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Abstract—Currently, the automation of various tasks is very 
important in modern society. One of these tasks is the recognition 
of the car license plate in the video stream. Our project is aimed 
at this problem. This task is not new and there are many open 
source solutions available. All solutions can be two types of 
implementation: with using neural networks and without using it. 
Our implementation is a neural network for car license plate 
recognition on an image. We use the YOLOv3 detector for 
recognition. Training of neural networks is often complicated due 
to the small number of training samples. When you train a neural 
network using an insufficiently amount of data, it is difficult to 
achieve the required effectiveness. This problem can be solved in 
two ways: by expanding the training dataset, or by selecting the 
optimal training parameters and transforming the existing 
dataset. This article describes the solution to this problem by 
selecting the optimal training parameters and transforming the 
training dataset. The gradual labeling of the training set is 
discussed. The tuning of the anchor boxes parameter is discussed 
in detail. The presentation of the test results provides a 
visualization of the work performed. Research results show an 
increase in the efficiency of the neural network detector by 30.5% 
from the initial value. Submitted method helps to save a  
lot of time, because automate expanding the training 
dataset. 

I. INTRODUCTION 

Currently, neural networks are used in many areas. One of 
the most popular areas is image processing for the finding and 
classifying various objects. Depending on the goal, the 
following tasks can be solved using neural networks (see  
Fig. 1) [1]: 

● Semantic Segmentation is the division of the image into
different types of areas [2];

● Classification + Localization is the classification of the
object on the image and the determination of its
position;

● Object Detection is a finding objects of predefined
classes in the image;

● Instance Segmentation is a method for finding objects
on the image and applying a mask to it.

There are many open source tools for implementing this task 
[3-6]. But firstly, you need to create a dataset that will contain 
labeled images in order to train image detectors based on 

neural networks. There are a large number of already labeled 
datasets for solving different tasks [7-9]. However, in some 
specific tasks, the issue of collecting and labeling the training 
dataset stays quite acute. One of these tasks is the task of 
detecting car registration plates. Manually marking a large 
data set is a time-consuming process, because in addition to 
marking objects you need to control the correctness of the 
produced labels.  

Fig. 1. Types of tasks in image processing. 

II. MAIN PART

A. The current state 

The task of detecting a car license plate on an image is not 
new, [10-14] contains information about its solution. To 
summarize, the existing methods can be divided into two 
groups: 

1) Using neural networks;

2) Without using neural networks.

Detecting a car license plate can be solved without using 
neural networks, by statistical analysis [15], [16] or machine 
learning methods, for example, with Haar cascades [17]. These 
types of algorithms work quite effectively in real time. The 
image is submitted to the input of the algorithm and the Haar 
features are calculated for each part of it. The convolution of a 
part of the image with Haar primitives is calculated to obtain 
the features: 


 


k

ku

l

lv
tt vugvyuxIyxI ),(),(),( , (1) 

where I(x, y) is a part of the original image, k = (p – 1)/2 
and l = (q – 1)/2, gt(u, v) – t-th a Haar primitive of size pq. 
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Each primitive (see Fig. 2) represents several contiguous 
rectangular zones, each of which can contain one of two 
values - plus 1 (light) and minus 1 (dark). Primitives vary by 
the location of light and dark zones, and their orientation. 

Fig. 2. Haar primitives 

The feature is calculated for each convolution: 
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where A is a set of coordinates corresponding to the light 
part of the Haar primitive involved in the convolution 
operation, B is a set of coordinates corresponding to the dark 
part of the Haar primitive. 

The features obtained from expression (1) are submitted to 
the classification algorithm, which makes a decision in 
compliance with the expression: 
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where T is the number of Haar primitives, and at are the 
weights determined as a result of the training algorithm. 

Using neural networks for image processing is a stable 
trend of last time. Neural networks show higher effectiveness 
in solving many image processing problems than other 
algorithms [18]. 

