PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Autonomous Temporal Transaction Database

Michal Kvet
University of Zilina
Zilina, Slovakia
Michal.Kvet@fri.uniza.sk

Abstract—The data amount to be handled, managed, and
evaluated is enormous. Intelligent information systems need to
cover not just conventional data types. The whole evolution
should be addressed instead. Cloud environment offers a wide
range of opportunities pointing to the scalability of the solution.
Oracle Cloud databases are based on the autonomous processing
of the system administration done by machine learning and
artificial intelligence. Autonomous database processing core
element states mainly just the transaction control of the current
valid states. In this paper, we deal with the temporal
architectures pointing to the object, attribute and
synchronization group granularity. The internal representation
must be currently defined by the user explicitly. Our proposed
solution is fully autonomous, covered by the Oracle Cloud
technology. User just register the structure to be managed
temporaly, granularity is maintained by the system, following the
complexity and scalability of the solution. Data management is
extended by the Granularity strategy management module to
ensure either storage efficiency, as well as the format of the query
result set. Introduced DBMS AUT TEMPORALITY package
registers the data to the temporal sphere and limits the historical
data reflecting the information value.

L INTRODUCTION

Information technology can now be found almost
everywhere. Each of us needs data for proper decision-
making. Database technology is a core, robust, and
performance-effective element for dealing with the data by
delimiting the data and operations themselves. Transaction
control is now the most widespread system used in intelligent
information systems. It can be clearly stated that database
technology forms an inevitable part of each information
system. Data to be handled are made more and more complex.
It is not even suitable to deal just with the current valid states
[1], [2]. The temporal evolution is the whole time spectrum.
Data management is inevitable for the complexity and
robustness of the decision making, creating prognoses, data
analytics, trends identification, etc. Currently, most databases
are shifted to the cloud environment highlighting the general
approach, anytime availability, security, and reliability [4], [5].
The performance of the system is an important aspect, as well.
Cloud systems that are flexible can automatically reflect the
workload by scaling the sources, storage, memory, and CPU.

Moreover, data reflection, security, and backup strategy are
maintained automatically without the wuser intervention
necessity. Database administrators have then different roles.
Internal database administration is shifted to the cloud
itself.

In this paper, the Oracle database system and its cloud
environment are used. The selection was made based on the

project Codeln (Cloud computing for digital education
innovation). This paper forms one of the outputs of such a

project implemented based on the Oracle Corporation
partnership.
This paper summarizes the autonomous database

technology, pointing primarily to the transaction processing
handling conventional systems and the relational system
evolution summary. The main contribution of the paper is
delimited by the temporal extension of the autonomous
database processing by defining dynamic data structure
reflecting the temporal spheres. Spatial dimensions can be
covered, as well. New autonomous temporal architecture is
introduced. It is based on the conventional data model passed
to the system and the temporal monitoring. The internal
structures, management, and evaluation it then automated,
query results are formatted based on the user requirements and
are not influenced by the storage format. Thank to the
proposed solution, performance, robustness, and scalability
can be ensured.

The paper is organized as follows. Section 2 deals with the
Oracle relational database from the on-premise world to the
cloud environment. It points to autonomous database
processing, as well. Section 3 points to temporal structures by
proposing its own technique of autonomous temporality
management inside the Oracle Cloud in section 4. Finally,
computational study and performance evaluation are stated in
section 5, highlighting the data retrieval process — the
processing time and storage repository demands.

II.  HISTORY OF ORACLE REFLECTING RELATIONAL
DATABASE TECHNOLOGY

In the first phases, Oracle was initially called Software
Development Laboratories, pointing primarily to the
consultation services in the area of programming. Their first
commercial product was just a database system called
CODASYL. It was based on the relational algebra introduced
by Edgar Codd in the 70ties of the 20" century allowing the
creation of flexible and independent data management
architecture to store, manage, evaluate, aggregate, and access
the data by the queries providing the results in the desired
format and quality. Thus, the data themselves were physically
and logically separated from the application itself. Before that,
such data were directly embedded. It allows systems and
developers to interconnect data and access them parallelly
from various applications and systems. Edgar Codd was
employed by the competing company IBM developing a
database management system for the mainframe computer [1],

