
Gradual Labeling of the Training Set to Improve the
Efficiency of Image Detection by a Neural Network

on the Example of License Plate Recognition

Yaroslav Schegolihin, Maksim Mitrohin, Valeriya
Sazykina

Penza State University
Penza, Russian Federation

Yaroslav Schegolihin, yaroslav.schegolikhin@yandex.ru

Maksim Semenkin
CodeInside

Penza, Russian Federation
maxim.semenkin@codeinside.ru

Abstract—Currently, the automation of various tasks is very
important in modern society. One of these tasks is the recognition
of the car license plate in the video stream. Our project is aimed
at this problem. This task is not new and there are many open
source solutions available. All solutions can be two types of
implementation: with using neural networks and without using it.
Our implementation is a neural network for car license plate
recognition on an image. We use the YOLOv3 detector for
recognition. Training of neural networks is often complicated due
to the small number of training samples. When you train a neural
network using an insufficiently amount of data, it is difficult to
achieve the required effectiveness. This problem can be solved in
two ways: by expanding the training dataset, or by selecting the
optimal training parameters and transforming the existing
dataset. This article describes the solution to this problem by
selecting the optimal training parameters and transforming the
training dataset. The gradual labeling of the training set is
discussed. The tuning of the anchor boxes parameter is discussed
in detail. The presentation of the test results provides a
visualization of the work performed. Research results show an
increase in the efficiency of the neural network detector by 30.5%
from the initial value. Submitted method helps to save a
lot of time, because automate expanding the training
dataset.

I. INTRODUCTION

Currently, neural networks are used in many areas. One of
the most popular areas is image processing for the finding and
classifying various objects. Depending on the goal, the
following tasks can be solved using neural networks (see
Fig. 1) [1]:

● Semantic Segmentation is the division of the image into
different types of areas [2];

● Classification + Localization is the classification of the
object on the image and the determination of its
position;

● Object Detection is a finding objects of predefined
classes in the image;

● Instance Segmentation is a method for finding objects
on the image and applying a mask to it.

There are many open source tools for implementing this task
[3-6]. But firstly, you need to create a dataset that will contain
labeled images in order to train image detectors based on

neural networks. There are a large number of already labeled
datasets for solving different tasks [7-9]. However, in some
specific tasks, the issue of collecting and labeling the training
dataset stays quite acute. One of these tasks is the task of
detecting car registration plates. Manually marking a large
data set is a time-consuming process, because in addition to
marking objects you need to control the correctness of the
produced labels.

Fig. 1. Types of tasks in image processing.

II. MAIN PART

A. The current state

The task of detecting a car license plate on an image is not
new, [10-14] contains information about its solution. To
summarize, the existing methods can be divided into two
groups:

1) Using neural networks;

2) Without using neural networks.

Detecting a car license plate can be solved without using
neural networks, by statistical analysis [15], [16] or machine
learning methods, for example, with Haar cascades [17]. These
types of algorithms work quite effectively in real time. The
image is submitted to the input of the algorithm and the Haar
features are calculated for each part of it. The convolution of a
part of the image with Haar primitives is calculated to obtain
the features:


 


k

ku

l

lv
tt vugvyuxIyxI),(),(),(, (1)

where I(x, y) is a part of the original image, k = (p – 1)/2
and l = (q – 1)/2, gt(u, v) – t-th a Haar primitive of size pq.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Each primitive (see Fig. 2) represents several contiguous
rectangular zones, each of which can contain one of two
values - plus 1 (light) and minus 1 (dark). Primitives vary by
the location of light and dark zones, and their orientation.

Fig. 2. Haar primitives

The feature is calculated for each convolution:





Byx

t
Ayx

t
t yxIyxIf

),(),(

),(),(
,

(2)

where A is a set of coordinates corresponding to the light
part of the Haar primitive involved in the convolution
operation, B is a set of coordinates corresponding to the dark
part of the Haar primitive.

The features obtained from expression (1) are submitted to
the classification algorithm, which makes a decision in
compliance with the expression:









 


,,0

,
2

1
)(,1

)(11

else

afhaif
Ih

T

t
t

T

t

t
tt

(3)

where T is the number of Haar primitives, and at are the
weights determined as a result of the training algorithm.