Most modern neural network architectures for image 
processing are based on convolution layers, which are the 
main element of feature extraction from the image. 

Convolutional layers implement the operation of 
convolution of the input image with the kernel, which is 
described by the expression: 
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where Iin и Iout – input and output images with sizes (xin, yin) 
and (xout, yout), K –  the core of the filter with sizes (xknl, yknl). 

In this case, the weight coefficients of the kernel are 
determined in the process of training the neural network. 

There are several neural network architectures that are 
based on convolutional layers: AlexNet [19], VGG [20], 

GoogleNet [21], ResNet [22], DarkNet [23]. The Architectures 
is distinguishes by the number and parameters of 
convolutional layers and the presence of some special layers, 
such as Inception or Residual.  

Convolutional networks solve the problem of detecting 
objects only for images with a fixed size that is equal to the 
size of the input layer of the neural network. Therefore, on the 
basis of convolutional neural networks image detectors are 
built. 

The main tasks of the detector is to select fragment of the 
image that have size that corresponding to the size of the input 
layer of the neural network and to combine the solutions of the 
neural network obtained for each fragment into one solution 
on an image that potentially contains objects and other 
elements of the scene (region of interest). 

Detectors differ by the approach of the regions of interest 
selection and the way of forming the detection area. Currently, 
the most popular are the family of R-CNN detectors [24-26], 
YOLO detectors [23] and SSD detectors [27]. 

The R-CNN (Regions with CNNs) approach relies on 
image preprocessing. Pre-selected regions (region proposal) 
submitted to the input CNN, where the required objects are 
presumably located. The method that makes such assumptions 
is the unsupervised image segmentation algorithm - Selective 
Search [28]. 

CNN is used to extract features from the fragments of the 
image, which was selected by Selective Search, and then 
objects is classified by N (by the number of classes) linear 
support vector machines (SVM). Each SVM performs a binary 
classification, based on its own object class. Combining 
solutions for multiple regions is performed using the IOU 
metric (Intersection over Union). The bounding-box regression 
method [29] is used for specifying the position of the 
bounding box, which is performed during the error analysis 
procedure. The parameters dx, dy, dw, dh of the offset of the 
predicted bounding box relative to ground truth are determined 
after classifying the content of the candidate region based on 
features from CNN using linear regression. 

In the Fast R-CNN modification the entire image is 
submitted to the CNN instead of individual regions, the last 
max-pool layer is replaced by the RoI pooling layer. Also, 
binary SVMs are replaced with a fully connected layer and 
softmax with N+1 outputs. 

Faster R-CNN implements the idea of calculating regions of 
interest from the feature map obtained from CNN instead of 
initial image. The Region Proposal Network (RPN) module 
was added to do this. The RPN layers select the regions of 
interest, which are passed to the object detection and 
correction for the covered area. 

You Only Look Once (YOLO) is a one of CNN-based 
image detectors. Full image is submitted to CNN at the same 
time, and a grid is superimposed on the resulting feature map, 
which nodes are associated with the true bounding boxes and 
calculates the probability that the desired object is located 
there for each section of the image. Thus, the neural network is 
trained to predict the presence of individual parts of the 
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desired object inside the grid cells instead of the entire object 
as a whole. YOLO also uses the concept of anchor boxes, 
which defines the average size of bounding boxes for detection 
objects. Therefore, YOLO tries to predict the position of the 
anchor boxes relative to the actual bounding boxes, rather than 
the coordinates of the object's position in the image. 

Single Shot MultiBox Detector (SSD) is similar to YOLO 
by its ideology. It also processes the entire image without 
selecting regions and tries to predict the presence of a part of 
an object of a certain class at the same time in the pre-
generated default boxes. 