(2], [6], [7]-

ISSN 2305-7254



PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Initially, Oracle founders Larry Ellison, Bob Miner, and Ed
Oates were full of worries about usability and results.
However, they agreed to create their system using the mini-
computer architecture instead of a mainframe. Such an
approach was soon hired by well-known companies like NSA,
CIA, or Navy intelligence resulting in building still more and
more complex systems. The original company name was
changed to the Oracle Corporation during this successful
period, focusing primarily on the databases. Besides, they
cooperated on multiple projects like Ingres (Interactive
Graphics Retrieval System). They created their system
language called QUEL. However, the  ANSI
standard accepted the IBM version Serial Query
Language [2], [10].

Over the years, the Oracle database was implemented,
improved, and extended, focusing on the technologies at the
time, namely internet, grid, and cloud. Version 12c¢, introduced
in March 2017, strongly focused on cloud technology by
shifting the on-premise world to the autonomous cloud
environment providing robust, reliable, and performance
effective architecture on its Exadata servers optimized for the
database management (composed by the Sun Microsystem
acquisition in 2010) [20].

The headline of the cloud data management and
transformation was based on the fact that “the cloud is just
someone else’s computer” resulting in creating Oracle Cloud
Infrastructure  (OCI). In 2010, several architecture
enhancements were provided, like Infrastructure as a Service
({aaS) followed by consecutive changes and opportunities in
Software as a Service (SaaS) or Platform as a Service (PaaS)
delimited by the available sources and methodology used
inside [14], [15], [18].

The complexity of the cloud was offered at the end of 2016,
focusing on virtual machines, networking, and containers [19].

A significant innovation is just the Autonomous Database
Processing supervised by the transaction support, ensuring
data reliability, integrity, and consistency.

III.  TEMPORAL STRUCTURES & AUTONOMOUS
MANAGEMENT

Autonomous Transaction Processing (ATP) is an Oracle
Cloud service ensuring performance and robustness by
eliminating the operation management complexity. It
automates provisioning, configuring, tuning, and scaling the
database management, so the user does not need to manage
and administer it explicitly. Moreover, it is ensured by the
auto-repairing and patches applied automatically. From the
optimization point of view, it is organized in a multitenant,
distributed, fragmented, and partitioned environment. Due to
the advanced compression option and the hardware
capabilities, data can be accessed very effectively, even with
the emphasis on the memory data location by using in-memory
type. Sophisticated optimized system from the internal
hardware up to the software and availability allows complex
data management across the time spectrum and dimensions

[1], [10O], [11].

122

Provided autonomous operations are [20]:

e Auto-provisioning  reflecting  fault  tolerance,

availability through any location anytime.

e Auto-tuning — automated structure, storage, and
memory optimization.

® Backup strategy automated backup strategy
performing full backups weekly and incremental
backups launched daily to ensure the possibility to
restore the database to any timepoint up to the past 60

days.

o Auto-repairing ~ —  failure  prediction  and
data  duplications  across the  availability
domains.

e Auto-failover — any downtime elimination by using
Autonomous Data Guard [3], [12] architecture
switching to the remote copy automatically.

The main point of the ATP is related to the transaction
processing covering mostly current valid states. Historical data
can be partially found in transaction logs, ensuring the data
operation consistency (data operation must process the data
valid at a point of the start, irrespective of any change applied
during the process itself). As stated, 60-day history can be
found in the backups, either full or incremental. As
a consequence, previous data states and existing tuples can be
identified during such a period. However, it is a complicated
process resulting in significant time consumption and resource
demands. Fig. 1 shows the UML diagram of the data flow.
First, the whole restoration point is identified, which can be
reflected mainly by the full backup. However, generally, the
current database image can be used, as well. Then, historical
data image is obtained by using daily incremental backup
focusing on the execution time. Thus, archived and online logs
can be inevitable to apply if no newer daily backup is present.
As evident, two problems can be identified — data do not need
to be covered by the backup — firstly, only 60-day historical
data are generally available. Secondly, if the database is not in
an archive mode, some states can be missing, not covering the
whole transaction set. It is evident that the daily granularity is
covered. However, it cannot be directly divided into individual
transactions.

