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Abstract—In many aerospace networks based on the
SpaceFibre standard, there is a need to transfer information
about events occurring in various network nodes (terminal nodes,
routers) for processing to other nodes. For example, information
about faults during operation should be transmitted to a node
performing system administration functions. In different
networks, the set of events, information about which must be
transmitted, the level of criticality of events for the functioning of
the system, may be different. The required transmission
characteristics may also vary. The SpaceFibre standard includes
several mechanisms for transferring information about events
from sources (terminal nodes and routers) to handler nodes.
Different characteristics can be achieved (guaranteed delivery,
guaranteed delivery time, the ability to transfer additional
parameters, network load) with using different mechanisms.
When designing a specific network, the system developer should
be able to determine for each terminal node and router which
events should be transmitted for processing to remote nodes and
using which mechanisms this should be done. Terminal nodes
and routers are developed as universal devices (systems-on-a-
chip), which should provide the ability to send information about
various events using various mechanisms. However, there are
usually limits on the time that elapses between the occurrence of
an event and sending information about it. Implementation
overheads (area) are generally tightly constrained. The article
proposes approach to designing an reconfigurable Event
transmitting manager based on the RISC V ISA. For the
proposed variants of implementation, the achievable time
characteristics and overhead costs are evaluated.

[.  INTRODUCTION

In terminal nodes and routers of aerospace networks based
on the SpaceFibre standard [1], various events can occur,
information about which must be transmitted to other nodes for
processing. Faults, information about which must be
transmitted to the system administrator node are one example
of such events. Other example are events generated by various
sensors, measuring equipment, information about which must
be transmitted to remote handler nodes.

The Fig. 1 shows example of typical structures of a terminal
node intended for connecting external devices and Fig. 2 shows
example of typical structures of a router. In these and follow
figures, units labelled with "S" correspond to AXI slave
interfaces; units labelled with "M" correspond to AXI master
interfaces. In these figures, units that may be sources of events
are marked with a dark gray background.
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Fig. 1. Example of Terminal Node structure
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Fig. 2. Example of Router structure

Potentially possible set of events that can occur inside a
terminal node, inside a router, is determined during its
development. Typically, it includes events defined in the
Management Layer specification of the SpaceFibre standard.
This set includes connection and disconnection events on
SpaceFibre ports, credit errors, errors of accessing non-existent
virtual channels, events of expiration of timeouts for
receiving/transmitting data, etc. In specific implementations,
this set can be supplemented, for example, by events for the
expiration of arbitration timeouts, events for receiving packets
whose length exceeds the allowed length, etc.
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Possible set of events, the source of which may be external
devices, is not rigidly predetermined at the design stage of the
terminal node. When developing a terminal node, a set of
external interfaces is defined that are used to connect external
devices. Data transmission standards for these interfaces may
be defined in whole or in part. But, at the same time, there may
still be a large variability in the use of interfaces, determined by
their specific settings during operation.

For example, GPIO is often used as an interface for
connecting external devices. The roles of the external contacts
of this interface can be changed during operation. Information
received through external contacts can have different meanings
and be interpreted in different ways.

Also, such interfaces as SPI, 12C, and I3C can be used to
connect external devices. The purpose (roles) of the external
contacts of these interfaces can not change, but the data
received by these contacts can be interpreted in different ways.

There are several mechanisms in the SpaceFibre standard
that can be used to transmit information about such events

[11.[2].

The first mechanism is transmission using SpaceWire
control codes (time markers, distributed interrupt codes). These
codes are broadcast from the source to all network nodes.
Codes have the highest priority. During their transmission in
the data link, the transmission of other data objects (Broadcast
and data packets) is temporarily suspended. As a result, a
minimum delivery time and a minimum delivery time jitter is
achieved compared to using other mechanisms. SpaceWire
control codes can be transmitted over the network in situations
where the transmission of data packets is not possible, due to
faults in the network (for example, the occurrence of a
Deadlock). If there is at least one living path between the
source and the receiver (handler) of an event in the network,
then the SpaceWire control code will be delivered through it.
However, these codes are very short, they do not contain fields
that allow transferring any additional information about events,
any additional parameters. In addition, there can be no more
than 32 sources of such codes in one network. (The size of the
code identifier field is 5 bits, which allows us to use up to 32
identifiers. Each code (code with a single identifier) can have
only one source.)