The source image is fed to the input of the convolutional 
network. The size of the feature map decreases as the 
convolutional layers pass through, but its depth increases. The 
featuremap is submitted to the Detector & Classifier block 
from several convolutional layers. The default boxes generator 
generates limits covering the original image inside this block. 
The auxiliary convolutional layers correct the default boxes to 
detect objects and classify it. The results are corrected, 
classified, and filtered at the final stage of this block, at the 
output, we get the detected object. The resulting solutions on 
default boxes are fed to Fast Non-Maximum Suppression, 
which combines them into the final result. 

There are a lot of open source projects [30-32] that make it 
possible to easily realize the recognition of any objects in a 
video stream or image. The main obstacle for this is the 
presence of a labeled image dataset. It is often impossible to 
find a labeled training base in free access. Manual labeling of 
large volumes of images is quite labor-intensive. 

B. Gradual labeling of the training set 

The choice of detector. We need to choose a detector that 
will be used for the license plate detection. The most suitable 
for this task are the one-stage detectors YOLO and SSD. They 
don't use a separate algorithm to determine the regions of 
interest, this increases the rate of the detector. 

We chose the YOLOv3 detector from the specified pair of 
detectors, because it has more flexible parameters. In 
particular, the ability to adjust the size of anchor-boxes for the 
size of objects of interest. 

The first training model. To create dataset we have 
collected 7749 images with cars that have car license plates. 
Images of cars are represented by various scenes: in the traffic 
flow, in outdoor and indoor parking lots, in the courtyards. 
The images were captured from different angles, at different 
camera mounting heights, and distances (see Fig. 3). 1489 
images from this set were manually labeled (training set 1), the 
first iteration of the YOLO detector training was performed on 
them. During training, the weights of the neural network were 
set randomly, the training parameters are presented below. 

Parameters of the [net] section: 

● batch = 16 – the number of sample items that are being
processed during one iteration before the weights
change;

● subdivisions = 1 – the number of mini batches (this
parameter indicates the number of training examples

used in a single loop). Calculated as mini_batch = 
batch/subvisions; 

● width = 416 – each image is applied to the input of the
network will be changed in width in accordance with
this parameter;

● height = 416 – the image changes in height similar to
the width parameter;

● channels = 3 – it determines the size of the network that
submits to the input, as the width and height
parameters. Each image is converted to 3 channels
(RGB);

● angle = 0 – a parameter that indicates the number of
degrees by which the image is randomly rotated during
training;

● saturation = 1.5 – a random change in the saturation of
images during training;

● exposure = 1.5 – a random change in the brightness
during a training;

● hue = .1 – random color change during training.

Fig. 3. Training set examples 

Optimizers: 

● momentum = 0.9 – characterizes how much the history
affects the further change in the weights;

● decay = 0.0005 – characterizes a weaker update of
weights for typical features, eliminates an imbalance in
the dataset;

● learning_rate = 0.001 – the value of the learning rate;
● burn_in = 1000 – the initial burn_in will be calculated

in the first 1000 iterations that used in the formula
current_learning_rate = learning_rate *
(iterations/burn_in)power = 0.001 * (iterations/1000)4,
where power = 4 by default;

● max_batches = 500200 – maximum number of
selection items;
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● policy = steps – rules for changing learning-rate.
Possible parameters: constant (by default), sgdr, steps,
step, sig, exp, poly, random. The effective learning rate
will change according to the formula:
current_learning_rate = learning_rate *
rand_uniform(0,1)power, if policy = random;

● steps = 400000, 450000 – this parameter is indicated
when policy = steps. The parameter specifies at which
iterations the learning_rate will be changed according
to the scales parameter;

● scales = 0.1, 0.1 – this parameter is indicated when
policy = steps. If steps = 400000, 450000, the number
of the current iteration is more than 400000, but less
than 4500000, then the formula for calculating:
current_learning_rate = learning_rate * scales[0] =
0.001 * 0.1 = 0.0001. If the current iteration is more
than 450000, the multiplication will be performed by
scales [0] * scales.