Using neural networks for image processing is a stable
trend of last time. Neural networks show higher effectiveness
in solving many image processing problems than other
algorithms [18].

Most modern neural network architectures for image
processing are based on convolution layers, which are the
main element of feature extraction from the image.

Convolutional layers implement the operation of
convolution of the input image with the kernel, which is
described by the expression:


 


knl nrlx

i

y

j
outoutinoutoutout jiKjyixIyxI

1 1

),,()1,1(),((4)

where Iin и Iout – input and output images with sizes (xin, yin)
and (xout, yout), K – the core of the filter with sizes (xknl, yknl).

In this case, the weight coefficients of the kernel are
determined in the process of training the neural network.

There are several neural network architectures that are
based on convolutional layers: AlexNet [19], VGG [20],

GoogleNet [21], ResNet [22], DarkNet [23]. The Architectures
is distinguishes by the number and parameters of
convolutional layers and the presence of some special layers,
such as Inception or Residual.

Convolutional networks solve the problem of detecting
objects only for images with a fixed size that is equal to the
size of the input layer of the neural network. Therefore, on the
basis of convolutional neural networks image detectors are
built.

The main tasks of the detector is to select fragment of the
image that have size that corresponding to the size of the input
layer of the neural network and to combine the solutions of the
neural network obtained for each fragment into one solution
on an image that potentially contains objects and other
elements of the scene (region of interest).

Detectors differ by the approach of the regions of interest
selection and the way of forming the detection area. Currently,
the most popular are the family of R-CNN detectors [24-26],
YOLO detectors [23] and SSD detectors [27].

The R-CNN (Regions with CNNs) approach relies on
image preprocessing. Pre-selected regions (region proposal)
submitted to the input CNN, where the required objects are
presumably located. The method that makes such assumptions
is the unsupervised image segmentation algorithm - Selective
Search [28].

CNN is used to extract features from the fragments of the
image, which was selected by Selective Search, and then
objects is classified by N (by the number of classes) linear
support vector machines (SVM). Each SVM performs a binary
classification, based on its own object class. Combining
solutions for multiple regions is performed using the IOU
metric (Intersection over Union). The bounding-box regression
method [29] is used for specifying the position of the
bounding box, which is performed during the error analysis
procedure. The parameters dx, dy, dw, dh of the offset of the
predicted bounding box relative to ground truth are determined
after classifying the content of the candidate region based on
features from CNN using linear regression.

In the Fast R-CNN modification the entire image is
submitted to the CNN instead of individual regions, the last
max-pool layer is replaced by the RoI pooling layer. Also,
binary SVMs are replaced with a fully connected layer and
softmax with N+1 outputs.

Faster R-CNN implements the idea of calculating regions of
interest from the feature map obtained from CNN instead of
initial image. The Region Proposal Network (RPN) module
was added to do this. The RPN layers select the regions of
interest, which are passed to the object detection and
correction for the covered area.

You Only Look Once (YOLO) is a one of CNN-based
image detectors. Full image is submitted to CNN at the same
time, and a grid is superimposed on the resulting feature map,
which nodes are associated with the true bounding boxes and
calculates the probability that the desired object is located
there for each section of the image. Thus, the neural network is
trained to predict the presence of individual parts of the

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 308 --

desired object inside the grid cells instead of the entire object
as a whole. YOLO also uses the concept of anchor boxes,
which defines the average size of bounding boxes for detection
objects. Therefore, YOLO tries to predict the position of the
anchor boxes relative to the actual bounding boxes, rather than
the coordinates of the object's position in the image.

Single Shot MultiBox Detector (SSD) is similar to YOLO
by its ideology. It also processes the entire image without
selecting regions and tries to predict the presence of a part of
an object of a certain class at the same time in the pre-
generated default boxes.

The source image is fed to the input of the convolutional
network. The size of the feature map decreases as the
convolutional layers pass through, but its depth increases. The
featuremap is submitted to the Detector & Classifier block
from several convolutional layers. The default boxes generator
generates limits covering the original image inside this block.
The auxiliary convolutional layers correct the default boxes to
detect objects and classify it. The results are corrected,
classified, and filtered at the final stage of this block, at the
output, we get the detected object. The resulting solutions on
default boxes are fed to Fast Non-Maximum Suppression,
which combines them into the final result.

