
Presence and Availability Service
at the Network Edge

Evelina Pencheva
Todor Kableshkov University of Transport,

Sofia, Bulgaria

evelina.nik.pencheva@gmail.com

Ivaylo Atanasov, Vladislav Vladislavov, Ventsislav Trifonov
Balkantel Ltd

Sofia, Bulgaria

i.i.a@abv.bg, {vladislav.vladislavov, ventsislav.trifonov}@balkantel.net

Abstract—Presence service enables to publish, store, and access
presence information. Usually, it is used by humans along with
voice and instant messaging services, but with the ubiquitous
penetration of machine type communications it may by used also
by smart devices. The paper presents a RESTful Presence service
which may be deployed at the network edge. The main benefits
are that the proposed service does not require deployment
of Internet Protocol Multimedia Subsystem and saves network
resources. In addition to information provided by the presentity,
the service enables extension of published presence status with
information provided by the radio access network.

I. INTRODUCTION

Presence services enables subscribers to upload, store and

watch presence information. Presence information reveals the

presence supplier willingness and ability to communicate by

preferred means. Using a presence application, the presence

supplier publishes his/her dynamic profile, including device

and personal status, device capabilities, location, context and

preferred communication methods, via a network connection

and the presence service stores this information. The presence

service enables authorized presence consumers to access the

published data and to initiate e.g., “polite” call, instant mes-

saging, or gaming. The service allows users to control flexibly

with whom and by what means they want to communicate.

With presence service, team working is more efficient as it

enables information sharing beyond availability e.g., future

plans, meeting location and topic etc. In addition, presence

service creates an alternative channel for information-sharing

and advertising.

Having a close relationship to the mobility information,

presence has its own specifics and thus, can serve as a “brick”

in building of different types of services, including either new

ICT services, or “upgrading” existing ones. When looking

from the standpoint of new communications services then

the presence service turns to be a key component if it is in

question to conclude i.e., to infer the eventual acceptance for

and level of engagement of given user in taking part in new

types of communications based on the accessible presence

information e. g. bot-based chat or voice-bot is the right “front-

man” for given user, or when to switch to more appropriate

one. The new information services might incorporate presence

service as an ingredient when e.g. “abstract” entities have

to provide services in the context of mobility - enhanced

augmented/virtual reality site-seeing, traffic congestion infor-

mation provisioning etc.

The Presence service may be deployed on Internet Protocol

Multimedia Subsystem (IMS) platform. IMS users can share

presence and content as a part of their multimedia commu-

nications. In this paper, we present an approach to define a

new mobile edge service for presence management. One of

the main advantages of the proposed approach is that it does

not require deployment of distributed IMS functionality and

is based on the capabilities exposed by Multi-access Edge

Computing (MEC).

The paper is organized as follows. First, we present the

related works on presence service. Next, a brief review on

the presence service standards is given. Then, a detailed

service description is provided where the service functionality

is illustrated by typical use cases. The data model and data

types, and supported methods are part of service Application

Programming Interfaces (APIs). Some remarks on implemen-

tation of presence applications are provided.

II. RELATED WORKS

The Presence service is mainly used in Voice over IP and

Instant messaging services [1]–[3]. The Presence service may

be deployed on Internet Protocol Multimedia Subsystem (IMS)

platform. IMS users can share presence and content as a

part of their multimedia communications. Different aspects

of IMS-based presence service are studied in [4]–[7]. While

humans are ordinary users of presence information, presence

and content aware applications can enhance communications

between smart devices which interact with each other [8]–[10].

The user point of view at a service that incorporates

presence service consists of two main functionalities: a) a

higher-level management of access of his/her own presence

information that is provided to other services/users, say group

level; b) a finer management level of granularity by explicit

presence status provisioning to specific services/users, say

individual level. As far as these management functionalities

are granted to a big number of users, it becomes obvious that

the number of combinations is even bigger, and this presumes

a great number of interactions. One of the ways to make the

Presence service scalable, to manage the needed resources in a

flexible manner, and to handle with the anticipated load is the

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



cloud computing. A case study on presence service in cloud

environment is presented in [11].

To reduce the Presence service traffic in the core network

and to be more effective at the place where it is used, the

presence service may be deployed at the network edge. Multi-

access Edge Computing (MEC) as a key ingredient of the next

generation networks moves intelligence (computing, storage

and networking) close to the users, devices and applications

and thus satisfying the requirements for high bandwidth and

low latency [12], [13].

The MEC platform which provides an environment for

running MEC applications and services may be co-located

with distributed and virtualized core network functionality.

The proposed new MEC service may use the capabilities of

network exposure to enable publishing and access to presence

information without the need to use IMS functionality. Further,

the proposed service is enhanced with information provided by

network elements about the presence supplier status such as

handover status, used bearers, positioning data etc., available

through subscription/notification from other MEC services.