The second mechanism is transmission using Broadcast
messages. These messages, as well as SpaceWire control
codes, are broadcast from the source to all network nodes. The
priority of these messages is lower than the priority of the
SpaceWire control codes, but higher than that of the data
packets. At the time of their transmission in the data link,
transmission of data packets is temporarily suspended. The
minimum delivery time and delivery time jitter for Broadcast
Messages is slightly higher than for SpaceWire control codes,
however, significantly lower than for data packets. Just like
SpaceWire control codes, Broadcast Messages can be
transmitted over the network in situations where the
transmission of data packets is not possible. If there is at least
one living path between the source and the receiver (handler) of
the event in the network, then the Broadcast message will be
delivered via it. Broadcast messages include a data field with a
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length of 8 bytes, which allows to transfer additional
information, additional event parameters. One network cannot
have more than 256 Broadcast Messages sources.

The third mechanism is transmission using data packets
with one of the transport protocols, for example, RMAP, STP-
ISS, ESDP. For data packets, guaranteed delivery times can be
provided if required (using the scheduling mechanisms
supported in SpaceFibre). However, in this case, the delivery
time and delivery time jitter will be significantly higher than
for the SpaceWire control codes and Broadcasts. If in the
network transmission of data is blocked due to failures
(deadlocks), then information about the event may not be
delivered to the receiver. The length of the data field of packets
can be significantly longer than the length of the data field of
Broadcast Messages, so they are well suited in cases where you
need to transfer a large number of parameters associated with
an event. The number of sources of data packets in the
SpaceFibre network is not limited.

Some of these mechanisms focused on meeting the
requirements of hard real time. These mechanisms provide
guaranteed delivery time with very low jitter. Information
reaches the handler if at least one healthy transmission path
exists between the source and the destination. But they do not
allow the transmission of additional information about events.
With using other mechanisms, the transmission time and the
transmission time jitter will be significantly longer, there is no
guaranteed delivery. However, these mechanisms allow
transferring additional parameters characterizing the event.

Networks based on the SpaceFibre standard can vary
significantly in their purpose and size.

They can be used to build small systems that include 5 to 10
terminal nodes and 2 to 4 routers and to build large systems
that include several hundred terminal nodes and routers.

Various equipment can be connected to terminal nodes.
This equipment can be source of various events, the criticality
of which for the functioning of the system as a whole can be
different. The criticality of the functioning of the terminal
nodes and routers themselves (the criticality of faults that occur
during their operation) in different networks, in different parts
of the same network, can vary significantly. In accordance with
this, the system developer should be able to define for each
terminal node and router information about what events should
be sent for processing to remote nodes and with the use of what
mechanisms this should be done.

For example, in one system, a sensor (connected to a
terminal node) monitors the value of a parameter that is very
important for the functioning of the system as a whole. The
system developer chooses a distributed interrupt to transmit
event information from this sensor. In this case, this interrupt
will be transmitted only if the parameter value goes beyond the
permissible range. No additional parameters need to be passed.

In another system, a sensor (connected to the same terminal
node) measures the value of a parameter that is not so critical
for the functioning of the system as a whole. For processing,
the measured value and the timestamp corresponding to the
moment of measurement must be transmitted to the remote
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terminal node. Measurements are carried out quite often, with
an interval of 0.5 ps, and there are several hundred terminal
nodes in the system with the same sensors. In this case, the
system developer can choose one of the transport protocols, for
example, RMAP or ESDP, to transfer information about
events.

The developer should be able to define the priority levels of
events. (Information about high-priority events should be sent
first if multiple events occur near the same time.)

Terminal nodes and routers are designed as universal
devices (systems-on-a-chip) that must provide the necessary
reconfigurability - the ability to send information about various
events using different mechanisms. At the same time, the
requirements for the time between the occurrence of an event
and sending information about it must be met within the node,
on the one hand, on the other hand, the overhead costs for
implementing mechanisms are usually strictly limited.

As a rule, for a network designer, the most important time
parameters are the (maximum) time between the moment the
event occurs and the arrival of information about this event in
the handler and the jitter of this time (for hard real-time
systems). The time between the occurrence of an event in the
terminal node (router) and the transmitting of information
about it to the network and the jitter of this time are integral
parts of these parameters. For different systems, the permissible
values of these parameters can vary widely. For some of them
it can be milliseconds, tens of milliseconds, for others -
microseconds.

The overhead of implementing mechanisms for transmitting
information about events is usually very limited. In most cases,
it should not exceed 5-10% of the terminal nod (router) total
area .

