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Abstract—This paper focuses on the design of a robust Real
Time Locating Systems (RTLS) based on the Ultra-Wide Band
(UWB) technology for Augmented Reality (AR) applications in
TV studios that require artists and/or a presenter to be accurately
localized. According to a UWB-based measurement campaign,
carried out in a TV studio environment, ranging measurements
are heavily affected by the human body interference. Indeed, lots
of outliers are present as the UWB receiver may synchronize
to reflected paths, which result to be much stronger than the
direct one. As a consequence, range errors are very large. In this
context, to improve the localization performance, we increased
the redundancy of the RTLS by employing more than one tag
to localize the artists on the TV scene. In particular, we have
applied the Extended Kalman Filter (EKF) algorithm to work
with two and three tags. Moreover, an outlier detection and
correction procedure have been defined and adopted for the
ranging phase. The resulting localization performance, based on
real range measurements, shows that the EKF with two tags
outperforms by 83.5% the one with single tag.

I. INTRODUCTION AND RELATED WORK

Real Time Locating Systems (RTLS), based on the Ultra-

Wide Band (UWB) technology, have been extensively studied

for many years and mainly proposed for indoor environments

[1], where Global Navigation Satellite Systems (GNSS) do

not work as the satellite signal is obstructed. Moreover,

the development of RTLS has been proliferating thanks to

commercially available off-the-shelf UWB kits, such as those

provided by the Decawave company (now acquired by Qorvo)

and recently by NXP, both compliant with the UWB standard

IEEE 802.15.4-2015 [2]. As a result, UWB-based RTLS have

been rapidly developed for various application domains, such

as Industry 4.0 (e.g., asset, forklift and employee tracking),

Healthcare (e.g., patient and asset tracking), Smart Home (e.g.,
residential access control, object finding). Moreover, some

applications are going to be developed for Augmented Reality

(AR) gaming by the Spark Microsystem company also thanks

to the recent integration of the UWB chip in some smartphones

(e.g., Samsung and Apple).

This paper focuses on the design of UWB-based RTLS

for real-time AR television applications. In particular, some

examples of applications envisaged by RAI (Radiotelevisione

Italiana), the Italian public broadcasting company, for which

the UWB localization acts as an enabling technology, are

reported as follows. Application A1: On TV screen display

of real-time information associated to an artist in a television
scene. For example, the TV system could display a televoting

code next to or above the tracked artist. Application A2:
Interaction of a presenter with some AR objects in the TV
scene. In this scenario, the system could display in real-time

what the presenter draws with his index finger in the space in

front of him. For example, the presenter of the Giro d’Italia
TV programme could follow the profile of the mountains with

his index finger while the system reports in real-time the

corresponding trace on the TV screen.

Most of the time, AR effects are generated in post-

production but this is in contrast to TV production where there

is often a requirement for live use. As for live productions,

AR in TV studio is made exploiting mechanical sensors with

the drawback of a complex set up and a high budget. The

proposed UWB solution overcomes these problems combining

a reasonable budget with easy setup. Moreover, this technology

allows interesting ways of interaction between the presenter

and virtual elements in real-time during filming, enabling new

TV formats. There is also the possibility to provide some form

of visualization to the presenter by placing a TV monitor out-

of shot but visible to the presenter, showing the composite

image.

In the context of TV scenes, designing and developing an

accurate UWB-based RTLS to track persons is not straight-

forward due to both the human body shadowing effect and

reflections caused by the indoor environments. It has been

observed that UWB tags mounted on the human body can raise

Line-of-Sight (LoS), Quasi-Line-of-Sight (QLoS), and Non-

Line-of-Sight (NLoS) scenarios leading to significant ranging

errors [3]–[5]. In addition, it has been investigated that the

ranging error strongly depends also on the relative heading

angle between the human body, the tag and and anchors [6].

Also the presence of walls and other obstacles in indoor

environments represents a significant challenge in terms of

localization, as they can result in positively biased ranging

estimates [7]. Some Machine Learning (ML)-based techniques

able to perform NLoS identification and mitigation have been

proposed [7], [8] that require a beforehand training process and

thus a collection of a significant set of labelled data. Other ML

techniques estimate ranging error directly from the received

wave-form, without any a priori or a posteriori knowledge
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of the NLoS condition. However, not all UWB chips provide

wave-form data.