As aresult, although the availability is ensured, it is still
limited in terms of the history and the performance and
demands. As evident, the whole backup has to be loaded,
followed by additional structure processing. Future valid data
cannot be managed at all. OCI ATP can provide scalability and
availability for robust data structures and large data sets.
Thanks to the configuration, the whole time spectrum can be
used. In the following part of the section, a summarization of
the temporal architectures is present, followed by the own
proposed solution for autonomous temporal data management
inside the system. Thanks to that, any time granularity can be
used.




PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Moreover, individual attributes and tuples can be extended
by the temporal accessibility and monitoring principles, which
are then evaluated without any user intervention. On the other
hand, it is just the storage perspective optimization. The result
set is always composed as required, irrespective of the internal

representation.

getting defined
timepoint
!

process time

/ position \
initial phase — full initial phase —
backup current image
applying applying online
incremental logs
backups
applying archive applying
applying logs logs incremental
backups

synchronization

result set
composition

S

Fig. 1. Process of obtaining historical data

3.1 Temporal architectures

Several architectures and enhancements can be identified
over the decades. However, they are primarily based on the
conventional architecture extension instead of using own
temporal paradigm. It is caused by the fact that the ANSI
standardization process was not done and accepted. Thus,
individual database systems were forced to develop their own
systems or leave the definition covered by the end-user.

The conventional database approach is characterized by
storing only the current valid state. Any change delimits the
physical update by replacing the original value with the newer
one. Thus the history cannot be complexly found at all. By
introducing transaction logs supervised by the archiving
process delimited by copying online redo logs to the archive
repository before the physical rewritten, historical data can be
obtained by extracting transaction data from such logs.
Although it was technically possible, it was too demanding,
whereas the transaction header does not point to the
manipulated objects, so the operations were needed to be
extracted and evaluated step by step sequentially. In a more
complex system, such processing was infeasible in terms of
time demands. Even the shift to the cloud environment would
not reach any relevant solution.

The more sophisticated temporal architectures were
consecutively defined by the object's primary key extension.
Thus, the state itself was not identified by the object
definition. However, the time frame has to be specified, as
well. The uni-temporal data model was based on one temporal

123

dimension (primarily delimited by the validity). However, bi-
temporal and multi-temporal dimensions can generally be used
to reflect the reliability, transaction time frame,
synchronization timestamps, etc. [16], [17].

The above-defined temporal architecture extends the
primary key definition by the time elements forming object-
level temporal architecture. The time frame delimits each
object state, so any data change requires a new whole state to
be defined. Non-changed values cannot be delimited by the
NULL notation, whereas such values can have a specific
representation. A partial solution can be identified by pointing
undefined values to specific memory structures delimited by
the causality.

An attribute-oriented temporal system shifts the granularity
to the attribute itself. The state is then composed of individual
attribute sets delimited by the time representation definition or
any time element specified in the system, respectively. The
architecture of the attribute-oriented granularity is shown in
fig. 2. It consists of three layers. Current states are in the first
layer, historical as well as valid, future states are separated
into the third layer, which is also attribute oriented. The core
part of the system is formed by the temporal layer locating and
storing the pointer to any change of the temporal attribute in
time. Thus, any change, as well as the whole attribute state
evolution, can be identified and is accessible [16], [17].

I

| Application

Conventional main tables I

MAIN_Tab_1 MAIN_Tab_2 MAIN_Tab_n

eleted objects

I Tab_1_deleted ” Tab_2_deleted || Tab_3_deleted |

HIST_Tab_1

——

Temporal table

HIST_Tab_n

Tables with historical data

Fig. 2. Attribute oriented granularity [16]

Data flow of the Update operation consists of the inner
granularity detection, real change identification preceded by
state forming. If a new object is added to the system,
principles are similar. Delete operation can be performed
either logically by marking the object or by the physical
removal operation. In that case, two options are available — the
state is completely removed from any layer or the evidence of
the state's existence is still present, but the values are hidden.