There are a lot of open source projects [30-32] that make it
possible to easily realize the recognition of any objects in a
video stream or image. The main obstacle for this is the
presence of a labeled image dataset. It is often impossible to
find a labeled training base in free access. Manual labeling of
large volumes of images is quite labor-intensive.

B. Gradual labeling of the training set

The choice of detector. We need to choose a detector that
will be used for the license plate detection. The most suitable
for this task are the one-stage detectors YOLO and SSD. They
don't use a separate algorithm to determine the regions of
interest, this increases the rate of the detector.

We chose the YOLOv3 detector from the specified pair of
detectors, because it has more flexible parameters. In
particular, the ability to adjust the size of anchor-boxes for the
size of objects of interest.

The first training model. To create dataset we have
collected 7749 images with cars that have car license plates.
Images of cars are represented by various scenes: in the traffic
flow, in outdoor and indoor parking lots, in the courtyards.
The images were captured from different angles, at different
camera mounting heights, and distances (see Fig. 3). 1489
images from this set were manually labeled (training set 1), the
first iteration of the YOLO detector training was performed on
them. During training, the weights of the neural network were
set randomly, the training parameters are presented below.

Parameters of the [net] section:

● batch = 16 – the number of sample items that are being
processed during one iteration before the weights
change;

● subdivisions = 1 – the number of mini batches (this
parameter indicates the number of training examples

used in a single loop). Calculated as mini_batch =
batch/subvisions;

● width = 416 – each image is applied to the input of the
network will be changed in width in accordance with
this parameter;

● height = 416 – the image changes in height similar to
the width parameter;

● channels = 3 – it determines the size of the network that
submits to the input, as the width and height
parameters. Each image is converted to 3 channels
(RGB);

● angle = 0 – a parameter that indicates the number of
degrees by which the image is randomly rotated during
training;

● saturation = 1.5 – a random change in the saturation of
images during training;

● exposure = 1.5 – a random change in the brightness
during a training;

● hue = .1 – random color change during training.

Fig. 3. Training set examples

Optimizers:

● momentum = 0.9 – characterizes how much the history
affects the further change in the weights;

● decay = 0.0005 – characterizes a weaker update of
weights for typical features, eliminates an imbalance in
the dataset;

● learning_rate = 0.001 – the value of the learning rate;
● burn_in = 1000 – the initial burn_in will be calculated

in the first 1000 iterations that used in the formula
current_learning_rate = learning_rate *
(iterations/burn_in)power = 0.001 * (iterations/1000)4,
where power = 4 by default;

● max_batches = 500200 – maximum number of
selection items;

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 309 --

● policy = steps – rules for changing learning-rate.
Possible parameters: constant (by default), sgdr, steps,
step, sig, exp, poly, random. The effective learning rate
will change according to the formula:
current_learning_rate = learning_rate *
rand_uniform(0,1)power, if policy = random;

● steps = 400000, 450000 – this parameter is indicated
when policy = steps. The parameter specifies at which
iterations the learning_rate will be changed according
to the scales parameter;

● scales = 0.1, 0.1 – this parameter is indicated when
policy = steps. If steps = 400000, 450000, the number
of the current iteration is more than 400000, but less
than 4500000, then the formula for calculating:
current_learning_rate = learning_rate * scales[0] =
0.001 * 0.1 = 0.0001. If the current iteration is more
than 450000, the multiplication will be performed by
scales [0] * scales.

Section [yolo]:

● anchors – a set of predefined bounding boxes of a
certain height and width;

● mask = 3, 4, 5 – the numbers of the anchor boxes used
on the layer;

● classes = 1 – number of classes to train;
● jitter = .3 – randomly resizing the image from x * (1 – 2

* jitter) to x * (1 + 2 * jitter);
● random = 1 – random change in network size after each

10th iteration from x/1.4 to x * 1.4 of the initial
network size;

● truth_thresh = 1 – IOU threshold value (metric of the
degree of intersection between two bounding boxes);

● ignore_thresh = .7 – threshold value that determines
whether the error should be taken into account if the
truth_thresh threshold is not exceeded;

● num = 9 – the number of anchor boxes.