This paper proposes a simple but efficient method to detect

range outliers by employing two UWB tags to be placed on

the human body. The tracking algorithm, which is based on

Extended Kalman Filter (EKF) [9], has been properly designed

to work with two and three tags.

The remainder of the paper is organized as follows. Section

II introduces the EKF algorithm. Section III presents the

application of the EKF for tracking 1-Tag. Sections IV and

V present the extension of the EKF with 2-Tag and 3-Tag

cases, respectively, for robust localization. Section VI presents

the procedure for outliers detection and correction by using

two tags while section VII shows the achieved localization

performance in the TV studio. Finally, conclusions are given

in section VIII.

II. OVERVIEW OF THE EXTENDED KALMAN FILTER

ALGORITHM

The Kalman Filter (KF) algorithm provides an efficient and

practical solution for linear dynamic systems with Gaussian

noisy measurements. Typically, localization problems are non

linear, hence, some linearizations and approximations are

needed. In this case, instead of KF, EKF can be applied [9].

The EKF algorithm, modelled by discrete-time state equa-

tions, can measure recursively the condition of a dynamic

system:

xk = f(xk−1) +wk, (1)

where xk is the state vector at time k, f is the state transition

function that evolves the state in time given the previous state,

and wk = N (0,Qk) is the random process noise vector that

takes into account the non linearity and perturbations of the

system. This vector is modelled with a normal distribution

with zero mean and covariance matrix Qk.

The system is observed through the following measurement

equation:

zk = h(xk) + vk, (2)

where zk is the measurements vector at time k, h is the

observation function that estimates the expected measurements

of the state xk and vk = N (0,Rk) is the random observation

noise vector assumed normally distributed with zero mean and

covariance matrix Rk.

The EKF is composed of two phases, the predict phase

and the update phase. The predict phase takes the previous a

posteriori state vector estimate, x̂k−1|k−1, and computes the a

priori state vector estimate:

x̂k|k−1 = f(x̂k−1|k−1). (3)

Also the covariance matrix associated to the predicted state

vector is updated as follows:

Pk|k−1 = FkPk−1|k−1F
T
k +Qk, (4)

where Fk is the Jacobian matrix of the state transition function

f calculated around the previous a posteriori state estimate

x̂k−1|k−1. After finding these a priori values, the algorithm

proceeds with the update phase, by correcting the a priori

estimates with a weighted factor of the measurements taking

into account their covariance matrix and the a priori state

estimate.

Sk = HkPk|k−1H
T
k +Rk, (5)

Kk = Pk|k−1H
T
k S

−1
k , (6)

sk = zk − h(x̂k|k−1), (7)

x̂k|k = x̂k|k−1 +Kksk, (8)

Pk|k = (In −KkHk)Pk|k−1, (9)

where sk is the innovation vector and Sk its covariance matrix,

Kk is the Kalman gain and Hk = ∂h
∂x

∣∣
x̂k|k−1

is the Jacobian

matrix of the observation function h calculated around the a

priori state estimate x̂k|k−1. In general, the performance of

the KF depends on how well the system is modeled and the

initial parameters chosen, so a survey of some models inside

the scope of this research is presented in section III.

III. EKF TRACKING WITH ONE TAG

The first step in designing a good EKF is to formulate a state

model that appropriately describes the system dynamics [10].

In particular, this research is focused on indoor localization

in a 3D space, so two basic models are studied, P and PV

models, which are presented in the following subsections.

A. P model

In this model the state vector includes position coordinates

only:

x = [x 1] = [x1, y1, z1]
T , (10)

where x 1 represents the 3D coordinates of a tag. This model

assumes near constant position between two consecutive esti-

mation. In fact, the state transition function f is an identity

matrix and the process noise vector can be modelled with small

white noise speeds:

xk = f(xk−1) = F kxk−1 = I 3,3xk−1, (11)

Qk = [ΔT I 3,3][ΔT I 3,3]
Tσ2

v , (12)

where F k = I 3,3 is a 3 × 3 identity matrix. Qk is also a 3 × 3

matrix presented as function of ΔT , which is the time elapsed

between two consecutive measurements, and σv , which is the

standard deviation of the random speed components of the

process noise.