A general solution is provided by the group granularity, by
which the data updates can be synchronized in the temporal
layer. In comparison with attribute granularity, where each
attribute change forces the system to load a new data row into
the temporal layer, group granularity detects synchronization




PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

groups, which are then maintained as just one attribute.
Naturally, all such data are temporally oriented. Fig. 3 shows
the architecture.

interface

DB
manager

o]~ | e

Group detection I
Group Manager

Group
granularity .

3

Fig. 3. Group granularity

The above architectures are based on the temporality
reflected by the various granularity levels. Although the
management can be partially automated by machine learning
techniques to identify synchronization groups, the existing
solution cannot be categorized as autonomous in terms of
definition and performance. Section 3.2 deals with the own
proposed solution based on the attribute association to the
temporality module expressing the temporal sphere to be
handled and processed. The solution is entirely autonomous in
terms of the architecture, individual system sources, up to the
whole management, and result set providing. The aim is to
provide the data in a requested form irrespective of the internal
data model and time representation.

3.2 Proposed solution — autonomous temporal management

The main limitation of the explicit temporal data definition
is based on the user intervention necessity by adapting the
temporal requirement to the data model and triggering the
change by passing the evidence to the temporal layer. If the
synchronization data management is present, the problem is
even deeper, whereas, for each changed attribute, the
particular trigger is fired. However, it is necessary to evaluate
the group, not separate attribute set. As a result, management
is complicated. Dynamic synchronization group handler must
be applied either to the temporal layer but to the triggering
events and data dictionary, as well. If the detection and group
reconstruction is dynamic, the system uses too many resources
to optimize the internal structure, with no reflection to the
input data themselves. Our proposed solution combines all
these three temporal architectures (object, attribute, group
granularity) to the one common autonomous temporal
solution (ATS). The overview of the architecture and
principles are shown in fig. 4.

Structure
optimizer

applying structure
changes

Group detection
Group Manager

Granularity:
+ Object ¥
* Attribute
+ Group

=

interface

Autonomous
DB manager
Index
optimizer

FIA manager

Fig. 4. Autonomous temporal solution architecture

I
I
:—
I

First of all, the data model is provided to the system, or the
data source connection can be provided by reverse engineering
extracting the data structures from the source. As a result, the

124

conventional data model is reflected in the first step. Then,
individual tables and attributes are covered by the temporal
reflection. For each attribute or the whole table, temporal
spheres are defined. The wvalidity mostly delimits them.
However, as already stated, the multi-temporal solution can be
determined, as well, by prompting the system to cover other
temporal spheres, like transaction validity, insertion time,
synchronization time in offline systems, etc. Afterward, the
system is autonomous. Internal structures are created
reflecting the data pre-processing and dynamically adjusted
based on the input data flow. As a result, storage demands are
optimized, the temporal layer is not so overloaded. Fig. 5
shows the creation management process.

temporal section

definition %
data model

o &
%actlvatlo@

|:>creati®ngand |:>

provisioning ATS

3

online

to the temporality

association of the elements

Fig. 5. ATS definition and provisioning

Fig. 6 shows the staged process of the data retrieval. Note
that the result set structure is Select statement oriented and
does not rely on the internal data representation at all. For the
optimization, whereas several systems can be connected just to
the conventional layer, current valid states are always
accessible and pre-prepared in a logical layer.

SQL Statement

Parsing |

Syntax Check }—" Semantic Check }—-‘ Schared Pool Check

Hard Parse

Optimalization

Generation af muitiple
execution plans

Soft| Parse

Row Source
Generation

Selecting quary plan

Fig. 6. Data retrieval process

Fig. 6 shows the process of data identification physically in
the database. Data can be accessed either by sequential
scanning of the data blocks or by using an index [13]. All
these activities are done automated, as well, to ensure global
performance. Index set is created and altered dynamically,
based on the workload, queries, and partitioning. Data are
automatically partitioned. Each partition fragment has its own
index set. Thanks to that, global performance is ensured, as
visible in the following section.




PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Moreover, Flower Index Approach (FIA) introduced by our
team in [17] is used, as well. Its principle is based on data
identification and location in a fragmented block environment.
In a real temporal system, data block fragmentation is hugely
present. If no suitable index is present in the system, the
optimizer selects the sequential scanning method of the all
data block set associated with the table. Such an option has,
however, many negative aspects. Some blocks can be even
empty, fragmented or the migrated rows can be present [§],
[9], [15]. Thanks to that, performance can significantly
degrade, whereas each block must be database loaded to the
memory buffer cache for the evaluation. Although the cloud
systems use robust hardware and disc interfaces, significant
delays caused by the system source consumption can be
detected. As aresult, we have introduced the FI4 approach,
which is based on the relevant data block identification by
reducing the standard B+tree index just to the block reference
— BLOCKID.

In comparison with original sequential scanning, empty
blocks are removed from the evaluation. Thanks to that,
indexes do not need to be rebuilt, which is so demanding
operation. In a dynamically changing temporal environment,
consumption is even more shaped.

Data flow management is done by defining the data model
in the first phase, followed by the temporal ranges
specification. It is done by using Create temporal section
command, which delimits the time definition to be handled. It
can represent any temporal sphere, reflected mainly by the
validity. Each temporal section is uniquely identifiable by its
name:

Create temporal section temporal _section_name
identified as [validity | transaction_insert | transaction_commit
| synchronization_time | processing_time
| distribution_time ...]
by [timepoint | time_interval]
using precision [date | timestamp/[(n) | date_elements(element _list)];

To register the temporal dimension monitoring, REGISTER
procedure of the proposed DBMS AUT TEMPORALITY can
be used consisting of three parameters — name of the table
(optionally prefixed by the object owner), name of the
attribute, and created temporal section identified by its name:

DBMS _AUT_TEMPORALITY.REGISTER(table_name varchar,
attribute_name varchar,
temporal_section varchar);

The name of the attribute is optional and can be omitted. In
such a case, the registration is done for the whole table.
Similarly, the opposite operation of the de-registration can be
used, as well.

DBMS _AUT_TEMPORALITY.DEREGISTER(table_name varchar,
attribute_name varchar,
temporal_section varchar);

If the table or attribute specification is not done, it is
generally treated as a conventional table. To override it, the
definition can be done on a system level, which is then used as
a default option:

125

DBMS AUT TEMPORALITY.SET DEFAULT
(temporal_section varchar);

In principle, monitoring of the data value management and
evolution allows unlimited access to the history. Plans can be
covered, as well. To limit the amount of the data, mainly in
a historical manner, the following methods can be used. They
are encapsulated in the DBMS AUT TEMPORALITY
package so that the overloading can be used. The first code
deals with the total amount of historical state limitations. The
second code specifies the minimum duration, which must be
passed to remove the state. It is expressed in seconds. Similar
to already described principles, it can be set for the whole
table or individual attributes. In the case of using only attribute
granularity, the historical data state can be only partially valid.
Some attribute values would be restricted.

DBMS AUT TEMPORALITY.RESTRICT ACCESS

(table_name varchar, attribute_name varchar, history_count integer);
DBMS AUT TEMPORALITY.RESTRICT ACCESS

(table_name varchar, attribute_name varchar, duration integer);

Finally, such an approach can be associated with specific
users or can be used generally. Thanks to that, each user (or
role) can have specific data access, monitoring the
temporality, as well as access to the whole history. Historical
data are removed by planning the automated jobs at a defined
time point or as a result of a new state definition.

