path of the model

directory).

2) Set sampleFrequency and the model for the

KaldiRecognizer.

After that AcceptWaveform() method of the recog-

nizer could be used to request the data and Result(),

PartialResult() and FinalResult() return the re-

sults.

There is also a shell script version of the WAV file recog-

nition logic, since the binaries needed for the recognition are

also available in the repository. The script could be found for

the bigger (server) version of the VOSK models project [43].

The script is based on the binaries of the Kaldi package to

decode wav file. The binaries usage is described in the Kaldi

documentation. [44]

VI. DISCUSSION

A. Support of the f2c solution

While the f2c tool is simple to use, the issue could be faced

at the step where Fortran standard F95 is used in LAPACK

instead of F77 (depending on the LAPACK version). f2c could

handle only the F77 standard. That is why the VOSK project

public mirror of the CLAPACK as the github repository is

helpful to discuss the possible issues [41].

During the research, the CLAPACK from the VOSK mirror

successfully compiled in Aurora SDK environment, while all

the CMake tests from the TESTING directory failed. So, the

CLAPACK support for Aurora OS could be proposed as future

work and currently could not be compared directly with the

gcc-gfortran build from the Linaro toolchain.

In practice, f2c-based solution could show better compiler

side optimizations according to f2c public discussion [45]. So

the Linaro gfortran compiler (same gcc version as from Aurora

SDK) was used to compile the required Fortran code as a

shared library to check the solution, while it could not be

used in the final applications due to the limitations discussed

in the section IV-B.

B. Performance

The test solution is a demo application and INOI R7 device

(ARMv7 Qualcomm Snapdragon 212 quad-core processor,

chipset MSM-8909 v2 with 2GB RAM). During recognition

it was measured that the task performs in less that 10 seconds

and require about 100% of first CPU kernel and also about

20% of the second one.

No work was done to optimize memory consumption and

startup acceleration by the operating system. Such a study can

be qualitatively performed only when the engine is integrated

with the OS.

C. Client-server VOSK solution

It is also worth mentioning that the VOSK project can

be used to implement a client-server solution. There are

four different servers that support four major communication

protocols - MQTT, GRPC, WebRTC and Websocket [46].

For example, to communticate via MQTT protocol, it is

possible to use any MQTT broker (e.g Mosquitto), prepare

and start with an existing VOSK project [47]:

#!/bin/bash

Start ASR server
asr_server_mqtt.py
Run a test script: ./test_mqtt.py
test_mqtt.py

It is also possible to switch from Russian to any other model

without restarting the server via sending the MQTT command.

The server-based solution can be used in a trusted network

as described in the ASR toolkits review to provide speech

recognition to smart deployments or private telephone net-

works used within a company or organization. The server can

also be run as a backend for streaming speech recognition on

the cloud, it can power chatbots, web services and telephony.

VII. CONCLUSION

This article discusses the problem of developing third-party

software for Aurora OS in the case when automatic speech

recognition function is needed. A set of requirements was

formulated for suitable ASR projects, which allow their use

on the Aurora OS based devices with commercial projects in

Russia. The specified requirements are met only by the Kaldi

engine.

Fortran is required to build and use Kaldi. Development

tools for current versions of Aurora OS do not support building

using Fortran. Therefore, an approach was proposed to build

the software with a third-party toolchain and integrate it with

the environment. It allows third-party solutions to implement

speech recognition on Aurora OS devices.

The proposed approach can be used in other similar cases

when the operating system or the build tools do not support

Fortran, but this programming language is required to build

or run the software. Such cases arise, for example, when

math libraries such as LAPACK or OpenBLAS are used.

Popular projects that depend on these libraries are PyTorch

and TensorFlow.

ACKNOWLEDGMENT

The authors would like to express special thanks to the

OpenBLAS and Kaldi ASR Toolkit maintainers and contrib-

utors and VOSK API developers: Nikolay V. Shmyrev and

Alpha Cephei Inc.