The Q matrix has a significant impact on the tracking

performance. For instance, a lower σv value will smooth the

output obtained at the cost of larger convergence time, while

faster filters usually provide noisy outputs. Thus, this value is

a key factor in the KF performance optimization.
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B. PV model

It is a dynamic EKF and assumes near constant velocity

between the estimation intervals ΔT . Again the process noise

matrix is a key factor for the performance. In particular,

smooth tracking will be achieved if we consider small white

accelerations. However, on non-linear trajectory, the velocity

is no longer constant, thus, slow response or even divergence

will be appreciated. The state vector is expressed as:

x = [x 1, v1] = [x1, y1, z1, vx1
, vy1

, vz1 ]
T , (13)

where v1 = [vx1
, vy1

, vz1 ] represents the 3D velocity compo-

nents of a tag.

For this model, the state transition function f and the Q
matrix of the process noise vector can be written as:

xk = f(xk−1) = F kxk−1 =

[
I 3,3 ΔT I 3,3

0 3,3 I 3,3

]
xk−1, (14)

Qk =

[
1/2Δ2

T I 3,3

ΔT I 3,3

] [
1/2Δ2

T I 3,3

ΔT I 3,3

]T
σ2
a, (15)

where 0 3,3 is a 3× 3 null matrix.

The PV model is feasible in low acceleration movement

scenarios, i.e., in almost constant speed circumstances. Thus,

the process noise is modeled as an independent random ac-

celeration normally distributed with zero mean and covariance

matrix Qk, which allows to track different forces that could

temporally affect target’s dynamics [10]. σa is the standard

deviation of the random acceleration components of the pro-

cess noise. This value is a key factor in the EKF performance

optimization.

C. Measurement Model

Most of indoor positioning systems are based on the UWB

technology that provides distance measurements between tags

and anchors.

Let M1,k be the set of anchors visible by Tag 1 at time

k, and |M1,k| = M1 be the corresponding number of visible

anchors. The observation vector can be written as:

zk = z1,k � {zT1,Aj ,k|Aj ∈ M1,k}T , (16)

where zT1,Aj ,k is the distance measurement between Tag 1 and

Anchor j at time k. Typically, UWB distance measurements

are modelled with an additive Gaussian noise:

zTi,Aj ,k = dTi,Aj + nd, (17)

where dTi,Aj
is the exact distance between tag i and anchor j,

nd ∼ N (0, σ2
d) and σd is the standard deviation of the ranging

noise. Depending on the UWB platform, typically, in Line of

Sight (LoS) condition, σd has a value of about 5-10 cm.

Given the observation vector defined in equation (16), the

corresponding observation function h can be written as:

h(xk) = h1(x 1,k) =

⎡
⎢⎢⎢⎣

dist(x 1,k,xA1
)

dist(x 1,k,xA2)
...

dist(x 1,k,xAM1
)

⎤
⎥⎥⎥⎦ , (18)

where dist(·) is the Euclidean distance, which is defined as

follows:

dist(x i,x j) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (19)

As it can be observed, the h function is non-linear with

respect to the state vector. Thus, some linearizations have to be

performed to compute the Hk matrix as the Jacobian matrix

defined in section II.

For the P model, Hk = H1,k where:

H1,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x̂1,k|k−1 − xA1

d̂T1,A1,k

ŷ1,k|k−1 − yA1

d̂T1,A1,k

ẑ1,k|k−1 − zA1

d̂T1,A1,k

x̂1,k|k−1 − xA2

d̂T1,A2,k

ŷ1,k|k−1 − yA2

d̂T1,A2,k

ẑ1,k|k−1 − zA2

d̂T1,A2,k

.

.

.
.
.
.

.

.

.
x̂1,k|k−1 − xAM1

d̂T1,AM1
,k

ŷ1,k|k−1 − yAM1

d̂T1,AM1
,k

ẑ1,k|k−1 − zAM1

d̂T1,AM1
,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(20)

which has size M1 × 3, and d̂Ti,Aj ,k = dist(x̂ i,k|k−1,xAj
).

For the PV model, the Hk matrix is given by:

Hk =
[
H1,k 0M1,3

]
, (21)

where 0M1,3 is a M1 × 3 null vector. Thus, the size of Hk

for the PV model is M1 × 6.