In our implementations, we focus on the use of ASIC
technology with design rules from 180 nm to 65 nm. (These
design rules are available or will be available in the near future
for use in Russian technology factories.) The proposed Event
transmitting manager is focused on operating at a frequency of
62.5-250 MHz (depending on the selected design rules). Such
operating frequencies are typically used in the nodes of the
SpaceFibre network with physical channel rates of 1.25Gbps,
2.5Gbps, 3.125Gbps.

In this paper, we propose an implementation of the Event
transmitting Manager based on the RISC core. The use of the
RISC core provides very wide opportunities for dynamic
reconfiguration due to the possibility of complete or partial
software replacement. We chose RISC V ISA [3],[4] for our
implementation.

This architecture has the following features, which are
significant advantages for the considered application. The
license (unlike, for example, ARM [5]) allows free use of the
architecture and modification within a wide range. This allows
us to optimize the RISC core in terms of area and power
consumption in accordance with the set of algorithms/tasks for
which it is being developed. Also freely distributed is a toolkit
for testing and verifying processor cores developed on the basis
of this architecture. RISC V ISA provides the ability to
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optimize the length and format of instructions, which allows us
to optimize the size of command memory, which is very
important for the implementation of Event Transmitting
Manager.

The base set of registers defined in this architecture can be
supplemented with optional registers (CSR). The standard
defines a number of registers that can be used as additional
registers. For example, these include the register in which the
system time is displayed. Other additional registers can be
defined according to the specific application.

An additional set of commands is defined for working with
CSR registers. This instruction set is focused on working with
the mode and status registers used to monitor the state and
control various automata, which is necessary when
implementing microcontrollers.

In RISC V ISA architecture (similar to the Extensa
architecture [6]), it is possible to add new instructions that
allow us to implement specific functionality necessary for data
processing.

The paper is organized as follows. In section 2 we describe
functions of the Event Tramsmitting Manager. Section 3 is
about proposed implementations of the Event Transmitting
Manager. In section 4 we evaluate and compare characteristics
of proposed variants. Section 6 concludes the paper.

II. EVENT TRANSMITTING MANAGER FUNCTIONS

Let's consider the functions that the Event Transmitting
Manager should perform. Functions can be divided into two
groups:

- functions for monitoring events that occur, determining
the order of sending information about them;

- functions for generating and transmitting information
about the selected event that occurred.

Potentially, the software for the Event Transmitting
Manager can be implemented based on the real-time Operating
System (RTOS) kernel. Actions to monitor ongoing events,
determine the order of transmitting information about them can
be performed by the RTOS kernel, and actions to generate and
send information about an event that have occurred can be
implemented as user processes(or threads) - event handlers.
However, an OS-based implementation requires a fairly large
amount of memory. The real-time OS kernel can occupy 20-30
Kbytes [7],[8],[9]. The area of such memory can be ten times
larger than the area of a terminal node that includes 2
SpaceFibre ports and 1.5-2 times larger than the area of a
SpaceFibre router with 8-10 ports.

The reaction of the RTOS kernel (the delay between the
occurrence of an event and the call of the corresponding
handler process/thread) at the considered frequencies of the
RISC kernel can be more than ten ps. The jitter of this delay
will also be more than ten ps, since potentially the
process/thread can be called almost immediately after the
occurrence of the event [7],[8],[9],[10],[11],[12]. This reaction
delay and jitter can also exceed limits defined by system
developer.
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Therefore, the software for the Event Transmitting Manager
was developed without using the OS as bare metal.

The software consists of a scheduler (monitors the
occurrence of events and launches the corresponding handlers
in the order corresponding to the priority of events) and event
handlers (transmit information about events).

It could be necessary to interrupt the execution of a low
priority event handler to handle a higher priority event. (It
makes sense to perform these actions only if the execution time
of the event handler significantly exceeds the time of switching
between the event handler and the scheduler.) However, in this
paper, we will not consider this mechanism, its implement
tation; it is the subject of further research.

Let's consider the algorithm of the scheduler and its
implementation. Fig. 3 shows a diagram of the algorithm
(without interruption the execution of event handlers).

Terminal nodes and routers usually include an interrupt
register (IRQ_REG), which represents information about all
events that are controlled inside the terminal node (router).
Also, the interrupt register represents information about the
external events, which sources are devices connected to
terminal node. The scheduler reads this register, and then looks
for the set flags corresponding to events, information about
which should be sent to remote nodes for processing. Looking
is carried out in the order corresponding to the priority of
events, defined by the system developer. If all flags are
checked and none of them is set, the register is read again and
the actions are repeated. If the flag is set, then the
corresponding event handler is launched. After the event
handler returns control to the scheduler, the IRQ_REG is read
again and scanning begins with the event for which the highest
priority is determined. (This provides faster response times and
less jitter in response times to higher priority events.)