Section [yolo]: 

● anchors – a set of predefined bounding boxes of a
certain height and width;

● mask = 3, 4, 5 – the numbers of the anchor boxes used
on the layer;

● classes = 1 – number of classes to train;
● jitter = .3 – randomly resizing the image from x * (1 – 2

* jitter) to x * (1 + 2 * jitter);
● random = 1 – random change in network size after each

10th iteration from x/1.4 to x * 1.4 of the initial
network size;

● truth_thresh = 1 – IOU threshold value (metric of the
degree of intersection between two bounding boxes);

● ignore_thresh = .7 – threshold value that determines
whether the error should be taken into account if the
truth_thresh threshold is not exceeded;

● num = 9 – the number of anchor boxes.

The collected number of training samples was not enough 
for high-quality training of the YOLO model. The results of 
testing the model after the first training are shown in Table I. 

TABLE I.  THE RESULTS OF THE FIRST YOLO TEST. 

The correct 
results 

False 
positives 

Nothing was 
found 

Total 

4289(55,4%) 102(1,3%) 3358(43,3%) 7749(100%) 

Then, we trained the Haar cascade from the OpenCV [33] 
library to increase the number of labeled images on the initial 
set. Contrary instances are required to train the cascade. That 
is images, that don’t contain detectable objects. The sample of 
contrary instances contained 1268 images of various 
inscriptions, signboards, road signs, advertising objects, etc. 
After training the Haar cascade, all 7749 source images were 
processed by the resulting detector. The results of the Haar 
cascade are shown in Table II. 

TABLE II. RESULTS OF TESTING THE HAAR CASCADE. 

The correct 
results 

False 
positives 

Nothing was 
found 

Total 

5491(70,9%) 26(0,3%) 2232(28,8%) 7749(100%) 

Therefore, the number of labeled dataset increased by more 
than 3.6 times. The sample formed in this way was split into 
training and test set. The training set included 3233 labeled 
images (training set 2), the test set included 2258. The weights 
of the neural network were set randomly during training, the 
training parameters are similar to those specified earlier. 

The YOLO detector was trained on the training set 2. The 
test showed a correct recognition rate of 73.4% (Table III). 

TABLE III. TEST RESULTS AFTER TRAINING ON SAMPLE 2. 

The correct 
results

False 
positives

Nothing was 
found 

Total 

1657(73,4%) 21(0,9%) 581(25,7%) 2258(100%) 

Such characteristics still do not allow us to use the system 
in real environment, despite the improvement of the result. 
Another way to improve the quality of the model is to adjust 
the parameters. 

Selection of anchor boxes. The usage of anchor boxes in the 
YOLO detector allows adapting the grid superimposed on the 
feature map to the geometric parameters of objects of interest 
with different classes. This parameter defines the set and size 
of predefined boxes. The YOLO detector initially uses anchor 
boxes that are optimized for the characteristics of COCO 
Dataset objects. 

The method of calculating anchor boxes [34] involves the 
analysis and clustering of bounding boxes of placed objects by 
area and the ratio of width and height. Large areas on the chart 
define the size of the anchor boxes. The desired number of 
anchor boxes sets the number of clusters into the divided 
geometric space (see Fig. 4), where each example of the 
training sample is represented by the coordinates (x, y), where 
x is the bounding box area of training sample, y is the aspect 
ratio width/height of training sample. 

Fig. 4. Box area vs. Aspect ratio 

Standard sizes: 10,13; 16,30; 33,23; 30,61; 62,45; 59,119; 
116,90; 156,198; 373,326. 

The dimensions obtained as a result of selection on the 
training sample: 120,40; 139,47; 155,52; 172,58; 187,63; 
203,68; 227,76; 286,96; 437,146. 
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Training the detector with the new anchor boxes improved 
the result of correctly recognized numbers by 7%, but at the 
same time the result of false positives increased to 2.7%. The 
allocated boxes of car plates began to be localized more 
accurately at the same time (see Fig. 4). 