IV. COMPUTATIONAL STUDY

Performance evaluation has been performed using the
Oracle Cloud environment located in the Frankfurt data
region — Oracle Database 21c Enterprise Edition Release
21.0.0.0.0 — Production Version 21.2.0.0.0. The storage
capacity was 20 GB for internal data management. Backups
were part of the Object storage outside the database itself. The
database consisted of the spatio-temporal data locating and
identifying airplane objects by the occurrence time, GPS
position, as well as other parameters — speed, destination,
current airspace association (entry and exit time), planned
route vs. current route, as well as the weather conditions
influencing the flight itself. The following categorization
covered 100 attributes:

20 attributes were static with no evolution over the time
characterizing the airplane and airport properties,

20 attributes were covered by the entities monitored
using object-level temporal architecture.

30 attributes were separately monitored using attribute
granularity.

30 attributes can be used for group detection and
synchronization, whereas all data were updated at the
same time. These attributes were part of 5 tables
consisting of 6 attributes.




PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

"ECTRL ID","Sequence Number","AUA ID","Entry Time","Exit Time"
"186858226 " ", :55: "
"186858226
"186858226
"186858226
"186858226

01-06-2015 06:28:00"
01-086-2015 07:00:44"
"01-06-2015 87:11:45"
"01-06-2015 @7:15:55"
"186858227 91-06-2015 ©5:01:00"
"186858227", "01-06-2015 95:34:00"
"186858227","3","EGPXCTA","01-06-2015 ©5:34:00","01-06-2015 ©6:18:10"

Fig. 7. Input data example

The amount of data evolved over time. It used the principle
of dynamic allocation of the 20 GB distributed to individual
states. If the limit was reached, historical data were transferred
to the data warchouse.

For the computational study, five architectures were used.
All of them wused autonomous transaction processing
databases. However, the temporal management was different.
Namely, the first model (MODEL 1) deals just with object-
level temporal granularity. The second model (MODEL 2) is
based on just the attribute granularity irrespective of the
synchronization itself. MODEL 3 uses group granularity for
processing. Synchronization ~ groups  are  detected
automatically. Thus the temporal layer storage is optimized.
MODEL 4 is based on the proposed solution covered by this
paper. It is based on autonomous processing. Data
management is treated entirely automatically. The index set
was managed automatically. However, Flower Index
Approach (FIA) was not used, all. Finally, MODEL 5 uses the
same principles as MODEL 4, but the FIA approach locating
relevant data blocks in case the non-suitable index for the
query is present. In the first evaluation criterion, the Always
Free option of the Oracle Cloud was used, with no scalability
option. Fig. 8 shows the results — the data retrieval process
forming the shape of the whole object state.

data retrieval - object level (%)

autonomous  [auto

attribute level group level
MODEL 2 MODEL 3

MODEL 4
Fig. 8. Results — data retrieval using object level output format (%)

All the data values are expressed in percentage for better
visibility and evaluation.

The first part of the computational study is based on the
process of data retrieval. The output consists of 10% of the
whole data set projecting one table. The requested format is
object level, regardless of the real change identification
(object-level temporal architecture forms a new state
irrespective of the real change consequencing in the necessity
to store several values multiple times). Object-level temporal

architecture is a referential model, so the total demands are
100%. Although it is evident that the data shape is optimal for
the output, attribute level granularity even reaches a 4%
improvement. It is caused by the data amount reduction to be
memory-loaded. Although the whole state should be
composed of the individual attributes, the total number of
blocks to be processed is significantly smaller.

Moreover, using just attribute granularity lowers the impact
of data fragmentation. Synchronization group management is
more helpful in decreasing the processing time demands up to
16%. It is caused by reducing the data pointer amount in the
temporal layer, which is responsible for the state calculation
and reflection. By applying autonomous management, all three
categories can be present, optimized dynamically based on the
data inputs and structure. Although the group level temporality
is optimal from the evaluation point of view, dynamic group
detection has additional demands on the storage and
consecutive loading, whereas the group properties must be
stored to be able to reproduce the change.

Moreover, such groups are dynamic evolving. As a result,
the total processing time demands are lowered to the value of
77%. Finally, by applying dynamic index set management
supervised by the FIA approach, data access can be more
reliable, trusted but mostly faster. Namely, the total processing
time requirements compared to the object level architecture
are lowered up to 23%. Comparing MODEL 4 and MODEL 5,
demands are reduced using 6,5% by removing any impact of
the fragmentation.