Let's consider typical algorithms for generating and
transmitting information about an event.

A typical algorithm for the implementation of the first
mechanism (transmission using SpaceWire control codes) is
shown in Fig. 4. At the beginning, it waits for the SpaceFibre
controller of the terminal node or router to be ready to send the
next control code. The ready indication bit according to the
SpaceFibre Management Layer specification is mapped to the
SpaceFibre Controller/Router Status Register
(SpFi_STATUS REG). Next, the number of the SpaceWire
code to be sent is written into the SpaceWire sent code register
(SpFi_SendCCode REG) of the SpaceFibre controller/Router.
Writing to this register automatically initiates transmitting the
code to the network.

A typical algorithm for the implementation of the second
mechanism (transmission using Broadcast message) is shown
in Fig. 5. At the beginning, the Broadcast Message parameters
are generated. (Its values are written to the RISC core general
purpose registers.) For example, the current time value can be
fixed. (The Time CSR value is written to one of the general-
purpose registers.)
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The parameters can be read from the SpaceFibre
controller/Router registers or from the Interface Controller
registers. The values from the registers can be used in their
original form or some transformations can be performed on
them, for example, sampling of individual bits.

begin

Read IRQ_REG

yes

All flags of events checked

‘ select the flag of the next event | ‘

yes

‘ start Handler_ Event_| ‘

Read SpFi_STATUS_REG.SpWCCode_send_ready

SpFi_STATUS_REG.
SpWCCode_send_ready=1

Write SpFi_SendCCode_REG

end

Fig. 4. Typical algorithm for transmission using SpaceWire control codes

Next, it waits for the SpaceFibre controller of the terminal
node or the Router to be ready to send the next Broadcast
Message. The ready indication bit according to the SpaceFibre
Management Layer specification is mapped to the SpaceFibre
Controller/Router Status Register (SpFi STATUS REG).
Next, the parameters of the sent Broadcast Message must be
written to the registers of the controller/Router. (Parameters
transmitted in data field are written to
SpFi_SendBroadcastData0 REG,
SpFi_SendBroadcastDatal REG. Parameters transmitted in
Header are written to SpFi_SendBroadcastHead REG. Writing
to the SpFi_SendBroadcastHead REG automatically initiates
the sending of the Broadcast Message to the network, so it
should be done last.
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‘ Calculation of Broadcast parameters values ‘

L

A 4
‘ Read SpFi_STATUS_REG.Broadcast_send_ready ‘

v

SpFi_STATUS_REG.
Broadcast_send_ready=1

Write SpFi_SendBroadcastDataO_REG

h 4
Write SpFi_SendBroadcastDatal_REG

A 4
Write SpFi_SendBroadcastHead_REG

Fig. 5. Typical algorithm for transmission using Broadcast messages

When using the second scheme, the packet is written word
by word into the data register for sending to the network of the
SpaceFibre controller (SpFi Send Data REG). The SpFi
controller/router sends these data words to the SpaceFibre
network. The next word is written to the register only after the
previous one has been sent.

A 4

Calculation of the next word value

v

‘ Calculation of the next CRC value ‘

v

Write the next word to the Memory

%

yes

Write SpFi_send_size_REG

v

Write SpFi_send_addr_REG

Fig. 6. Typical algorithm for transmission using Data packets (the first scheme)

begin

i

‘ Calculation of the next word value ‘

v

Calculation of the next CRC value

v

‘ Write the next word to SpFi_Send_Data_REG ‘

end

Fig. 7. Typical algorithm for transmission using Data packets (the second
scheme)

[II. PROPOSED IMPLEMENTATIONS OF EVENT TRANSMITING
MANANGER

The place of the Event Tramsmitting Manager in the
structure of the terminal node is shown in Fig. 8, in the
structure of the router - in Fig. 9. Event Transmitting Manager
has a direct connection with the memory in which its software
is stored. This provides a strictly guaranteed and short time to
retrieve the next instruction from memory, which is necessary
to ensure predictable (and low) jitter of the execution time.

Terminal node

IRQ register

MEMORY
Event transmitting Interface controller

12C or other)
Interface controller
(GPIO or SPI or
12C or other)

.