III. PRESENCE SERVICE STANDARDS

The presence service both as concept and as practice is

in use by Internet world for long time but it is kept with no

interoperability in mind and with a high level of fragmentation

[14]–[17]. If one has to put the interoperability as a leading

principle when specifying presence service then the network

convergence, i.e. fixed, mobile, and wireless, while interacting

with external ones, may form a different set of requirements

than the regular one with respect to the information attributes

as location information, multi-media components, etc.

The aim to provide common view on concepts, entities in-

volved and their basic functions, and to enable interoperability

between different Presence systems drives the definition of

Presence service by IETF [18], [19]. The service has two

types of clients, clients that supply (publish) presence infor-

mation (called presentities) and clients that consume presence

information from the service (called watchers). Watchers may

fetch the current value of published presence information or

may subscribe to receive notifications about changes in values

of presence information. The service also provides watcher

information which may be accessed by a simple request or

distributed to subscribers via notifications. The IETF presence

service model defines the format of presence information as

a container of arbitrary number of elements. Each element

consists of a status marker (such as offline/busy/online/do

not disturb, etc.) and optional address for communication

including a method for communications (e.g. telephony, instant

messaging), and an address to contact via communication

means (e.g. telephone number, the address of instant mes-

saging box). The access rules, defined by the presentity,

constrain the presence information availability to watchers,

and the visibility rules which determine constraints on watcher

information available.

3GPP defines a set of requirements to support the presence

service, applicable to home environment (services in the

home network), network manufacturers and devices [20]. The

home environment may act as presentities (to supply presence

information) and as watchers (to consume presence informa-

tion). The requirements to home environment for the Presence

service support include general requirements, management

requirements for access control to presence information, for

supplying of presence information and requesting presence

data, and requirements for notifications about monitoring re-

quests and presence data modification, and acknowledgments.

The presentity may configure the necessity of authorization

before providing presence information.

The protocol details for Presence service provisioning in

IMS (Internet Protocol Multimedia Subsystem), based on

Session Initiation Protocol (SIP) and Presence event package,

are provided in [21]. SIP and XML Configuration Access

Protocol provide methods for presence status management.

The open access to presence management for third party

applications may be provided by Open Service Access (OSA)

Application Programming Interfaces (APIs) [22]. The OSA

Presence and Availability Management (PAM) service capa-

bility feature is defined by sequence diagrams, class dia-

grams, interface specification including detailed description of

methods, and data definitions. The OSA PAM specifications

make difference between presence and availability. While the

presence includes static information about user identities, and

dynamic information about user activity status and contextual

information such as disposition, the availability denotes the

user willingness and availability to share information and

to communicate with others and enables privacy control.

Thus, presence is required for availability, but does not imply

availability to all watchers. The OSA API provides low level of

network functionality abstraction, methods are asynchronous

relying on a large set of data types and require a detailed

control of presence information management.

Parlay X Presence web service provides a greater level of

abstraction of presence information management with methods

that are simple in operation, with plain semantics and use

synchronous invocations [23]. In addition to the capabilities

of presence information supplying and consuming, and mon-

itoring on watcher information, the Parlay X presence web

service can directly communicate with IMS presence network

elements using SIP interface. The Parlay X Presence interfaces

are defined using WSDL (Web Services Definition Language)

which is XML based and use the Simple Object Access

Protocol (SOAP) to access web services via HTTP.

REST (Representational State Transfer) is a client-server

architectural style, which uses a resource representation to

transfer the resource state at the server into the resource state

at the client application. The interactions are based on HTTP

methods and REST APIs make it easier to create complex

queries. While SOAP uses web service interfaces to reveal its

functionality to applications, REST uses Uniform Resource

Identifiers (URIs) to access resources. SOAP needs more

bandwidth while REST is more frugal in this regard.

In this paper, we propose a RESTful web service for

management of presence information which may be deployed

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 281 ----------------------------------------------------------------------------



at the network edge. Presence information at the network edge

besides for a real subscriber, might be published in favor

of an application or service, say highway jam information,

‘flashing news’ distribution, local advertisements, location

of like-minded users in the vicinity, playing and/or content

sharing, etc.

IV. DETAILED SERVICE DESCRIPTION

The proposed Presence and Availability Service (PAS) al-

lows for presence information to be published by a user and

to be obtained by others. The typical client of PAS interfaces

is either a presentity or a watcher of the presence information.

Using the PAS interfaces the user’s, say Martin’s presence

application publishes a set of attributes reflecting both his wish

to be available, or not, for communication, and his willingness

to do so. The presence status of Martin may aggregate both

static and dynamic information provided by the network and

by himself. Part of the dynamic information might be fetched

from different sources (e.g. device attach/detach procedures,

keying activity, handover procedures etc.). A fixed telephone

number is a trivial illustration for the static information could

look like. Another type of presence information, provided by

the network, might also be based on user’s patterns. More

details on how this information is captured are provided later

in this section. Martin’s privacy and confidentiality protection

might be obtained by controlling over whether any group of

watchers, here Eve, Lily, and Nick, are allowed to fetch his

presence information. Moreover, Martin might define different

access levels for different watchers, e.g. Eve is allowed to ac-

cess the entire presence information of Martin, Lily can fetch

partly, and Nick is not allowed at all. Thus, Martin defines

(watcher per watcher) his presence information exposure at

the level of granularity of his own will, and he might limit

the access of specific watchers down to the level he wants,

or to none. In fact, Martin might decide to make his presence

information look in a multi-facet way and formulating access

rules in such way that some watchers are provided with

different information (e.g. Martin is not available for Lily, but

he is available for others).