Finally, for both P and PV models, the Rk matrix is a M1×
M1 diagonal matrix with all the diagonal elements equal to

σ2
d.

IV. EKF TRACKING WITH TWO TAGS

In this section, two independent tags worn by the presenter

are considered for the tracking problem.

A. P model

For the P model, the state vector for 2 tags would be:

x = [x 1,x 2] = [x1, y1, z1, x2, y2, z2]
T , (22)

where sub-indexes 1 and 2 refer to tags 1 and 2, respectively.

Similar to the P model for one tag, reported in section III-A,

the state equation would be:

xk = f(xk−1) = F kxk−1 = I 6,6xk−1, (23)

Qk = [ΔT I 6,6][ΔT I 6,6]
Tσ2

v , (24)

where F k = I 6,6 is a 6× 6 identity matrix.

B. PV model

For the PV model, the state vector for 2 tags would be:

x = [x 1,x 2, v1, v2]

= [x1, y1, z1, x2, y2, z2, vx1
, vy1

, vz1 , vx2
, vy2

, vz2 ]
T .

(25)

Similar to the PV model for one tag, reported in section

III-B, the state equation would be:

xk = f(xk−1) = F kxk−1 =

[
I 6,6 ΔT I 6,6

0 6,6 I 6,6

]
xk−1, (26)

Qk =

[
1/2Δ2

T I 6,6

ΔT I 6,6

] [
1/2Δ2

T I 6,6

ΔT I 6,6

]T
σ2
a. (27)
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C. Measurement Model

Similar to the case with one tag, let M2,k be set of

anchors visible by Tag 2 at time k and |M2,k| = M2

be the corresponding number of visible anchors. Thus, the

observation vector for Tag 2 can be defined as:

zk,2 � {zT2,Aj ,k|Aj ∈ M2,k}T . (28)

Thus, the global observation vector can be written as:

zk = [z1,k, z2,k]. (29)

Similar to tag 1, we can define the observation function for

tag 2 as:

h2(x 2,k) =

⎡
⎢⎢⎢⎣

dist(x 2,k,xA1)
dist(x 2,k,xA2)

...

dist(x 2,k,xAM2
)

⎤
⎥⎥⎥⎦ . (30)

Thus, the global observation function h can be written as:

h(xk) =

[
h1(x 1,k)
h2(x 2,k)

]
. (31)

Note that, given the set of visible anchors for Tag 1, denoted

as M1,k = {A1, A2, . . . , AM1
}, and the set of visible anchors

for Tag 2, denoted as M2,k = {A1, A2, . . . , AM2
}, there is not

necessary a one to one correspondence between the two sets.

For the sake of clarity, let’s suppose to have a network of three

anchors, labeled as B12, B15 and B20. At time k, Tag 1 could

have anchors connectivity M1,k = {A1, A2} = {B15, B20}
while Tag 2 could have connectivity M2,k = {A1, A2, A3} =
{B12, B15, B20}. As it can be observed, in this particular case,

A1 ∈ M1,k does not coincide with A1 ∈ M2,k. The same

applies for A2.

Similar to the definition of H1,k in equation (20), it is

possible to define H2,k for Tag 2 as:

H2,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x̂2,k|k−1 − xA1

d̂T2,A1,k

ŷ2,k|k−1 − yA1

d̂T2,A1,k

ẑ2,k|k−1 − zA1

d̂T2,A1,k

x̂2,k|k−1 − xA2

d̂T2,A2,k

ŷ2,k|k−1 − yA2

d̂T2,A2,k

ẑ2,k|k−1 − zA2

d̂T2,A2,k

.

.

.
.
.
.

.

.

.
x̂2,k|k−1 − xAM2

d̂T2,AM2
,k

ŷ2,k|k−1 − yAM2

d̂T2,AM2
,k

ẑ2,k|k−1 − zAM2

d̂T2,AM2
,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(32)

which has size M2 × 3.

For the P model with two tags, the global Hk matrix is

given by:

Hk =

[
H1,k 0M1,3

0M2,3 H2,k

]
, (33)

which has size (M1 +M2)× 6.

For the PV model with two tags, the global Hk matrix is

given by:

Hk =

[
H1,k 0M1,3 0M1,6

0M2,3 H2,k 0M2,6

]
, (34)

which has size (M1 +M2)× 12.