‘ Boot loader

Switch (e.g. AXI)

Fig. 8. Place of Event Transmitting Manager in structure of Terminal node

It is possible to boot the Event Transmitting Manager
software from external memory connected directly to the
terminal node or router. The initial boot is also possible by
writing the program to the RAM of the Event Transmitting
Manager by a remote device over the network. (In the current
implementation, the program is transmitted using RMAP
transport protocol packets over the SpaceFibre network.) The
initial loading is done under the control of the initial loading
automata. This automata disables the Event Transmitting
Manager during the booting of software and allows it after this
process is successfully completed.
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Router

IRQ register

MEMORY
Event transmitting
manager
Boot loacler @7
Registers
_omA_[m]

SpaceFibre
Router

Switch (e.g. AXI)

Contr
Port

Contr
Contr

Fig. 9. Place of Event Transmitting manager in structure of Router

We propose several variants of the Event Transmitting
Manager implementation.

A.  The first proposed variant

In the first variant, all actions are performed in software on
the processor core. The processor core supports a set of logical
operations, shift operations, a set of arithmetic operations, a set
of conditional and unconditional jump operations defined in
RISC V ISA. The current implementation does not support
debugging functions, since the software being developed is
very small (several dozen commands), and its debugging can
be performed on the RTL model.

The System time CSR register is included in the set of
registers, since in most cases the time marker is one of the
parameters of the event.

The processor core for this variant has a pipeline structure.
It is shown in Fig. 10.

Event sending manager
Execute
el .
Instruction Fetch, it iamed. Controller|
Decode > AXI M -

And, or, not;

Shift;
1 o
Integer REGs

CSRs

§ Memory i

Fig. 10. Event Transmitting Manager structure

The first stage of the pipeline fetches the next instruction
from memory and decode it. These actions in our

implementation are carried out at one stage (used technological
libraries make it possible to ensure this when using the selected
operating frequencies).

At the second stage of the pipeline, arithmetic-logical
operations are performed and the result is written to the
registers that belongs to the Event Transmitting Manager
register set. Time to access external registers and memory is 2
clock cycles in our implementation (this time can be vary for
different implementations of terminal nodes and routers).

The main timing parameters of proposed implementation are
represented on table I.

TABLE I. THE MAIN TIMING PARAMETERS OF THE EVENT
TRANSMITTING MANAGER IMPLEMENTATION

Time (clock Constant|variable
cycles)
Access to instruction | 1 constant value
memory
Access to internal | 1 constant value
registers (general
purpose, CSRs)
Access to external | 1-N Variable value (depends on
registers, to external the implementation, on the
memory competition for the resources
of the communication system)
Performing arithmetic 1 constant value
and logical operations, 2(mul)
calculating of jump 3(div, mod)
address
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Most actions take deterministic time, they are a source of
latency, but not a source of jitter. The source of jitter can only
be access to external memory and external registers.

For this (and other) proposed implementations, we
estimated the minimum time between the occurrence of an
event and the transmitting of information about it, and an
estimate of the maximum time between the occurrence of a
high-priority event and the invocation of the event handler.
(These parameters allow us to evaluate the best and worst
characteristics of the proposed implementation).

The minimum time between the occurrence of an event and
the transmitting of information about it (Trmin) can be
estimated using the following formula:

M

where Tosmin — minimum time required for the scheduler
to detect the event and call the handler;

Tr min = Tos min+ T/h min

Th min — minimum handler execution time

The maximum time between the occurrence of a high-
priority event and the call of the event handler (Trhmax) can be
estimated using the following formula:

H-1

Trh max = Tos max+ max 7h max
i=0

2

Where

Thmax is the maximum execution time of the event handler
(among all available handlers, the handler with the maximum
value of this time is selected).
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Tosmax — maximum execution time of actions by the
scheduler

To perform numerical estimates of these parameters, we
implemented a scheduler and several variants of handlers. We
chose variants that include very few instructions (the simplest
possible algorithms) and variants that include a relatively large
number of instructions (instructions with a fixed execution time
and with a variable execution time). When performing the
estimates, we considered systems with different latency when
accessing external registers, external memory. This allows us to
monitor the main trends, functions and actions that are the
source of the main delays.

The results of the evaluations are shown in Figure 12 (the
points on the graphs corresponding to variant 1).

In the worst case scenario, the time between the occurrence
of a high-priority event and the start of the high-priority event
handler will be 820 clock cycles. At a local frequency of 125
MHz (the duration of the period is 8 ns), this will be about 6.6
microseconds.