In case Eve, Lily, and Nick (e.g. Martin’s call parties or

chat peers) need to know Martin’s wish and ability to be

in touch might do so by fetching his presence status at the

moment, stored by the PAS. Thus, they are Martin’s watchers.

In addition to request for presence status on demand, the

watcher may subscribe for notifications about changes in the

Martin’s presence status. Both the request and subscription

have to be authorized by the presentity.

Using the PAS APIs, the presentity may observe watcher

information by retrieving data about his/her current watchers

and/or by starting/stopping notifications regarding watchers.

The PAS enables watcher authorization by the presentity.

Fig. 1 shows the flow of authorizing a new watcher request.

First the presentity application starts watcher notifications and

upon a request for presence information from the watcher

application, the PAS notifies the presentity application, which

updates the authorization rules, and the PAS provides the

requested information to the watcher application.

�

�

Fig. 1. Presentity authorizes a new watcher request

Fig. 2 shows the flow of publishing of presence information

by a presentity application and updating an existing authoriza-

tion rule. The presentity application publishes user status and

retrieves a list of watchers of the presentity status. Next the

application gets attributes of an existing watcher subscription

and updates his/her authorization rules.

Fig. 2. Presentity publishes presence data and updates existing watcher 
authorization

Fig. 3 shows the flow of authorizing a new watcher subscrip-

tion. The presentity application starts watcher notifications.

Upon a request for subscription to presence information the

PAS notifies the presentity applications, which approves the

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 282 ----------------------------------------------------------------------------



subscription by updating the authorization rules and the PAS

acknowledges the subscription request of the watcher.

�

�

�

�

�

�

Fig. 3. Presentity authorizes a new watcher subscription

Fig. 4 shows the flow of notifying about presence status

change, where having an active subscription, the watcher ap-

plication is notified upon updates in the presence information.

�

�

�

Fig. 4. Watcher is notified upon presence status change

Either the watcher or the presentity may terminate an

existing presence status subscription and watcher information

subscription as shown in Fig. 5 and Fig. 6, respectively.

Fig. 5. Watcher terminates presence notifications

�

�

�

�

In the latter case, when the presentity application requests

termination of subscription for presence information by up-

dating the respective authorization rule, the PAS notifies the

watcher application about the ended subscription.

In case the presentity wishes to publish extended pres-

ence information gathered from network elements it indicates

to the PAS its intention. The PAS in turn subscribes to

receive notifications about user location changes with the

standardized MEC Location Service, and notifications about

user mobility and activity with the standardized MEC Radio

Network Information service (RNIS). Fig. 7 shows the flow

of enabling notifications from the network about user location

and mobility. First, the presentity application using the PAS

interfaces enables notifications indicating the notification types

(location and mobility). Next, the PAS subscribes to receive

notifications from Location Service and RNIS and having an

active subscription the PAS receives notifications when the

user changes his/her location and when he/she changes the

serving cell.

When the presentity does not want to publish presence

information from the network elements he/she disables no-

tifications.

V. SERVICE RESOURCE MODEL

REST uses the concept of resource representing a physical

or logical entity. Service resources are organized in a tree

structure, where each uniquely identified resource follows the

service root URI that may be found in a service directory. This

section describes the PAS resources and applicable methods

which are part of PAS API definition.

The PAS resources are grouped for watchers and presenti-

ties.

Fig. 8 shows the resource structure for watchers. The

watchers resource represents information for all watchers of

presence data and has two sub-resources: subscriptions and

presenceInfoRequests.

s

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 283 ----------------------------------------------------------------------------



Fig. 8. Resource structure for watchers

The subscriptions resource represents information for all

watcher subscriptions for notifications about changes in pres-

ence data, and the subscriptionID represents an existing

watcher subscription. The presenceInfoRequests resource rep-

resents all requests for presence data issued by watchers, while

the presenceInfoRequestID represents an existing request.

When a presentity application wants to retrieve information

about all watcher subscriptions it sends an HTTP GET method

to the subscriptions resource and as a result the PAS answers

with 200 OK response where the message body contains

the list of watcher subscriptions. When a watcher application

wants to create a new subscription for presence data, it sends

an HTTP POST method to the subscriptions resource, and the

PAS creates a subscription and returns 201 Created response

with the address of the created subscriptionID resource. An

existing subscriptionID resource may be updated using an

HTTP PUT method and also may be deleted using an HTTP

DELETE method.