Fig. 9 shows the results, which were obtained if the result
set focuses just on the real changes during the time frame —
newer value must be different from the already existing direct
predecessor. Otherwise, the value is ignored. Each object state
provided by the object level architecture must be compared to
the previous state forcing the system to sort the states and
categorize the change. Such demands are increased from the
value 100% to 130%, comparing object-level results and real
change identification. Attribute architecture is more suitable,
whereas only real change is stored, secured by the pre-
processing during the loading process. The total demands are
then 92%. Group level granularity optimizes the temporal
layer by reducing the processing to 81%.

data retrieval - real change (%)

autonomous auto

attribute level group level
MODEL 2 MODEL 3

Fig. 9. Results — data retrieval using real change identification (%)

MODEL 1 MODEL 4 MODEL 5




PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

In comparison with attribute granularity (81%), it reflects
the 9,9% improvement. Finally, autonomous processing uses
all strategies, so the demands are 73% with conventional
processing and 68% with complex extension. Thus, the FIA
approach reduced the demands from 73% to 68% reflecting
the 6,8% improvement.

Fig. 10 shows the storage demands across the used
architectures. Reached results are part of the figure in
a graphical style. The reference model is object-level temporal
architecture. 20% of data are static, 20% are object-oriented.
In a theoretical manner, the reduction can reach 40% for the
attribute perspective. The real performance evaluation showed
the 34% improvement caused by the additional structures
located in the temporal layer. Group level minimizes the
storage demands more strictly, reaching the 41%
improvement. Autonomous processing requires only 46%.
Each attribute or table is separately temporaly treated by
excluding the temporal layer processing for the static and
object-level temporality. Thanks to that, the total storage
demands can be rapidly lowered. As you can see, the FIA
approach requires 1% for storing dynamic block indexes
(comparing object level and autonomous F74).

Comparing autonomous temporal data processing
(MODEL 4) and FIA extension (MODEL 5), the additional
disc capacity requirement is 2,2%.

storage demands (%)

object level attribute level group level autonomous | autonomous +

FIA

MODEL 1 MODEL2 | MODEL 3 MODEL 4 MODEL 5

Fig. 10. Results — storage demands (%)

In the second part, the solution's scalability is highlighted
to extend the data set size up to 50, 100, and 200GB. Fig. 11
and Fig. 12 show the results emphasizing the data output
structure — object level or real change identification. As
evident, there is no significant change if the data amount is
enormously extended. With the data accumulation, group and
autonomous approaches benefit due to the broader
synchronization management possibility.

Similarly experimented, the total OCPU amount availability
extension distributes the workload proportionally.

V.

Data amount to be handled, operated, stored, and retrieved
is continuously rising. It is evident that the conventional
principles keeping just current valid states are not suitable in
intelligent information technology anymore. For the decision
making, analytics, prognosis creation, complex data should be

CONCLUSIONS

127

present covering historical, current data, as well as plans. The
relational database system is covered by relational algebra and
transaction support. This paper deals with the temporal
architecture overview. The main contribution is related to the
own proposed autonomous temporal database extending the
autonomous transaction processing option (ATP) available
through the Oracle Cloud technology. The proposed solution is
fully temporal and allows user to let the system manage your
data complexly in a spatio-temporal environment. By using the
proposed technology, data retrieval demands can be
significantly lowered. Namely, based on the computational
study, namely 19,8% for the attribute system and 8,3% for the
group granularity.

data retrieval - object level (%)

84 83 g1

object level l attribute level group level autonomous

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5

20GB data set 100GB dataset M 200GB data set

Fig. 11. Scalability handling — object change identification (%)

data retrieval - real change (%)

141 143

130 i

92 gg g7

B

attribute level

Aoas

autonomous +
FIA

group level autonomous

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5

20GB data set 1100GB dataset M 200GB data set

Fig. 12. Scalability handling — real change identification (%)

New composition of the autonomous temporal environment
registration has been proposed by creating additional processes
supervising the architecture. First of all, the original data
model is passed to the system, followed by the tables and
attributes extraction. For each element, temporal monitoring
can be registered. Afterward, the whole structure, inner
management, and storage optimization are done
autonomously. The result set of the query is then automatically
formatted based on the user criteria, regardless of the internal
representation. Thus, storage and access processes are
optimized.