REFERENCES

[1] Siri overview - apple developer. [Online]. Available: https://developer.
apple.com/siri/

[2] Google assistant — google developers. [Online]. Available: https:
//developers.google.com/assistant

[3] Gboard — google play. [Online]. Available: https://play.google.com/
store/apps/details?id=com.google.android.inputmethod.latin

[4] Apple developer documentation: On device recognition. [On-
line]. Available: https://developer.apple.com/documentation/speech/
sfspeechrecognitionrequest/3152603-requiresondevicerecognition

[5] Android offline speech recognition natively on pc. [Online].
Available: https://hackaday.io/project/164399-android-offline-speech-
recognition-natively-on-pc

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 20 --

[6] Aurora OS website. [Online]. Available: https://auroraos.ru/
[7] Drop Fortran support. on armv7l, this drops gcc compile time

from 34minutes to 17minutes (fc433008) · commits · mer-core
/ gcc · gitlab. [Online]. Available: https://git.sailfishos.org/mer-
core/gcc/commit/fc433008bf73e6198739142c5abcf4b67e6a47db

[8] Audio overview — Qt multimedia 5.6. [Online]. Available: https:
//doc.qt.io/archives/qt-5.6/audiooverview.html

[9] Aurora OS public api. [Online]. Available: https://community.omprussia.
ru/documentation/software development/reference/public api.html

[10] N. Gabriel, “Automatic speech recognition in somali,” 2020.
[11] A. Ali, Y. Zhang, P. Cardinal, N. Dahak, S. Vogel, and J. Glass, “A

complete kaldi recipe for building arabic speech recognition systems,”
in 2014 IEEE spoken language technology workshop (SLT). IEEE,
2014, pp. 525–529.

[12] Y. G. Thimmaraja and H. Jayanna, “Creating language and acoustic
models using Kaldi to build an automatic speech recognition system
for kannada language,” in 2017 2nd IEEE International Conference on
Recent Trends in Electronics, Information & Communication Technology
(RTEICT). IEEE, 2017, pp. 161–165.

[13] J. Guglani and A. N. Mishra, “Continuous punjabi speech recognition
model based on Kaldi ASR toolkit,” International Journal of Speech
Technology, vol. 21, no. 2, pp. 211–216, 2018.

[14] A.-L. Georgescu, H. Cucu, and C. Burileanu, “Kaldi-based DNN ar-
chitectures for speech recognition in romanian,” in 2019 International
Conference on Speech Technology and Human-Computer Dialogue
(SpeD). IEEE, 2019, pp. 1–6.

[15] N. V. Shmyrev. (2020) What are the top ten speech recognition
apis? [Online]. Available: https://www.quora.com/What-are-the-top-
ten-speech-recognition-APIs

[16] D. Gonze and O. Bonaventure, “Coding with the voice,” École poly-
technique de Louvain: Master in Civil Engineering, 2020.

[17] M. Belenko and P. Balakshin, “Comparative analysis of speech
recognition systems with open code,” Mezhdunarodnyy nauchno-
issledovatel’skiy zhurnal, no. 04 (58) Part 4, pp. 13–18, 2017.

[18] C. Gaida, P. Lange, R. Petrick, P. Proba, A. Malatawy, and
D. Suendermann-Oeft, “Comparing open-source speech recognition
toolkits,” in 11th International Workshop on Natural Language Pro-
cessing and Cognitive Science, 2014.

[19] P. Vytovtov, “Voice assistant for sailfish os,” Proceeding of the 20th
conference of FRUCT Association, pp. 741–742, 2017.

[20] Speech technology center. [Online]. Available: https://speechpro.com/
[21] Jarvisen translator. [Online]. Available: https://www.iflytek.com/en/

products/#/translat
[22] Picovoice: Edge voice ai platform. [Online]. Available: https:

//picovoice.ai/
[23] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, B. Ginsburg,

S. Kriman, S. Beliaev, V. Lavrukhin, J. Cook et al., “Nemo: a toolkit
for building AI applications using neural modules,” arXiv preprint
arXiv:1909.09577, 2019.