This time is comparable to the time of transmission of the
SpaceWire control code and Broadcast message through the
network (5 — 10 transit routers). For a number of tasks, such a
delay in the terminal node may be unacceptable.

Based on the obtained estimates of time characteristics, we
have identified the functions and actions that are the main
sources of delays.

First of all, saving and restoring registers values when
switching between the scheduler and the handler has a large
delay. For the examples we have considered, these actions take
longer than the execution time of the handler.

The next most important source of delays is the function of
calculating CRC8 and CRC16 (CRCs are used in all data
transport protocols). The execution time of these actions is the
majority of the execution time of the handlers that form the
data packets.

If the handlers perform a large number of accesses to
external registers and external memory, then these actions are
also a source of rather large delays. These actions are also a
source of jitter.

Next, we propose implementations in which these actions
are performed in hardware.

An estimate of the area for the implementation of the first
variant is shown in Fig. 13, 14.

B.  The second proposed variant

In the second variant, saving the register values and loading
the saved register values (necessary for context switching) are
implemented entirely in hardware. To implement these actions,
K “shadow” register sets have been added to the processor
core, which allow storing K contexts. The K value at the RTL
model level is set parametrically. The RISC core (Execute
stage) works with registers from the main set, (it has a number
0). The values of the registers of the main set can be
overwritten in any of the K shadow sets. The values of any of
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the K shadow sets can be overwritten into the main set. The
rewriting actions are performed by hardware-implemented
automata. The execution time is 1 clock cycle.

One instruction with two parameters has been added to the
instruction set. The first parameter of the instruction is the
number of the register set from which the values will be
overwritten. The second parameter is a set of registers to which
the values will be overwritten.

The implementation of this variant is represented in Fig. 12.
A gray background marks the additional unit.

The timing characteristics obtained for this variant are
shown in Fig. 13, estimate of overhead costs by area - in Fig.
14,15.

Using this variant significantly reduces the time between
the occurrence of a high-priority event and the launch of the
high-priority event handler by about 2 times compared to the
first variant.

However, the area of this option is noticeably larger. It
increased by 25-40% compared to the first option. (Depends
mainly on the number of shadow register sets.)

C. The third proposed variant

In this variant, the units for hardware counting of CRCS8 and
CRC16 added. (These CRCs are used in the transport protocols
used in the SpaceFibre network.) We included these units to the
Execute pipeline stage. CRC counting, as a rule, is performed
for a certain sequence of words (sequence of words included in
the packet header; packet data fields). Therefore, we added
automata that track the moments of the generation of a new
word for which the CRC must be calculated. This automata can
track writing to external memory, to an external register (for
example, to SpFi_Send Data REG) or to one of the internal
registers of the Event Transmitting Manager. (The programmer
can choose one of these options depending on the selected data
transmission algorithm.)

The next values of CRC8 and CRC16 for data words are
calculated in 1 clock cycle. The CSR registers for CRC value
CSR _CRCS8, CSR CRC16) and for tracked address
(CSR_CRC8_ADDR, CSR_CRC16_ADDR) have been added
to the register set of the Event Transmitting Manager.

We added CRC control instruction to the instruction set.
The first parameter of the instruction specifies the register
number from which the next data word is taken to calculate the
CRC or a sign that it is necessary to track memory accesses.
The value 0 is used as such a sign (in the RISC V architecture,
the register with this address 0 is used to store the constant 0).

The second parameter contains the command code. It can
take four values:

starting CRC counting without incrementing the
controlled address (applicable if the word for counting the CRC
is located in the internal register, external register);

- starting the CRC counting with the increment of the
monitored address (applicable if the word for CRC counting is
located in memory);
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- stop the CRC count;
- reset the CRC count.

The third parameter allows us to set the type of CRC for
which the control is performed (it can take 2 wvalues,
corresponding to CRC8 and CRC16).

The initial value for the CRC counting should be written to
the CSR_CRC8 (CSR _CRCI16) before starting the CRC
counting. If programmer need to track values written to
external memory, he must also write corresponding address to
CSR_CRC8 _ADDR (CSR_CRC16_ADDR).

Further, after starting the CRC count, every time a value is
written to the register (memory cell) specified in the CRC
control instruction, the current CRC value is counted. The fact
of a (new) value writing is tracked by hardware. The next CRC
value is available in CSR_CRC8 (CSR_CRC16) on the next
clock cycle. Then it is stored in this register until a new (next)
result is received or reset. The CRC count control instruction
with the “stop the CRC count” command allows us to stop the
CRC counting without resetting to save the current CRC value
in the corresponding CSR register for future use.