The collected number of training samples was not enough
for high-quality training of the YOLO model. The results of
testing the model after the first training are shown in Table I.

TABLE I. THE RESULTS OF THE FIRST YOLO TEST.

The correct
results

False
positives

Nothing was
found

Total

4289(55,4%) 102(1,3%) 3358(43,3%) 7749(100%)

Then, we trained the Haar cascade from the OpenCV [33]
library to increase the number of labeled images on the initial
set. Contrary instances are required to train the cascade. That
is images, that don’t contain detectable objects. The sample of
contrary instances contained 1268 images of various
inscriptions, signboards, road signs, advertising objects, etc.
After training the Haar cascade, all 7749 source images were
processed by the resulting detector. The results of the Haar
cascade are shown in Table II.

TABLE II. RESULTS OF TESTING THE HAAR CASCADE.

The correct
results

False
positives

Nothing was
found

Total

5491(70,9%) 26(0,3%) 2232(28,8%) 7749(100%)

Therefore, the number of labeled dataset increased by more
than 3.6 times. The sample formed in this way was split into
training and test set. The training set included 3233 labeled
images (training set 2), the test set included 2258. The weights
of the neural network were set randomly during training, the
training parameters are similar to those specified earlier.

The YOLO detector was trained on the training set 2. The
test showed a correct recognition rate of 73.4% (Table III).

TABLE III. TEST RESULTS AFTER TRAINING ON SAMPLE 2.

The correct
results

False
positives

Nothing was
found

Total

1657(73,4%) 21(0,9%) 581(25,7%) 2258(100%)

Such characteristics still do not allow us to use the system
in real environment, despite the improvement of the result.
Another way to improve the quality of the model is to adjust
the parameters.

Selection of anchor boxes. The usage of anchor boxes in the
YOLO detector allows adapting the grid superimposed on the
feature map to the geometric parameters of objects of interest
with different classes. This parameter defines the set and size
of predefined boxes. The YOLO detector initially uses anchor
boxes that are optimized for the characteristics of COCO
Dataset objects.

The method of calculating anchor boxes [34] involves the
analysis and clustering of bounding boxes of placed objects by
area and the ratio of width and height. Large areas on the chart
define the size of the anchor boxes. The desired number of
anchor boxes sets the number of clusters into the divided
geometric space (see Fig. 4), where each example of the
training sample is represented by the coordinates (x, y), where
x is the bounding box area of training sample, y is the aspect
ratio width/height of training sample.

Fig. 4. Box area vs. Aspect ratio

Standard sizes: 10,13; 16,30; 33,23; 30,61; 62,45; 59,119;
116,90; 156,198; 373,326.

The dimensions obtained as a result of selection on the
training sample: 120,40; 139,47; 155,52; 172,58; 187,63;
203,68; 227,76; 286,96; 437,146.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 310 --

Training the detector with the new anchor boxes improved
the result of correctly recognized numbers by 7%, but at the
same time the result of false positives increased to 2.7%. The
allocated boxes of car plates began to be localized more
accurately at the same time (see Fig. 4).

TABLE IV. RESULTS OF TRAINING ON SAMPLE 2 WITH NEW ANCHOR BOXES.

The correct
results

False
positives

Nothing was
found

Total

1816(80,4%) 61(2,7%) 381(16,9%) 2258(100%)

Fig. 5. Visualization of the result

The transformation of a training dataset. At the next stage,
the training was retrained on the training set 2, but with the
pre-trained weights in the previous iteration. This attempt
didn't help to improve the result.

There was a set of images that the cascade could not
recognize during the labeling with the Haar cascade. This set
of images was processed by the detector and the recognized
images were added to the training set. This is how the training
set 3 was formed. Training the detector on a training set 3
allowed us to increase the result of the detected license plate.
However, the result of false positives has also increased (Table
IV).

TABLE V. TEST RESULTS AFTER TRAINING ON THE TRAINING SAMPLE 3.