The presenceInfoRequests resource represents information

about all requests for presence data issued by watchers,

and the presenceInfoRequestID resource represents an exist-

ing watcher’s presence request. The HTTP GET method on

the presenceInfoRequests resource or on the presenceInfoRe-

questID retrieves a list of all watcher’s requests or information

about existing watcher’s request, respectively. An HTTP POST

method invoked on the presenceInfoRequests resource creates

a new request for presence data, while an HTTP PUT or

DELETE method, changes or deletes an existing watcher’s

request.

Fig. 9 shows the resource structure for presentities. The

presentities resource represents information for all presentities

and has six sub-resources: publishInfoRequests, myWatch-

erNotificationRequests, getMyWatcherRequests, subscriptio-

nEndedRequests, updateAuthorizationRuleRequests, and net-

workInfoRequests.

�

�

Fig. 9. Resource structure for presentities

The publishInfoRequests resource is a container for all

publishInfoRequestID resources each of which represents an

existing request for publishing presence information by a

presentity. An invocation of HTTP POST method on the

publishInfoRequests resource creates a new resource repre-

senting a request for publishing presence information, while

an invocation of HTTP PUT or DELETE method on the pub-

Fig. 7. Receiving presence information from the network

(c )

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 284 ----------------------------------------------------------------------------



lishInfoRequestID resource, updates or deletes the resource,

respectively.

The myWatcherNotificationsRequests resource represents

all requests issued by presentities for notifications about

their watchers, and the myWatcherNotificationsRequestID re-

source represents an existing request for notifications about

watcher information. To enable notifications about watchers,

the presentity application sends an HTTP POST request to

the myWatcherNotificationsRequests resource. The application

updates or disables an existing notification about watcher

information changes by sending a HTTP PUT or DELETE

method to the myWatcherNotificationsRequestID.

The getMyWatcherRequests resource represents all requests

for watcher information issued by presentities, and its sub-

resource getMyWatcherRequestID resource represents an ex-

isting request for watcher information.

The subscriptionEndedRequests resource stands for all re-

quests sent by presentities to terminate an existing watcher

subscription. Its sub-resource subscriptionEndedRequestID

serves for a particular request.

The updateAuthorizationRuleRequests resource consists of

all resources representing presentity’s requests for updating

authorization rules each of which is denoted by updateAutho-

rizationRuleRequestID resource.

The networkInfoRequests resource is a container for all

requests issued by presentities to enable enrichment of pub-

lished presence data with information provided by the net-

work elements. Both radio access network and core network

elements may supply user information. The paper describes

the way PAS service may receive user information from

existing MEC services, but with deployment of distributed

core network functionality, Network Exposure Function may

expose another user information (e.g. user registration status).

To enable specific notifications from the network element, the

presentity application sends an HTTP POST method to the

networkInfoRequests resource and the PAS returns the identi-

fication of the newly created networkInfoRequestID resource.

Table I summarizes the PAS resources and applicable HTTP

methods.

VI. RESOURCE, SUBSCRIPTION AND NOTIFICATION DATA

TYPES

The published presence information is a set of attributes that

describe the presentity status as current disposition, activity,

communication means, contacts. Ideas for attributes charac-

terizing the presence status are provided in [19], [22]. Some

attributes may have multiple values.

The “activity” attribute describes current user activity, and

the user may be involved in a multiple activity simultaneously.

The “device” attribute references the devices that provide a

particular service. The “mood” attribute stands for presentity’s

mood. The “place-is” attribute provides some information

about the presentity’s environment and the “place-type” at-

tribute describes the type of the place where currently is the

presentity. The “privacy-type” attribute indicates the level of

privacy the presentity currently has. The “validity” attribute

TABLE I. PAS RESOURCES AND APPLICABLE METHODS

Resource URI HTTP
method

Meaning

/watchers
/subscriptions

GET Retrieves list of all subscriptions
for changes in presence informa-
tion.

POST Creates a new subscription.
/watchers
/subscriptions
/subscriptionID

GET Retrieves information about exist-
ing subscription for notifications
on presence info changes.

PUT Modifies existing subscription.
DELETE Terminate existing subscription.

/watchers
/presenceInfoRequests

GET Retrieves list of all watcher re-
quests for presence info

POST Creates a new request for presence
info

/watchers
/presenceInfoRequests

GET Retrieves information about exist-
ing watcher’s request.

/presenceInfoRequestID PUT Updates existing request.
DELETE Deletes existing request.

/presentities /publish-
InfoRequests

GET Retrieves list of all requests issued
by presentities for presence pub-
lishing.

POST Creates a new request for presence
publishing.

/presentities
/publishInfoRequests

GET Retrieves information about exist-
ing request.

/publishInfoRequestID PUT Updates existing request.
DELETE Deletes existing request.

/presentities
/myWatcherNotification
Requests

GET Retrieves list of all requests issued
by presentities for notifications on
watcher info changes.

POST Creates a new request for enabling
notifications.

/presentities/myWatcher
NotificationRequests

GET Retrieves information about exist-
ing request.

/myWatcherNotification PUT Updates existing request.
RequestID DELETE Deletes existing request.
/presentities /getMy-
WatcherRequests

GET Retrieves list of all requests for
watcher information.