The implementation of this variant is represented in Fig. 12.
A striped background marks the additional units.

The timing characteristics obtained for this variant are
shown in Fig. 13, estimate of overhead costs by area - in Fig.
14, 15.

When using this variant, the execution time of handlers that
form data packets was reduced by about 2 times compared to
the first and second variants. Since the execution time of these
handlers is the longest, Trhmax was reduced by 2 times
compared to the second variant (and 4 times compared to the
first variant).

At the same time, hardware implementation costs increased
very slightly, by about 10%.

D. The fourt proposed variant

In the fourth variant, the mode and status registers of
SpaceFibre controllers and other units, that the FEvent
Transmitting Manager can interact with are mapped to CSR
registers. This allows us to reduce the access time to these
registers. (It also allows us to eliminate the jitter of the access
time to the registers in cases where there are other units in the
SoC that can access these register units through the
communication system.)

An example of such mapping for a terminal node is shown
in Fig. 11.

For a router, the mapping is performed in a similar way.

This allows us to reduce the execution time of all actions by
reducing the time of accessing registers. For routers and
terminal nodes that have other units that can access these
registers, this also reduces the jitter of access time due to
waiting for communication system resources.

Fig. 12 shows a modified structure of processor core with
additional components that allow us to implement the second,
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the third, and the fourth variants. Additional components are
highlighted in bold outline.

Terminal node

qRQ register
Ly
o

(]
MEMORY

Event transmitting
manager

[__SCRs Spacefibre ! Interface controller 1

| SCRs Interface contr 1;\ cese B (GPIO or SPI or

[ SCRs Interface contr ¥ | - fb 12C or other)
[/ ] ®

| SCRIRQ ') | f‘ Interface controller N

P) £ | S Repisters | (GPIO or SPIor

[} & 12C or other)

Boot loacle E/I::’—

SpaceFibre
controller

Fig. 11. Example of registers mapping for Terminal Node structure

The component with a gray background is used to
implement the third variant. The component with a striped
background is used to implement the additional functionality of
the third variant. The component with a gray striped
background is used to implement the additional functionality of
option four.

For the examples we have considered, the gain was not very
significant.

This variant is advisable to use for cases when the fraction
of accesses to the external registers and memory significantly
exceeds the fraction of rest of data processing instructions.

IV. EVALUATION OF CHARACTERISTICS FOR PROPOSED
VARIANTS

Fig. 13 shows graphs of time characteristics (the minimum
time between the occurrence of an event and the transmitting of
information about it (Trmin) for handlers, that generate and
transmit SpaceWire control codes, for handlers, that generate
and transmit Broadcast messages and for handlers, that
generate and transmit data packets; the maximum time between
the occurrence of a high-priority event and the call of the event
handler (Trhmax)). We evaluated these parameters for two
values of access time to external registers and memory (2 clock
cycles and 6 clock cycles). The graphs that marked with name
“Best and worst processing time (access to external regs,
mem=2)" (represented on the left part of figure) correspond to
access time equal two clock cycles. The graphs represented on
the right part of figure correspond to access time equal six
clock cycles.

Each group of graphs has one main ordinate axis, on which
the time is represented in number of clock cycles, and three
additional ones, on which the time is represented in
nanoseconds (correspond to the clock frequencies of 62.5 MHz,
125 MHz, 250 MHz).
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Fig. 12. Event Transmitting Manager structure (implementation of the second,
the third and the fourth variants)
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4 Variants

Fig. 13. Time characteristics of proposed variants

Let's consider the overhead costs for the area for the
proposed implementation of the Event Transmitting Manager.
We performed estimates for the proposed implementation
variants with different instruction memory sizes (128, 256, 512
32-bit words). The memory size used determines the amount of

62,

363

Graphs labeled “Trmin, short”, “Trhmax, short” correspond
to Trmin and Trhmax for short processing algorithms (with
minimal number of instructions). Graphs labelled “Trmin,
long”, “Trhmax, ... long” correspond to Trmin, Trhmax for
long processing algorithms (with bigger number of
instructions).  Graphs, labelled “Trmin, SpW ccodes”
correspond to Trmin when using SpaceWire control codes.
Graphs, labelled “Trmin, Broadcasts ...” correspond to Trmin
when using Broadcast messages. Graphs, labelled “Trmin, Data
packets ...” correspond to Trmin when using data packets.

Trmin and Trhmax obtained using the formulas (1), (2) and
using cycle accurate models of routers and terminal nodes are
almost equal.