[24] Nvidia NeMo: Training non-english asr model. [Online]. Available:
https://github.com/NVIDIA/NeMo/issues/234

[25] Overview of the CMUSphinx toolkit – CMUSphinx open source
speech recognition. [Online]. Available: https://cmusphinx.github.io/
wiki/tutorialoverview/

[26] Update on CMUSphinx project. [Online]. Available: https://cmusphinx.
github.io/2019/10/update/

[31] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[27] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The kaldi speech recognition toolkit,” in IEEE 2011
Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society, Dec. 2011, iEEE Catalog No.: CFP11SRW-
USB.

[28] Vosk offiline speech recognition api, Kaldi based. [Online]. Available:
https://alphacephei.com/vosk/

[29] OpenFST: Reachability speed optimization. [On-
line]. Available: https://github.com/alphacep/openfst/commit/
65e9de91b35a7238ffa035ed8bb2594a50dbdc5a

[30] Mozilla DeepSpeech: Adapting engine to any custom language issue.
[Online]. Available: https://github.com/mozilla/DeepSpeech/issues/692

[32] George fedoseev: DeepSpeech with YouTube captions dataset. [Online].
Available: https://github.com/GeorgeFedoseev/DeepSpeech

[33] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and N. Jaitly,
“A comparison of sequence-to-sequence models for speech recognition,”
in Interspeech, 2017, pp. 939–943.

[34] Deepspeech 0.6: Mozilla’s Speech-to-Text engine gets fast, lean, and
ubiquitous - mozilla hacks - the web developer blog. [Online].
Available: https://hacks.mozilla.org/2019/12/deepspeech-0-6-mozillas-
speech-to-text-engine/

[35] H. Inaguma, S. Kiyono, K. Duh, S. Karita, N. Yalta, T. Hayashi,
and S. Watanabe, “ESPnet-ST: All-in-one speech translation toolkit,”
in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations. Online:
Association for Computational Linguistics, Jul. 2020, pp. 302–
311. [Online]. Available: https://www.aclweb.org/anthology/2020.acl-
demos.34

[36] Kaldi: Change log / release issue. [Online]. Available: https:
//github.com/kaldi-asr/kaldi/issues/1943

[37] Kaldi: Build system issue. [Online]. Available: https://github.com/kaldi-
asr/kaldi/issues/3086

[38] Kaldi: External matrix libraries. [Online]. Available: https://kaldi-
asr.org/doc/matrixwrap.html

[39] Quora: Which python packages besides Numpy use Fortran?
[Online]. Available: https://www.quora.com/Which-python-packages-
besides-Numpy-use-fortran

[40] Researchgate: Why are physicists stuck with Fortran? [Online]. Avail-
able: https://www.researchgate.net/post/Why-are-physicists-stuck-with-
Fortran-and-not-willing-to-move-to-Python-with-NumPy-and-Scipy

[41] Vosk project: CLAPACK. [Online]. Available: https://github.com/
alphacep/clapack

[42] E. Silva. (2017) Compile Kaldi for Android. [Online]. Available:
https://jcsilva.github.io/2017/03/18/compile-kaldi-android/

[43] VOSK models. [Online]. Available: https://alphacephei.com/vosk/
models

[44] Kaldi documentation. [Online]. Available: https://kaldi-asr.org/doc/
online2-wav-nnet3-latgen-faster 8cc.html

[45] c - how much better are fortran compilers really? - computational science
stack exchange. [Online]. Available: https://scicomp.stackexchange.com/
questions/1194/how-much-better-are-fortran-compilers-really

[46] Websocket, gRPC, MQTT and WebRTC servers for VOSK. [Online].
Available: https://alphacephei.com/vosk/server

[47] Vosk ASR via MQTT. [Online]. Available: https://github.com/alphacep/
vosk-server/tree/master/mqtt

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 21 --