POST Creates a new request for watcher
information.

/presentities/getMy
WatcherRequests/get

GET Retrieves information about exist-
ing request.

MyWatcherRequestsID PUT Updates existing request.
DELETE Deletes existing request.

/presentities
/subscriptionEnded

GET Retrieves list of all requests for
subscription termination.

Requests POST Creates a new request for subscrip-
tion termination.

/presentities
/subscriptionEnded

GET Retrieves information about exist-
ing request.

Requests/subscription PUT Updates existing request.
EndedRequestID DELETE Deletes existing request.
/presentities
/updateAuthorization
RuleRequests

GET Retrieves list of all requests for
authorization rule update issued by
presentities.

POST Creates a new request for autho-
rization rule update.

/presentities
/networkInfoRequests

GET Retrieves information about exist-
ing request.

/networkInfoRequestID PUT Updates existing request.
DELETE Deletes existing request.

/presentities/update
AuthorizationRule

GET Retrieves information about exist-
ing request.

Requests/updateAuthor PUT Updates existing request.
izationRuleRequestsID DELETE Deletes existing request.

describes the time boundary beyond which the presence infor-

mation is not valid.

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 285 ----------------------------------------------------------------------------



TABLE I. (CONT.)

Resource URI HTTP
method

Meaning

/presentities
/networkInfo
Requests

GET Retrieves list of all requests to enable
publishing of presence information sup-
plied by network elements.

POST Creates a new request to enable publish-
ing of presence information supplied by
network elements.

An example of presence status description in JSON format

is as follows:

{ "status": {
"activity":["vocation","traveling"],
"device":["phone","tablet"],
"mood":"happy",
"place-is":"noisy",
"place-type":"car"
}

}

The subscription data type represents a subscription for

presence notifications. It is a structure that contains the URI of

the watcher who wants to gain access to presence data, URIs

of observed presentities, the attributes the watcher wants to

access, the watcher application identifier, maximum frequency

of notifications, subscription expiry deadline and the URI

selected by the watcher to receive notifications on subscribed

presence information.

The presenceNotification data type represents a notification

with regards to presence information change. Its attributes

include identifiers to associate the presence related event, time

stamp and presence status.

The subscriptionEnded data type is used to notify the

watcher about subscription termination and its attributes in-

clude the watcher URI whose subscription is terminated, the

owner of the presence information to which the terminated

subscription refers to, and the reason (blocked, give up,

probation, timeout, deactivated).

The watcherSubscriptionStatus data type indicates the status

of the watcher subscription to presence information and it is

an enumerated type with possible values of authorized (by

the presentity), blocked (currently by the presentity), polite

blocked, pending (waiting for authorization decision), active

(approved by the presentity), waiting (timeout occurs while

waiting for authorization), and terminated.

The watcherInfo data type is used by the presentity to

request information about watchers that want to subscribe or

are subscribed to his/her presence data. Its attributes are the

URI of the presentity who wants watcher information and the

watcherSubscriptionStatus data type.

The authorizationValue data type represents the authoriza-

tion actions applied to the watcher by the presentity. Possible

values are “block” (the watcher is not allowed to access

presentity’s data), “confirm” (the watcher has to wait for pre-

sentity input), “politeBlock” (the presentity blocks the watcher

but this fact is not revealed to the watcher and the watcher

receives limited or no presence information) and “allow” (the

watcher is allowed to access the presence data).

The authorizationRule data type is used to update an autho-

rization rule. Its attributes indicate the presentity URI, the rule

ID, the watcher URIs, authorization value and the respective

presence attributes.

The watcherSubscriptionData data type represents a sub-

scription to notifications for the status of watcher subscription.

It allows the presentity to filter watchers whose information

the presenty is interested in. Its attributes include the presentity

URI, the watcherSubscriptionStatus as described above and the

subscription duration.

VII. PRESENCE SUBSCRIPTION MODELS

The PAS needs to be aware about the watcher subscrip-

tion status to notify the watcher about presence information

change. This status has to be synchronized with the watcher’s

application view on presence subscription status.

Fig. 10 shows the simplified watchers view on subscription

status for presence information.

��

�

�

�

�

�

�

�

Fig. 10. Watcher’s subscription status as seen by the watcher application

In Inactive state, the presence subscription does not exist,

and the PAS does not send any notifications about presence

information change. When the watcher decides to subscribe to

published presentity’s data, his/her watcher application starts

presence notifications, and the subscription status becomes

Pending. In Pending state, the watcher application waits for

subscription authorization. The watcher may give up a pending

subscription or a timeout may occur (notificationFailed). The

presentity’s authorization decision may be one of the following

(allow, block or polite block). If the authorization decision is

polite block, the presentity has blocked the watcher, but this

information is not revealed to the watcher and he/she receives

none or limited presence information. So, from watcher point

of view there is no difference between active subscription and

politely blocked subscription. In Active state, the subscription

is authorized, and the PAS calls statusNotified operation to

notify the watcher application about the requested presence

changes. When the subscription expires (statusEnd operation),

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 286 ----------------------------------------------------------------------------



or the presentity decides to terminate the subscription (sub-

scriptionEnded operation) the watcher application is notified.