For both P and PV models, the Rk matrix is a (M1+M2)×
(M1 +M2) diagonal matrix with all diagonal elements equal

to σ2
d.

In this case, at each time step k, the presenter position can

be estimated as the average value of the two tags’ a posteriori

state vector positions x̂ 1,k|k and x̂ 2,k|k.

V. EKF TRACKING WITH THREE TAGS

In this section, three independent tags worn by the presenter

are considered for the tracking problem.

A. P model

For the P model, the state vector for 3 tags would be:

x = [x 1,x 2,x 3]

= [x1, y1, z1, x2, y2, z2, x3, y3, z3]
T ,

(35)

where sub-indexes 1, 2 and 3 refer to Tags 1, 2 and 3,

respectively. Similarly to the P model for one tag, reported

in section III-A, the state equation would be:

xk = f(xk−1) = F kxk−1 = I 9,9xk−1, (36)

Qk = [ΔT I 9,9][ΔT I 9,9]
Tσ2

v , (37)

where F k = I 9,9 is a 9× 9 identity matrix.

B. PV model

For the PV model, the state vector for 3 tags would be:

x =[x 1,x 2,x 3, v1, v2, v3]

=[x1, y1, z1, x2, y2, z2, z1, x3, y3, z3,

vx1
, vy1

, vz1 , vx2
, vy2

, vz2 , vx3
, vy3

, vz3 ]
T .

(38)

Similar to the PV model for one tag, reported in section

III-B, the state equation would be:

xk = f(xk−1) = F kxk−1 =

[
I 9,9 ΔT I 9,9

0 9,9 I 9,9

]
xk−1, (39)

Qk =

[
1/2Δ2

T I 9,9

ΔT I 9,9

] [
1/2Δ2

T I 9,9

ΔT I 9,9

]T
σ2
a. (40)

C. Measurement Model

Similar to the case with two tags, let M3,k be set of anchors

visible by Tag 3 at time k and |M3,k| = M3 be number of

visible anchors. Thus, similarly, the observation vector for Tag

3 can be defined as:

zk,3 � {zT3,Aj ,k|Aj ∈ M3,k}T . (41)

The global observation vector can be written as:

zk = [z1,k, z2,k, z3,k]. (42)

The global observation function can be written as:

h(xk) =

⎡
⎣h1(x 1,k)
h2(x 2,k)
h3(x 3,k)

⎤
⎦ , (43)
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where

h3(x 3,k) =

⎡
⎢⎢⎢⎣

dist(x 3,k,xA1
)

dist(x 3,k,xA2
)

...

dist(x 3,k,xAM3
)

⎤
⎥⎥⎥⎦ (44)

Similar to the definition of H1,k in equation (20), it is

possible to define H3,k for Tag 3 as:

H3,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x̂3,k|k−1 − xA1

d̂T3,A1,k

ŷ3,k|k−1 − yA1

d̂T3,A1,k

ẑ3,k|k−1 − zA1

d̂T3,A1,k

x̂3,k|k−1 − xA2

d̂T3,A2,k

ŷ3,k|k−1 − yA2

d̂T3,A2,k

ẑ3,k|k−1 − zA2

d̂T3,A2,k

.

.

.
.
.
.

.

.

.
x̂3,k|k−1 − xAM3

d̂T3,AM3
,k

ŷ3,k|k−1 − yAM3

d̂T3,AM3
,k

ẑ3,k|k−1 − zAM3

d̂T3,AM3
,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(45)

which has size M3 × 3.

For the P model with three tags, the global Hk matrix is

given by:

Hk =

⎡
⎣ H1,k 0M1,3 0M1,3

0M2,3 H2,k 0M2,3

0M3,3 0M3,3 H3,k

⎤
⎦ , (46)

which has size (M1 +M2 +M3)× 6.

For the PV model with three tags, the global Hk matrix is

given by:

Hk =

⎡
⎣ H1,k 0M1,3 0M1,3 0M1,9

0M2,3 H2,k 0M2,3 0M2,9

0M3,3 0M3,3 H3,k 0M3,9

⎤
⎦ , (47)

which has size (M1 +M2 +M3)× 18.

For both P and PV models, the Rk matrix is a (M1+M2+
M3) × (M1 + M2 + M3) diagonal matrix with all diagonal

elements equal to σ2
d.