In the future, we will highlight the data distribution in
multiple availability regions and sharing the data across the
tenancies.




PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

ACKNOWLEDGMENT

This publication was realized with the support of the

Erasmus+ project:

Project number: 2020-1-HRO1-KA226-HE-094713
Project title: Cloud cOmputing for Digital Education

Innovation

(1]
[2]
B3]

[4]
[3]

(6]

(7]

Cloud cOmputing

for Digital Education Innovation

REFERENCES

Abhinivesh, A., Mahajan, N.: The Cloud DBA-Oracle, Apress, 2017
Anders, L.: Cloud computing basics, Apress, 2021

Amirishett, A., Li, Y., et al.. Improving Predictable Shared-Disk
Clusters Performance for Database Clouds, 33rd IEEE International
Conference on Data Engineering (ICDE), 19-22 April 2017
Castro-Leon, E., Harmon, R.: Cloud as a Service, Apress, 2016

Elbahri, F., Al-Sanjary, O., et al.: Difference Comparison of SAP,
Oracle, and Microsoft Solutions Based on Cloud ERP Systems: A
Review, 15th IEEE International Colloquium on Signal Processing & Its
Applications (CSPA), 8-9 March 2019

Jakobezyk, M.: Practical Oracle Cloud Infrastructure: Infrastructure as a
Service, Autonomous Database, Managed Kubernetes, and Serverless,
Apress, 2020

Meier, A., Kaufmann, M.: SQL & NoSQL Databases: Models,
Languages, Consistency Options and Architectures for Big Data
Management, Springer, 2019

128

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

Mikkilineni, R., Morana, G., Keshan, S.: Demonstration of a New
Computing Model to Manage a Distributed Application and Its
Resources Using Turing Oracle Design, 25th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 13-15 June 2016

Moussa, R.: DDB Expert: A Recommender for Distributed Databases
Design, 22nd International Workshop on Database and Expert Systems
Applications, 22 August - 2 September 2011

Pendse, S., Krishnaswamy, V., et al.: Oracle Database In-Memory on
Active Data Guard: Real-time Analytics on a Standby Database, 2020
IEEE 36th International Conference on Data Engineering (ICDE), 20-24
April 2020

Png, A., Demanche, L.: Create Modern Web Applications Using Always
Free Resource, Apress, 2020

Tanveer, A.: Oracle 19¢ Data Guard, 2020

Kriegel, H., Kunath, P., et al.: Acceleration of relational index structures
based on statistics, 15th International Conference on Scientific and
Statistical Database Management, 9-11 July 2003

Kumar, Y., Basha, N., et al.. Oracle High Availability, Disaster
Recovery, and Cloud Services: Explore RAC, Data Guard, and Cloud
Technology, Apress, 2019

Kumar, A.: Oracle 12¢ Data Guard Administration: Learn to protect
your database against planned & unplanned downtimes, Independently
published, 2020

Kvet, M, Matiasko, K., Kvet, M.: Complex time management in
databases, Central European Journal of Computer Science vol.4, 2014,
pp. 269-284, doi: 10.2479/s13537-014-0207-4

Kvet, M.: Managing, locating and evaluating undefined values in
relational databases. 2020

Riaz, A.: Cloud Computing Using Oracle Application Express, Apress,
2019

Wang, W., Tian, N., et al.: Testing Cloud Applications under Cloud-
Uncertainty Performance Effects, 11th IEEE International Conference
on Software Testing, Verification and Validation (ICST), 9-13 April
2018

Oracle Cloud Free Tier, https://www.oracle.com/cloud/free