The correct
results

False
positives

Nothing was
found

Total

1882(83,3%) 88(3,9%) 288(12,7%) 2258(100%)

Analysis of the remaining images without labels showed
that the dataset mostly contains images with license plates that
are located at an angle of more than 30 degrees to the
horizontal, or polluted, or poorly lit, or obscured by vegetation
or other objects of the scene. These images were labeled
manually. Some of them were added to the training set
(training set 4 was formed), and some were made up for a
"difficult" test sample, with a size of 1217 images. We
calculated anchor boxes for the updated training set and
retrained the detector.

1000 images were randomly selected from the initial test
set, which were removed from it and formed a "simple" test
sample. 1000 images from the "difficult" test set were added to
the initial test set instead of the removed images. This is how
we formed the "averaged" test set.

So we got 3 test sets. One test set contained images that
were initially recognized by the OpenCV cascade (a "simple"
set). The second set contained images with dirty license plates,
license plates at an angle to the horizontal, and other images
whose recognition was complicated (a "difficult" set). The
third was a "mixed" set, which consisted of "simple" and
"difficult" images. None of the images from the test sets were
included in the training set 4. The results of testing the
detector trained on the training set 4 are shown in Table VI.

TABLE VI. TEST RESULTS AFTER LEARNING ON TRAINING SAMPLE 4 AND

UPDATED ANCHOR BOXES.

Test
base

The correct
results

False
positives

Nothing
was found

Total

Simple 986(98,6%) 10(1%) 4(0,4%) 1000(100%)
Difficult 919(75,5%) 86(7%) 212(17,4%) 1217(100%)
Mixed 1946(86,2%) 96(4,2%) 216(9,6%) 2258(100%)

This transformation allowed us to achieve 98.6% efficiency
on images of the "simple" test set, 85.9% correct detections on
the "mixed" test set and 75.5% correct detections on "difficult"
images.

III. CONCLUSION

Thus, we improved the model accuracy from the initial
55.4% to 85.9% by transforming the input data and training
parameters. Using automatically labeled images as training
data allowed us to improve the quality of recognition. The
quality of the YOLO detector improves with an increase of
number of samples in the training set. But there is an increase
in the false detections at the same time. One of the parameters
that can significantly influence the results of the YOLO
detector are the anchor boxes. It is recommended to configure
this parameter for a specific training dataset during training the
detector. The further research is to solve the problem of
improving the accuracy by augmenting automatically labeled
data. For example, you can randomly change the position of
the image during training, apply the transformation of
stretching and compression of images by horizontal and
vertical, rotation by an arbitrary angle. Also we plan to find
out the reason for the increase of false positives with
increasing training dataset and try to solve this problem.

We have shown that the creation of a training set for neural
networks can be performed with automatically labeling by less
efficient algorithms. This saves time and improves quality
when combined with manual labeling.

REFERENCES
[1] Medium website, Image Classification vs. Object Detection vs. Image

Segmentation, Web: https://medium.com/analytics-vidhya/image-
classification-vs-object-detection-vs-image-segmentation-
f36db85fe81.

[2] Nanonets website, A 2021 guide to Semantic Segmentation, Web:
https://nanonets.com/blog/semantic-image-segmentation-2020/.

[3] PyTorch official website, Web: https://pytorch.org/.
[4] TensorFlow official website, Web: https://www.tensorflow.org/.
[5] Kera official websites, Web: https://keras.io/.
[6] Darknet official website, Web: https://pjreddie.com/darknet/.
[7] ImageNet official website, Web: http://www.image-net.org/.
[8] COCO official website, Web: https://cocodataset.org/#home.
[9] CIFAR-10 official website, Web:

https://www.cs.toronto.edu/~kriz/cifar.html.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 311 --

[10] M.T. Qadri, M. Asif. “Automatic Number Plate Recognition System
for Vehicle Identification Using Optical Character Recognition”,
International Conference on Education Technology and Computer.
Singapore, May 2009, pp. 335-338.

[11] N. Arora, S. Jain, P. Gour. “Survey of Number Plate Recognition for
Use in Different. Countries using an Improved Segmentation.”
International Journal of Computer Applications, vol. 102, Wardha.
March 2014, pp. 47-50.