In this case, at each time step k, the presenter position can

be estimated as the average value of the three tags’ a posteriori

state vector positions x̂ 1,k|k, x̂ 2,k|k and x̂ 3,k|k.

VI. DETECTION AND CORRECTION OF DISTANCE

OUTLIERS

Using two or more tags in a tracking system allows to imple-

ment a simple rule for the detection of distance measurement

outliers. Let’s suppose to have two tags, T1 and T2, placed

at a fixed distance dT1T2 , for instance, on the shoulders of a

presenter to be localized, as depicted in the Fig. 1. The figure

shows graphically the two noisy distance measurements with

respect to anchor A5. In particular, the d̃T1A5
, represented by

the red line, is affected by a very large noise, for instance, due

to the synchronization of the receiver to a reflected path. First

of all, the outlier detection and correction procedure, selects

the minimum distance measured by the two tags with respect

to a specific anchor. In the example of Fig. 1, the minimum

measured distance corresponds to d̃T2A5
, represented by the

green line. With a good likelihood, we can assume that the

minimum distance is not an outlier, i.e., not affected by large

noise. After that, a threshold denoted as dthr, will be defined

as the sum of the minimum distance and the fixed distance

Fig. 1. Outlier detection with two tags

between the two tags, that is, dthr = d̃T2A5 + dT1T2 . Finally,

for the outlier detection, it will applied the triangles’ rule

stating that one side of a triangle cannot be larger than the sum

of the other two. Thus, if the largest distance measurement,

in the example d̃T1A5
, is larger than the threshold dthr, as

depicted in the Fig. 1, it will be considered as an outlier

and corrected to dthr plus some little noise, which depends on

the UWB technology. Alternatively, if the maximum distance

is less or equal than the threshold, nothing happens and the

measurement will not be modified.

The above defined approach could be applied also in a

scenario with three tags. Considering that, only pair of dis-

tances are processed at a time, the procedure for detection

and correction will be applied three times.

VII. EVALUATION OF LOCALIZATION PERFORMANCE AND

OPTIMIZATION

The designed EKF localization algorithms have been tested

off-line via MATLAB but using real range measurements

collected, using a UWB kit, in a RAI TV studio. The TV

studio, as shown in Fig. 2, has a circular shape with a diameter

of about 17 meters, and structured in three levels of bleachers.

Fig. 2. A picture of the RAI TV studio
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For the measurement campaign, a UWB kit based on the

DW1000 ScenSor integrated circuit [11] from Decawave have

been used. In particular, as shown in Fig. 3, a total of eight

anchors have been deployed (red dots), of which four anchors

at a height of about 4 m, close to the external circle of the

studio, while the other four anchors at a height of about 6.5

m, in correspondence of the four lower anchors. In addition,
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P2P3P4

P5
P6 P7 P8

P9

P10
P11

P12

P13

P14
P15

P16

P17

P18

P19
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P24
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P23
A3 P22

A2

A1
P21

x

y

Fig. 3. Anchors and Test Points (TPs) positions

24 TPs (blue dots) have been selected for the tag’s positions, 

where the localization performance has been evaluated.

Fig. 4. Range measurements between anchor A6 (above A2) and the tag 
placed on the right shoulder positioned at TP P0

First of all, UWB-based range measurements have been car-

ried out, stored and then analyzed. Firstly, we have performed

measurements without the human body, for example, deploy-

ing the tag on a tripode. Considering range measurements on

TPs P0, P12, P16, P21 and P23, globally, in this scenario, a

ranging error with average zero and standard deviation equal

to 14 cm have been achieved. After that, we have performed

measurements with the human body. As an example, Fig. 4

shows graphically some range measurements between anchor

A6 (deployed above A2) and a tag, placed on a shoulder,

positioned at TP P0. As it can be observed, some range outliers

occurred. Deploying the tag on the same five TPs (reported

above), globally, an average range error equal to 12.2 cm and

a standard deviation equal to 63.4 cm have been registered.

This larger standard deviation value, 63.4cm, with respect to

the one Without the human body, 14 cm, proofs the huge

presence of range outliers in the measurements.

For comparison, we have collected range measurements also

with the tag placed on the belt and inside a pocket as shown

in Fig. 5.