TABLE IV. RESULTS OF TRAINING ON SAMPLE 2 WITH NEW ANCHOR BOXES. 

The correct 
results 

False 
positives 

Nothing was 
found 

Total 

1816(80,4%) 61(2,7%) 381(16,9%) 2258(100%) 

Fig. 5. Visualization of the result 

The transformation of a training dataset. At the next stage, 
the training was retrained on the training set 2, but with the 
pre-trained weights in the previous iteration. This attempt 
didn't help to improve the result. 

There was a set of images that the cascade could not 
recognize during the labeling with the Haar cascade. This set 
of images was processed by the detector and the recognized 
images were added to the training set. This is how the training 
set 3 was formed. Training the detector on a training set 3 
allowed us to increase the result of the detected license plate. 
However, the result of false positives has also increased (Table 
IV). 

TABLE V. TEST RESULTS AFTER TRAINING ON THE TRAINING SAMPLE 3. 

The correct 
results 

False 
positives 

Nothing was 
found 

Total 

1882(83,3%) 88(3,9%) 288(12,7%) 2258(100%) 

Analysis of the remaining images without labels showed 
that the dataset mostly contains images with license plates that 
are located at an angle of more than 30 degrees to the 
horizontal, or polluted, or poorly lit, or obscured by vegetation 
or other objects of the scene. These images were labeled 
manually. Some of them were added to the training set 
(training set 4 was formed), and some were made up for a 
"difficult" test sample, with a size of 1217 images. We 
calculated anchor boxes for the updated training set and 
retrained the detector. 

1000 images were randomly selected from the initial test 
set, which were removed from it and formed a "simple" test 
sample. 1000 images from the "difficult" test set were added to 
the initial test set instead of the removed images. This is how 
we formed the "averaged" test set. 

So we got 3 test sets. One test set contained images that 
were initially recognized by the OpenCV cascade (a "simple" 
set). The second set contained images with dirty license plates, 
license plates at an angle to the horizontal, and other images 
whose recognition was complicated (a "difficult" set). The 
third was a "mixed" set, which consisted of "simple" and 
"difficult" images. None of the images from the test sets were 
included in the training set 4. The results of testing the 
detector trained on the training set 4 are shown in Table VI. 

TABLE VI. TEST RESULTS AFTER LEARNING ON TRAINING SAMPLE 4 AND 

UPDATED ANCHOR BOXES. 

Test 
base

The correct 
results

False 
positives 

Nothing 
was found 

Total 

Simple 986(98,6%) 10(1%) 4(0,4%) 1000(100%) 
Difficult 919(75,5%) 86(7%) 212(17,4%) 1217(100%) 
Mixed 1946(86,2%) 96(4,2%) 216(9,6%) 2258(100%) 

This transformation allowed us to achieve 98.6% efficiency 
on images of the "simple" test set, 85.9% correct detections on 
the "mixed" test set and 75.5% correct detections on "difficult" 
images. 

III.  CONCLUSION

Thus, we improved the model accuracy from the initial 
55.4% to 85.9% by transforming the input data and training 
parameters. Using automatically labeled images as training 
data allowed us to improve the quality of recognition. The 
quality of the YOLO detector improves with an increase of 
number of samples in the training set. But there is an increase 
in the false detections at the same time. One of the parameters 
that can significantly influence the results of the YOLO 
detector are the anchor boxes. It is recommended to configure 
this parameter for a specific training dataset during training the 
detector. The further research is to solve the problem of 
improving the accuracy by augmenting automatically labeled 
data. For example, you can randomly change the position of 
the image during training, apply the transformation of 
stretching and compression of images by horizontal and 
vertical, rotation by an arbitrary angle. Also we plan to find 
out the reason for the increase of false positives with 
increasing training dataset and try to solve this problem. 

We have shown that the creation of a training set for neural 
networks can be performed with automatically labeling by less 
efficient algorithms. This saves time and improves quality 
when combined with manual labeling. 
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