As you can see from these graphs, the hardware
implementation of saving and restoring register values allows
you to reduce Trhmax by 2 times, the hardware implementation
of CRC calculation allows you to reduce Trhmax by 2 times
and Trmin for handlers, that generate and transmit data packets
by 2 times.

The fourth variant allow to reduce Trmin and Trhmax but
no so essentially (by 30 — 50 %). For other systems, where the
latency of accessing external registers and memory can be tens
of clock cycles, the gain may be more noticeable.

Best and worst processing time

5MHz 125MHz 250MHz ¢
(access to external regs, mem - 6
Ik
16000 8000 40001000 clks)
«=@= Trhmax, short
14400 7200 3600 °90
«=Q==Trhmax, long
12800 6400 3200 800
Trmin, SpW ccodes
11200 5600 2800 700
«={J=Trmin, Broadcasts, short
9600 4800 2400 600
2000 4000 2000 === Trmin, Broadcasts, long
500
6400 3200 1600 200 ==/y="Trmin, Data packets, short
4800 2400 1200 300 ==dr=Trmin, Data packets, long
3200 1600 800 200
1600 800 400 100
0 0 0 0

4 Variants

software and, accordingly, the functionality of the Event
Transmitting Manager-.

For the second, third, and fourth variants, we performed
estimates for two and four shadow register sets. For the
estimates, we performed a synthesis using various technology
libraries (design rules from 180 nm to 65 nm). The ratio of the
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areas of different implementation variants does not depend
much on the design rule. Fig. 14 shows the area ratios of
different implementations of the Event Transmitting Manager.
The area of the first implementation variant (with the
instruction memory size of 128 words) is selected per unit area.
As you can see from this figure, the area of instruction memory
largely determines the area of the Event Transmitting Manager.
(With a memory size of 512 words, the area is 1.5-2 times
larger than with a memory size of 128 words.) The
implementation of the mechanism for hardware saving and
restoring register values has a rather noticeable effect on the
area (an increase in the area by 20 — 40%). Hardware
implementations of the other mechanisms considered have little
effect on the implementation area.

Fig. 15 shows how much of the area of the terminal node,
router is the area of the Event Transmitting Manager. For this
evaluation we used the terminal node implementation with 2
SpaceFibre ports, and the router implementation with 8
SpaceFibre ports. As you can see from these histograms, the
overhead cost of implementing all proposed variants does not
exceed 23% of the area of the terminal node and 10% for
router. The 10-15% limit is mostly exceeded by
implementations with a memory size of 256, 512 words for
Terminal nodes. Thus, in terms of hardware implementation
costs, the main limitation is the amount of instruction memory
used.

Relative area of the Event
Transmitting Manager
®mem size =512

W mem size = 128

variant variant variant variant variant variant varian:
1 2,K=2 2,K=4 3,K=2 3,K=4 4,K=2 4,K=4

mem size = 256

2,5

o]

1

wn

[y

0

w

0

Fig. 14. Area of the Event Transmitting Manager

According to the estimates obtained, in most applications,
the third and fourth implementation variants are the most
suitable. The first implementation variant can be used in cases
where large Trimax values are allowed and there are very
significant area restrictions.
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The ratio of the area of the
Terminal node| Router and the

Event Transmitting Manager
W TN, mem size =128 #R, mem size = 128

0,25 TN, mem size — 256 %R, mem size - 256
m TN, mem size =512 mR, mem_size = 512
0,2
0,15
0,1
0,05 . |
0 E:i g %

variant 1 variant variant wvariant variant variant variant
72.K=2 2,K=4 3,K=? 3, K=4 4,4=7 4,K=4

Fig. 15. The ratio of the area of the Terminal nodefrouter and the Event
Transmitting Manager

V. CONCLUSION

In this paper, we considered what requirements the
mechanism for transmitting information about events occurring
in terminal nodes and routers of the SpaceFibre network to a
remote handler node must meet.

We considered the capabilities of RISC V ISA for
implementing the Event Transmitting Manager-.

The evaluation of achievable characteristics for a fully
software-based implementation of the FEvent Transmitting
Manager functions for the RISC V core was performed. The
functions and actions whose program execution leads to the
greatest time delays are defined. Variants of their hardware
implementation have been developed, and instructions for
controlling the corresponding hardware automata have been
added to the instruction set.

For the proposed variants, estimates of time characteristics
and overhead costs for implementation were made. In
accordance with this, recommendations for their use are given.
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