Fig. 5. Three different positions of the tag on the presenter

The resulting range performance have been listed in Table I.

As it can be observed, although the tag placed on the shoulder

and on the belt show similar range performance, the position

on the shoulder is preferable as the range availability is the

largest. In contrast, the tag in the pocket shows the worst range

performance and the lowest range availability.

TABLE I. RANGING 
PERFORMANCE

Ranging Error
Tag Posit. avg [m] std [m] RMS [m] Range Avail. [%.]

Pocket 0.45 0.66 0.80 5.0
Belt 0.28 0.50 0.57 88.6

Shoulder 0.12 0.55 0.56 95.7

After that, we have evaluated localization performance with

the tag placed on the shoulder using the three designed EKF

algorithms, with 1 Tag, 2 Tags and 3 Tags. In the ranging

phase of each algorithm, we have included the procedure

for outlier detection and correction presented in section VI.

Moreover, each EKF has been initialized by a simple Linear

Least Squared (LLS) algorithm [12].

For the evaluation of the localization performance, we have

calculated the following errors:

• 2DLocErr: defined as the Euclidean distance between

the exact Tag’s position and the estimated one in the x, y
plane.

• 3DLocErr: defined as the Euclidean distance between the

exact Tag’s position and the estimated one in the x, y, z
plane.

• XErr: defined as the difference between the exact Tag’s

x-coordinate and the estimated one.

• YErr: defined as the difference between the exact Tag’s

y-coordinate and the estimated one.

• ZErr: defined as the difference between the exact Tag’s

z-coordinate and the estimated one.
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After that, for each set of the defined errors, the following

statistics have been calculated: avg, defined as the average

value, std, defined as the standard deviation value, and finally,

the RMS, which is the root mean squared value.

For the evaluation of the localization performance, we have

considered only the static scenarios, as the exact tags’ positions

were known. However, we have executed the algorithms also

in mobility scenarios but we could not evaluate the perfor-

mance as we had not the means to record the ground truth

along the time.

As far as the static scenarios are concerned, the performance

of the EKF algorithms have been optimized by tuning the σv

and σa parameters of the Q matrix for P and PV models,

respectively.

Tables II and III list the localization performance with

one tag on the shoulder for P and PV models, respectively.

Although, both P and PV models show similar results, the

3DLocErr is quite large, in the order of 67 cm, which is not

suitable for AR applications.

TABLE II. 1-TAG EKF ALGORITHM LOCALIZATION PERFORMANCE - P 
MODEL (σv = 0.01)

Localization Performance
2DLocErr [avg=0.272, std=0.403, RMS=0.486] m
3DLocErr [avg=0.380, std=0.548, RMS=0.667] m

XErr [avg=-0.169, std=0.353, RMS=0.392] m
YErr [avg=-0.095, std=0.272, RMS=0.288] m
ZErr [avg=-0.184, std=0.417, RMS=0.456] m

TABLE III. 1-TAG EKF ALGORITHM LOCALIZATION PERFORMANCE - PV 
MODEL (σa = 1.5)

Localization Performance
2DLocErr [avg=,0.282 std=0.440, RMS=0.523] m
3DLocErr [avg=0.386, std=0.599, RMS=0.712] m

XErr [avg=-0.174, std=0.397, RMS=0.434] m
YErr [avg=-0.097, std=0.276, RMS=0.293] m
ZErr [avg=-0.214, std=0.434, RMS=0.484] m

Tables IV and V list the localization performance with

two tags on the shoulder for P and PV models, respectively.

Comparing these results with the EKF 1-Tag ones, we can ob-

serve a considerable improvement of the performance (83.6%).

Indeed, the 3DLocErr is in the order of 11 cm, which is

suitable to enable AR applications.

TABLE IV. 2-TAG EKF ALGORITHM LOCALIZATION PERFORMANCE - P 
MODEL (σv = 0.5)

Localization Performance
2DLocErr [avg=0.085, std=0.032, RMS=0.091] m
3DLocErr [avg=0.107, std=0.038, RMS=0.107] m

XErr [avg=-0.063, std=0.043, RMS=0.076] m
YErr [avg=-0.033, std=0.037, RMS=0.049] m
ZErr [avg=-0.019, std=0.065, RMS=0.072] m

TABLE V. 2-TAG EKF ALGORITHM LOCALIZATION PERFORMANCE - PV 
MODEL (σa = 0.01).

