
Architectural Software-Hardware Co-Modeling a
Real-World Cyber-Physical System:

Arduino-Based ArduPilot Case

Sergey Staroletov
Polzunov Altai State Technical University, Barnaul

Institute of Automation and Electrometry, Novosibirsk

Siberia, Russian Federation
serg_soft@mail.ru

Abstract—The study of good practices of architectural orga-
nization software systems for real-world cyber-physical systems
(CPS) is possible to conduct on solutions with open-source
code, which are developed by large communities of enthusiasts.
Such solutions have been tested many times on real devices in
various natural environments. The construction of models using
the program code allows us to understand stable architectural
solutions, present them in a graphical form and take a look at the
proper organization. While UML models are suitable to represent
relations between classes and show software design patterns, to
create reliable software for CPS one should study patterns on the
organization such systems that take into account both software
and hardware parts.

AADL (Architecture Analysis & Design Language) aims to
establish clear, generally accepted semantics to express architec-
tural models of interconnected hardware components as well as
system software structure. Using the semantics, we can easily
obtain graphical representations of the models to apply in the
hardware design process. Also, having a formal architectural
description, we can validate some valuable system properties.

In this paper, we create extended models for hardware parts
and software components of a cheap reprogrammable controller
for RC-based DIY systems based on the ArduPilot Mega board.
The models are fully based on the actual open-source code,
existing sample models and reference datasheets. We review most
of the hardware and software parts, discuss the scheduler, all
running tasks and their relations. Then we discuss our solution
with interconnected distributed controllers using SPI and CAN
bus connection.

I. INTRODUCTION

The life of modern people is unthinkable without the artifi-

cial cyber-physical devices that surround them. One example

of these devices is quadcopters (or quadrotors), which are

successfully used for videography, weather measurement, or

monitoring agricultural lands [1]. On the other hand, in many

countries, the use of such devices in places where people

appear is prohibited due to the possibility of falling and their

general low reliability.

In this paper, we proceed to model both software and hard-

ware of the popular ArduPilot Mega controller, which is based

on an Arduino-compatible board. This solution represents the

cheapest flight controller, the code of which is entirely open.

Thanks to the broad support of the community, this project

can be considered one of the most straightforward, successful

and energy-efficient solutions for performing simple flight or

driving functions using self-assembled low-weight vehicles

(quadcopters and rovers), from which a quick response is

not required. Moreover, such devices are ideal for teaching

children in STEM centers [2]. At the same time, due to plat-

form limitations, the solution is the most balanced and shows

examples of the professional architectural design of system

software for embedded systems (that echoes the approach of

design patterns for object-oriented programs [3]).

Although the system has Arduino roots, the code is a normal

C++ solution that clearly uses all the necessary processor

capabilities. Such decisions need to be learned, which is our

motivation for writing this article.

Studying the internal structure of the ArduPilot project [4],

we concluded that in order to assure the safety of such devices,

it is necessary to know about the internal architecture of both

software and hardware, up to the methods of exchanging with

specific hardware components and the used pins. Accordingly,

here we come to the concept of co-modeling [5]. We as-

sume here that the Architecture Analysis & Design Language
(AADL) is most suitable for such a process. The language is

successfully used to express complex systems, for example,

in automotive [6] and aero domains [7] and is accepted in

communities that deal with safety [8]. We see that AADL

contains significant opportunities to describe devices with

their input/output pins, data buses for the intercommunications

on one side, and tasks and their interaction methods on

the other. Simultaneously, the language introduces a simple

syntax of property sets, and open editing tools have been

developed to support the AADL models creation. In addition,

there is an unambiguous transition from textual models to

a graphical representation, which allows us to interpret the

models visually. Such a visual representation and the means

of validation make it deeper to reason about the quality of the

architectural solution being created.

The project is being implemented within the framework

of studying the construction of cyber-physical systems using

models [9]. Some preliminary results were discussed at the

national OSDAYs [10] as well as the RTCSA 2021 [11]

conferences.