[12] Y. Zhao, X. Gu. “Vehicle License Plate Localization and License
Number Recognition Using Unit-Linking Pulse Coupled Neural
Network”, in International Conference on Neural Information
Processing, vol. Part V, Bangkok, Thailand, Nov. 2012, pp. 100-108.

[13] L.G.C. Hamey, C. Priest. “Automatic Number Plate Recognition for
Australian Conditions”, Digital Image Computing: Techniques and
Applications, Dec. 2005. Queensland, Australia.

[14] J. Wang, W.Q. Yan, “BP-Neural Network for Plate Number
Recognition”, Deep Learning and Neural Networks, Jan 2020, pp
1189-1199.

[15] K. Aboura, R. Al-Hmouz. “An Overview of Image Analysis
Algorithms for License Plate Recognition”, Organizacija, Vol 50 (3),
2017, pp. 285-295.

[16] V.H. Deepthi, B.B. Singh, V.S. Rao. “Automatic Vehicle Number
Plate Localization Using Symmetric Wavelets”, ICT and Critical
Infrastructure: Proceedings of the 48th Annual Convention of
Computer Society of India, vol 1, Jan. 2014. pp 69-76.

[17] P. Viola, M.J. Jones “Rapid Object Detection using a Boosted
Cascade of Simple Features”, Proceedings Conference of Computer
Vision and Pattern Recognition, vol. 1, Kauai. USA, Feb. 2001. pp.
511-518.

[18] M.R. Aguila, I. Requena, J.L. Bernier, E. Ros, S. Mota. “Neural
Networks and Statistics: A Review of the Literature”, Soft
Methodology and Random Information Systems, Jan. 2004, pp. 597-
604.

[19] A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks”, Neural Information
Processing Systems, vol. 60, Jan. 2012.

[20] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition”, International Conference on
Learning Representations, Sep. 2014

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke. A. Rabinovich. "Going deeper with
convolutions", In Proceedings of the IEEE conference on computer

vision and pattern recognition, June 2015, pp. 1-9.
[22] K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image

Recognition" 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, June 2016, pp. 770-778.

[23] J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement”,
ArXiv, Apr. 2018

[24] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Region-Based
Convolutional Networks for Accurate Object Detection and
Segmentation”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, Dec. 2015, pp. 142-158.

[25] R. Girshick, "Fast R-CNN" 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, April 2015, pp. 1440-1448.

[26] S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
June 2015, pp. 1137 - 1149

[27] W. Liu, D. Anguelov, D. Erhan,C. Szegedy, S. Reed, C. Fu, A. Berg,
“SSD: Single Shot MultiBox Detector”, European Conference on
Computer Vision, vol. 9905, Sep. 2016, pp. 21-37.

[28] J. Uijlings, K. Sande, T. Gevers, A.W.M. Smeulders, “Selective
Search for Object Recognition”, International Journal of Computer
Vision, vol.104, April 2013, pp. 154-171.

[29] S. Lee, S. Kwak, M. Cho, “Universal Bounding Box Regression and
Its Applications”, Computer Vision – ACCV 2018, vol. 11366, May
2019, pp. 373-387.

[30] P. Mishra. “CNN and RNN Using PyTorch”, CNN and RNN Using
PyTorch, Jan. 2019, pp. 49-109.

[31] P. Kumar, U. Dugal. “Tensorflow Based Image Classification using
Advanced Convolutional Neural Network”, International Journal of
Recent Technology and Engineering (IJRTE), vol. 8, June 2020, pp.
994-998.

[32] A. Mishra. “Building a Deep Convolutional Neural Network with
Keras”, Machine Learning for iOS Developers, pp. 235-286.

[33] M.A. Mitrohin, Y.P. Schegolihin, D.O. Neshko, M.V. Semenkin, “An
analysis of the OpenCV library’s solutions efficiency in the problem
of license plate recognition”, Engineering sciences. Computer
science, computer engineering and control, vol. 2(50), pp. 39-46.
April 2019.

[34] MathWorks official website, Estimate Anchor Boxes From Training
Data, Web: https://www.mathworks.com/help/vision/ug/estimate-
anchor-boxes-from-training-data.html.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 312 --