When the watcher does not want to receive any notifications

about presentity’s status, his/her application stops presence

notifications. In Active state, the presentity may update the

watcher subscription, the watcher may unsubscribe for receiv-

ing presence notifications, or the presentity may cancel the

subscription, or the subscription may expire.

From the PAS point of view the watcher subscription

status may be in Terminated, Pending, Waiting, Active or

PoliteBlocked state. Fig. 11 shows the simplified PAS view

on the presence subscription status of a watcher.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 11. Watcher’s subscription status as seen by the service

The Terminated state indicates that the subscription is

terminated or currently blocked and the PAS does not send

any notifications to the watcher application about presence

changes. If a presence subscription request is received and

there is an authorization policy, the watcher application is

notified. In Pending state, the presence subscription waits for

authorization decision by the presentity. In Pending state, the

subscription request may time out, or a watcher may give

up. The Active state indicates active watcher subscription

authorized by the presentity, and in this state the PAS notifies

the watcher application about presence changes (not shown

in Fig. 11). The Tsubscription timer indicates the watcher

subscription duration. In Waiting state, the watcher subscrip-

tion has expired while waiting for presentity authorization.

In PoliteBlocked state, the watcher subscription is politely

blocked by the presentity. In Active state and in PoliteBlock

state, the presentity may change some subscription attributes

or may change the subscription status. It is also possible, the

watcher to stop presence notifications.

We use formal model representation as finite state machines

to mathematically prove that both views on the watcher’s

subscription status are synchronized. A finite state machine

(FSM) is represented by a set of states, a set of events, a set

of transitions and an initial state.

By FSMw =
(
Sw, Ew, Tw, s

0
w

)
it is denoted an FSM

modeling the watcher’s view on the subscription status, where

the names of states and events are given in brackets:

Sw = {Inactive [sw1 ] , P ending [sw2 ] , Active [sw3 ]};
Ew = {subscribe [ew1 ] , notificationFailed [ew2 ] , giveup

[ew3 ] , statusNotified (block) [ew4 ] , statusNotified

(allow) [ew5 ] , statusNotified (politeBlock) [ew6 ] ,

subscriptionEnded [ew7 ] , statusEnd [ew8 ] ,

unsubscribe [ew9 ]};
Tw = {(sw1 ew1 sw2 ) , (sw2 ew2 sw1 ) , (sw2 ew3 sw1 ) , (sw2 ew4 sw1 ) ,

(sw2 e
w
5 s

w
3 ) , (s

w
2 e

w
6 s

w
3 ) , (s

w
3 e

w
5 s

w
3 ) , (s

w
3 e

w
6 s

w
3 ) ,

(sw3 e
w
7 s

w
1 ) , (s

w
3 e

w
8 s

w
1 ) , (s

w
3 e

w
9 s

w
1 )};

s0w = {sw1 }.
By FSMs =

(
Ss, Es, Ts, s

0
s

)
it is denoted an FSM model-

ing the PAS’s view on the subscription status, where:

Ss = {Terminated [ss1] , P ending [ss2] , Active [ss3] ,

Waiting [ss4] , PoliteBlocked [ss5]};
Es = {startPresenceNotification [es1] ,

updateSubscriptionAuthorization (allow) [es2] ,

updateSubscriptionAuthorization (politeBlock) [es3] ,

updateSubscriptionAuthorization (block) [es4] ,

stopPresenceNotification [es5] ,

getSubscribedAttributes [es6] , T subscription [es7] ,

timeout [es8] , getMyWatchers

[es9]};
Ts = {(ss1es1ss1) , (ss1es1ss2) , (ss1es2ss3) , (ss1es3ss5) , (ss2es3ss1) ,

(ss2e
s
2s

s
3) , (s

s
2e

s
3s

s
5) , (s

s
2e

s
8s

s
4) , (s

s
2e

s
5s

s
1) , (s

s
4e

s
9s

s
4) ,

(ss4e
s
4s

s
1) , (s

s
4e

s
3s

s
1) , (s

s
3e

s
2s

s
3) , (s

s
3e

s
6s

s
3) , (s

s
3e

s
3s

s
5) ,

(ss3e
s
4s

s
1) , (s

s
3e

s
5s

s
1) , (s

s
3e

s
7s

s
1) , (s

s
5e

s
3s

s
5) , (s

s
5e

s
2s

s
3) ,

(ss5e
s
4s

s
1) , (s

s
5e

s
5s

s
1) , (s

s
5e

s
7s

s
3)};

s0s = {ss1}.
By definition, two FSMs have a weak bisimulation relation-

ship between each other if there are tuples of states in FSMs,

where for each state tuple there exist a transition sequence

in the first FSM and a respective transition sequence in the

second FSM.