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig. 1. Components of APM 2.6. from our study in paper [4]

II. PRELIMINARIES: ARDUPILOT, AADL SYNTAX AND

RELATED OPEN-SOURCE TOOLSET

A. ArduPilot and APM

ArduPilot project [12] is an open-source project providing

free software to command small DIY multicopters. With

its ArduCopter codebase, the project introduces a high-level

abstraction to operate hardware components for them (as well

as for rovers and planes, refer to Ardurover and Arduplane

codebases, respectively). The source code of control is based

on the latest advances in research of the world quadrotor

community, so it is an immeasurable base for tracking recent

achievements in it. Inside, its code consists of HAL (Hardware

Abstraction Layer) to run on different hardware platforms,

the main scheduling loop and a set of various libraries that

provide some code to communicate with particular devices,

mathematical calculations and control algorithms [4].

In the beginning, ArduPilot/ArduCopter software was de-

signed to be used accompanying with APM controller hard-

ware (“APM” stands for ArduPilot Mega and “Ardu” stands

for Arduino), so the project goal was to utilize the Arduino

Mega board for the flight controller.

Consider in brief the APM 2.6/2.8 controller structure. The

controller was designed in 2011-2012 [13] as a result of initial

ArduPilot project development by 3D Robotics company, and

then the non-profit organization ardupilot.org was established.

Today such a version of the controller is outdated, but the

APM board is cheap and available on the common market, so

it is a large subject to research.

The components of the controller are shown in Fig. 1.

Onboard it comprises:

• ATmega 2560 processor (8bit) [14];

• barometer MS5611 [15], SPI connection;

• 3-axes magnetometer (compass) HMC5843 [16], I2C

connection;

• 6-axes gyroscope and accelerometer MPU-6000, SPI con-

nection;

• GPS: UART external interface;

• Frsky telemetry: UART external interface;

• an additional external SPI interface.

B. AADL: introduction

Architecture Analysis & Design Language is primarily

targeted at safety-critical, real-time systems where sensors

and actuators are tightly coupled with software components

and facilitate analysis of interaction between hardware and

software components [17]. Using tools described later, it

allows system modeling engineers to:

• develop a top-level system design;

• see a graphical representation of a textual model;

• generate code using tools such as Ocarina [18], [19];

• automatically validate properties of developed systems;

• create certified solutions.

In essence, AADL acts like “executable UML”, but at the

very top level and it is primarily designed not for expressing

algorithms, but for describing systems and components with

additional safety requirements. The language offers to describe

models as sets of extensible properties for specifying both

hardware and software parts.

A model in AADL usually consists of the following sets of

properties:

• hardware (device, processor, bus, memory, virtual bus

(protocol), virtual processor);

• software (data, subprogram, thread, process);

• hybrid (whole system, abstract category).

In this paper, we model the APM board as a composition

of devices, connected through their input/outport ports. They

can represent device pins connected via tracks on the board,

possibly using data buses. Each device is modeled as a set of

properties and a set of features. The properties can represent

the tuple of device state while the features model device

connections. We use the following conventions for building

the features:

• data port is used for logical data connections;

• event port is used for electrical connections (vcc/gnd).

C. AADL: syntax

Now we turn to the question of understanding the AADL

syntax. Entity descriptions in it are usually represented by

setting properties (name => value) and input/output ports. At

the same time, the inheritance of sets of properties and ports

is supported. For example, we can describe the ATmega 2560

processor as:

processor ATMEGA2560 extends Processors::
Generic_CPU

features
PA4: in out data port;
PA7: in out data port;
--...
GND: in event port;
VCC: in event port;
AREF: in event port;
RESET: in event port;

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 268 --

properties
Deployment::Execution_Platform =>

Native;
Processor_Properties::Processor_Family =>

AVR;
Processor_Properties::Endianess =>

Little_Endian;
Processor_Properties::Word_Length => 8

bits;
Processor_Properties::FPU_Present =>

False;
Thread_Limit => 1;
Processor_Properties::Processor_Frequency

=> 16 Mhz;
end ATMEGA2560;

In this case, we describe the processor pins and its properties

according to the datasheet (in this case, [14]). Property sets are

defined by the user and can be shipped in libraries (for example

[20]), and their usage depends on further analysis tasks. With

this description of the processor, it can be declared in the

entire system and attached to other components by setting

connections between pins.