Localization Performance
2DLocErr [avg=0.088, std=0.031, RMS=0.093] m
3DLocErr [avg=0.103, std=0.034, RMS=0.109] m

XErr [avg=-0.059, std=0.044, RMS=0.288] m
YErr [avg=-0.038, std=0.042, RMS=0.057] m
ZErr [avg=-0.010, std=0.056, RMS=0.063] m

Finally, Tables VI and VII list the localization performance

with three tags on the shoulder for P and PV models, respec-

tively. As it can be observed, the performance are similar to

the EKF 2-Tag ones, sometimes a little bit worse. Therefore,

it seems that a kind of saturation effect on the performance is

observed using more than two tags.

TABLE VI. 3-TAG EKF ALGORITHM LOCALIZATION PERFORMANCE - P 
MODEL (σv = 3.5)

Localization Performance
2DLocErr [avg=0.112, std=0.040, RMS=0.119] m
3DLocErr [avg=0.158, std=0.082, RMS=0.134 m

XErr [avg=-0.078, std=0.065, RMS=0.101] m
YErr [avg=0.009, std=0.062, RMS=0.062] m
ZErr [avg=-0.094, std=0.094, RMS=0.094] m

TABLE VII. 3-TAG EKF ALGORITHM LOCALIZATION PERFORMANCE - PV 
MODEL (σa = 3)

Localization Performance
2DLocErr [avg=0.112, std=0.039, RMS=0.118] m
3DLocErr [avg=0.158, std=0.082, RMS=0.137] m

XErr [-avg=0.077, std=0.064, RMS=0.101] m
YErr [avg=0.009, std=0.062, RMS=0.063] m
ZErr [avg=-0.093, std=0.094, RMS=0.094] m

For a better comparison, the 3D localization performance

have been listed in Table VIII.

TABLE VIII. PERFORMANCE COMPARISON WITH DIFFERENT 
NUMBER OF TAGS

# Tags Model σv,a (param. of Q) 3DLoc RMSE [m]

1 P 0.01 0.667
1 PV 1.5 0.731
2 P 0.5 0.107
2 PV 0.01 0.109
3 P 3.5 0.134
3 PV 3 0.137

Finally, Fig. 6 shows an example of localization in a

mobility scenario, where only one tag has been used, carried

on the shoulder. The performer has moved, at a walking pace,

along the three levels of bleachers. In this case, to optimize

both the estimated trajectory smoothness and the convergence

of the estimation (mainly in the areas with high change of

direction), we have used a PV model with σa = 3 that, as

expected, resulted to be larger than to the one used for the

static case (PV model, σa = 1.5).
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Fig. 6. Example of tracking with real UWB measurements from 1 tag (PV
model, σa= 3)

VIII. CONCLUSION

This paper presented a robust RTLS based on the UWB

technology suitable for real-time AR applications in TV stu-

dios. To support the design process, first of all, a UWB-based

measurement campaign was performed in a TV studio, where

rangings resulted to be heavily affected by the human body

interference, thus, causing outliers. During the measurements,

the tag was placed in three different potions of the human

body, on a shoulder, on the belt, and inside a pocket. According

to the range analysis, the shoulder was the best position as the

ranging error was the lowest (similar to the belt position) and

the range availability was the largest.

To improve the localization performance and meet the AR

requirements, we adopted more than one tag to be worn by the

presenter/performer on the shoulders for accurate tracking. In

particular, we applied the EKF algorithm to work with two

and three tags. P and PV models were considered for the

state vector. In addition, exploiting the system redundancy,

an outlier detection and correction procedure was defined and

then applied in the ranging phase of the RTLS.

The designed EKF localization algorithms have been tested 
off-line via MATLAB but using the real range measurements 
collected in the RAI TV studio, where 8 anchors have been 
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deployed for 3D localization. The resulting localization per-

formance showed that the EKF with two tags outperformed 
the one with single tag by 83.5%. In addition, the achieved 
level of accuracy is suitable for applications in a TV studio. 
We think that this technology could foster the developments 
of real-time AR for TV programmes with an easy setup and 
a reduction in production costs.
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