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 287 ----------------------------------------------------------------------------



Proposition 1. FSMw and FSMs have weak bisimulation
relationship.

Proof: Let R = {(sw1 , ss1) , (sw2 , ss2) , (sw3 , ss3) , (sw3 , ss5)}
is a set of state tuples. Then, the following transitions in each

FSM start and terminate in the states in R:

1) The watcher sends a presence subscription request and

waits for presentity’s confirmation:

∀ (sw1 ew1 sw2 ) ∃ (ss1es1ss2).
2) The watcher sends a presence subscription request and

there is a blocking policy:

∀ (sw1 ew1 sw2 ) � (sw2 e
w
4 s

w
1 ) ∃ (ss1es1ss1).

3) The watcher sends a presence subscription request and

there is an enabling policy:

∀ (sw1 ew1 sw2 ) � (sw2 e
w
5 s

w
3 ) ∃ (ss1es1ss3).

4) The watcher sends a presence subscription request and

there is a policy for polite blocking:

∀ (sw1 ew1 sw2 ) � (sw2 e
w
6 s

w
3 ) ∃ (ss1es1ss5).

5) The watcher gives up a pending subscription request:

∀ (sw2 ew3 sw1 ) ∃ (ss2es5ss1).
6) The presentity allows a pending presence subscription:

∀ (sw2 ew4 sw3 ) ∃ (ss2es2ss3).
7) The presentity blocks a pending presence subscription:

∀ (sw2 ew4 sw1 ) ∃ (ss2es4ss1).
8) The presentity politely blocks a pending presence sub-

scription:

∀ (sw2 ew2 sw1 ) ∃ (ss2es3ss5).
9) The watcher’s subscription request has expired while

waiting for authorization decision. Later, the presentity

defines an authorization policy for the presence

subscription: ∀ (sw2 ew2 sw1 ) ∃ ((ss2es8ss4) � (ss4e
s
2s

s
1)) �

((ss2e
s
8s

s
4) � (ss4e

s
3s

s
1)) � ((ss2e

s
8s

s
4) � (ss4e

s
4s

s
1)).

10) The presentity updates attributes of active or politely

blocked presence subscription: ∀ ((ss3es5ss3) � (ss3e
s
6s

s
3))

∃ ((ss3es6ss3) � (ss3e
s
2s

s
3)) � ((ss5e

s
6s

s
5) � (ss5e

s
5s

s
5)).

11) The presentity updates status of active or polite blocked

presence subscription: ∀ ((ss3es5ss3) � (ss3e
s
6s

s
3))

∃ ((ss3es6ss3) � (ss3e
s
3s

s
5)) � ((ss5e

s
6s

s
5) � (ss5e

s
2s

s
3)).

12) The presentity terminates an active or politely blocked

presence subscription: ∀ (ss3es7ss1) ∃ (ss3es4ss1)� (ss5e
s
4s

s
1).

13) The presence subscription expires:

∀ (ss3es8ss1) ∃ (ss3es7ss1) � (ss5e
s
7s

s
1).

14) The watcher terminates his/her presence subscription:

∀ (ss3es9ss1) ∃ (ss3es5ss1) � (ss5e
s
5s

s
1).

Therefore, FSMw and FSMs are weakly bisimilar.

VIII. CONCLUSION

The paper presents an approach to define a RESTful service

that enables supplying presence information and observing the

published information. The service also allows the presentity

to authorize and monitor his/her watchers who observe the

presentity information. In addition to standardized presence

service, the proposed approach enables publishing and ad-

ditional information about presentity activity, mobility and

location gathered from network elements. The main benefits

of the proposed Presence and Availability API is that the

API deployment does not require IMS infrastructure at all,

each presence application with IP connectivity may use the

PAS API. Next, the approach features inherent MEC benefits

related to reduced latency and saving transmission resources

from the edge to the core. The API may be used in the world

of Internet of Things for innovative solutions in smart cities,

smart homes, intelligent transportation systems, and ambient

assisted living. Examples include smart devices equipped by

air quality sensors that publish data about exceeding the per-

missible thresholds in close vicinity to watchers, and context

aware applications which are more user adaptive.

ACKNOWLEDGMENT

The research is part of project grant KP-06-H37/33, funded

by Bulgarian National Science Fund.

REFERENCES

[1] Ye Yang, Jiangtao Luo, Jin Peng and Jian Huang, “Research and
implementation on PRESENCE service of IMS,” 2010 3rd IEEE Interna-
tional Conference on Broadband Network and Multimedia Technology
(IC-BNMT), Beijing, China, 2010, pp. 803-806, doi: 10.1109/ICB-
NMT.2010.5705201.

[2] Daeseung Yoo, Jinkyu Choi, Byungtae Jang and Soonghwan Ro, “A
Study of Presence Services in SIP-Based Group Communication Sys-
tems,” Future Information Technology, Application, and Service, 2012,
pp. 301-308, doi: 10.1007/978-94-007-5064-7 42.

[3] Patricia E. Figueroa and Jesús A. Pérez, “Architecture for Interoperabil-
ity between Instant Messaging and Presence Protocols,” Networked Dig-
ital Technologies, 2010, pp. 306-320, doi: 10.1007/978-3-642-14306-
9 32.

[4] K. Imran and T. Jensen, “Performance of Parallel Signaling between
IMS Presence Server and Web Services,” 2011 Sixth IEEE International
Symposium on Electronic Design, Test and Application, Queenstown,
New Zealand, 2011, pp. 248-253, doi: 10.1109/DELTA.2011.52.

[5] Andrés Garcia, José Santa, Antonio Moragón and Antonio F. Gómez-
Skarmeta, “IMS and Presence Service Integration on Intelligent Trans-
portation Systems for Future Services,” Advances in Computing and
Communications, 2011, pp. 664-675, doi: 10.1007/978-3-642-22720-
2 70.

[6] Kun-Che Hsu and Jenq-Shiou Leu, “Improving the efficiency of presence
service in IMS by JSON,” 2015 Seventh International Conference on
Ubiquitous and Future Networks, Sapporo, Japan, 2015, pp. 547-550,
doi: 10.1109/ICUFN.2015.7182604.

[7] David Petras, Ivan Baronak, Erik Chromy, “Presence Service in IMS,”
The Scientific World Journal, vol. 2013, Article ID 606790, 8 pages,
2013, doi: 10.1155/2013/606790.

[8] M. Happenhofer, C. Egger, F. Wegscheider and R. Gabner, “Presence
distribution network,” 2012 International Conference on Selected Topics
in Mobile and Wireless Networking, Avignon, France, 2012, pp. 107-
112, doi: 10.1109/iCOST.2012.6271276.

[9] Ernesto Garcı́a Davis and Anna Calveras Augé, “Presence-Based
Architecture for Wireless Sensor Networks Using Publish/Subscribe
Paradigm,” Wired/Wireless Internet Communications, 2011, pp. 27-38,
doi: 10.1007/978-3-642-21560-5 3.

[10] P. A. Moreno, M. E. Hernando, and E. J. Gómez, “AALUMO: A User
Model Ontology for Ambient Assisted Living Services Supported in
Next-Generation Networks,” XIII Mediterranean Conference on Medical
and Biological Engineering and Computing 2013, 2014, pp. 1217-1220,
doi: 10.1007/978-3-319-00846-2 301.

[11] S. S. Chauhan, S. Yangui, R. H. Glitho and C. Wette, “A case study for
a presence service in the cloud,” 2016 7th International Conference on
the Network of the Future (NOF), Buzios, Brazil, 2016, pp. 1-7, doi:
10.1109/NOF.2016.7810124.

[12] I. Atanasov, E. Pencheva, D. Velkova and V. Trifonov, “Programmability
of Multi-Connectivity in 5G,” 2020 26th Conference of Open Innova-
tions Association (FRUCT), Yaroslavl, Russia, 2020, pp. 38-45, doi:
10.23919/FRUCT48808.2020.9087445.

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 288 ----------------------------------------------------------------------------



[13] E. Pencheva, I. Atanasov and V. Vladislavov, “Mission Critical Messag-
ing Using Multi-Access Edge Computing,” Cybernetics and Information
Technology, 2019, vol. 19, no. 4, pp. 73-89, doi: 10.2478/cait-2019-
0037.

[14] EnGenius, Presence service. [Online]. Available: https://docs.engenius.
ai/whitepapers/presence-service.

[15] Cisco, Microsoft Exchange for IM and Presence Service on Cisco
Unified Communications Manager, 2014, Release 10.5(1).

[16] Idency, BEMS in a Good Control and Good Proxy environment, 2017,
Configuration Guide.

[17] Oracle, WebLogic Communication Services, Developer’s Guide, 2020.
[Online]. Available: https://docs.oracle.com/cd/E28280 01/doc.1111/
e13807/toc.htm.

[18] M. Day, J. Rosenberg and H. Sugano, “A model for Presence and Instant

Messaging,” IETF, Request for Comments (RFC 2778), February, 2000.

[19] H. Schulzrinne, P. Kyzivat, J. Rosenberg and V. Gurbani, “RPID: Rich
Presence Extensions to the Presence Information Data Format (PIDF),”
IETF, Request for Comments (RFC 4480), July, 2006.

[20] 3GPP TS 22.141, “Presence Service; Stage 1,” Rel. 16, v16.0.0, July,
2020.

[21] 3GPP TS 23.141, “Presence Service; Architecture and functional de-
scription,” Rel. 16, v16.0.0, July, 2020.

[22] 3GPP TS 29.198-14, “Open Service Access; Application Programming
Interface (API); Part 14: Presence and Availability Management (PAM);
Service Capability Feature (SCF),” Rel. 9, v9.0.0, 2009.

[23] 3GPP TS 29.199-14, “Open Service Access (OSA); Parlay X Web
Services; Part 14: Presence,” Rel. 9, v9.0.0, 2009.

______________________________________________________PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 289 ----------------------------------------------------------------------------