Fig. 2. A fragment of ArduPilot board model from the open library of AADL
models [20], [21]

D. OSATE, MASIW and Ocarina

One of the most popular tools for editing AADL is OSATE

(Open-Source AADL Tool Environment), which has been de-

veloped by the CMU-SEI [22]. This tool supports the latest

version of the language and is mostly stable but it is still in a

research project state. OSATE includes a textual and graphical

editor based on the Eclipse platform as well as different tools

(e.g., for latency or safety analysis).

A competitor for OSATE is the MASIW tool [7], which

is being developed by ISP RAS, and it is promised to be a

toolbox that comprises collecting system requirements, model

creation and editing, validation and report generation.

Ocarina tool is a command-line code generator from given

AADL models, it is able to create system software structure

targeting various platforms with standardized APIs. Also, it

includes a set of sample AADL models that can be used for

education and as sources for users’ extensions.

III. RELATED WORK

Analyzing existing open-source AADL models, we found a

model for the ArduPilot board inside the library of reusable

AADLv2 components [20]. A visualization of the model is

presented in Fig. 2. We can remark that the model uses a

lesser processor ATmega 328 (unlike 2560 on the actual APM

board). Devices such as a barometer, accelerometer and others

are not modeled. Instead of data buses, the authors use the

concept of the device. It seems that some earlier version of

the ArduPilot board was modeled here; that is, this model does

not correspond to actual equipment. However, this library is

helpful for training in AADL modeling, and we have taken the

models from it as a basis for creating more adequate models

discussed in this article.

IV. ANALYSIS OF THE ARDUPILOT INTERNALS

The Arducopter project code for the interested board is

located in the 3.2.1 branch [23] of the ArduPilot project. It

is represented as a set of C++ classes that are compiled using

the gcc toolchain for AVR. It should be noted that compilation

with modern compilers requires a source code patch like this:

−−− a / l i b r a r i e s / AP Progmem / AP Progmem AVR . h

+++ b / l i b r a r i e s / AP Progmem / AP Progmem AVR . h

@@ −17 ,11 +17 ,11 @@ t y p e d e f s t r u c t {

undef PSTR

/ * need t o d e f i n e p r o g c h a r i n avr −gcc 4 . 7 * /

−# i f AVR && GNUC == 4 && GNUC MINOR > 6

+# i f AVR && GNUC == 5 && GNUC MINOR > 0

t y p e d e f c h a r p r o g c h a r ;

e n d i f

/ * Need c o n s t t y p e f o r progmem − new f o r avr −gcc 4 . 6 * /

−# i f AVR && GNUC == 4 && GNUC MINOR > 5

+# i f AVR && GNUC == 5 && GNUC MINOR > 0

d e f i n e PSTR (s) (e x t e n s i o n ({ s t a t i c c o n s t p r o g c h a r c [] PROGMEM = (s) ; \
(c o n s t p r o g c h a r t *)& c [0] ; }))

e l s e

To support various hardware, this project uses an approach

that separates hardware-dependent entities (HAL) from all of

the underlying code. In Fig. 3, we present a simplified class

diagram of the principal items of the Arducopter project in the

form of a UML class diagram [24]. It should be noted that

such diagrams are also architectural but united exclusively to

object-oriented software.

Analyzing this diagram, we note that the Bridge design

pattern [3] was used, the main entities were identified in

the form of abstract classes (UARTDriver, I2CDriver, SPI-
DeviceManager, ...), and then the implementation for the

AVR processor and the APM2 board was made based on

the corresponding classes (AVRUARTDriver, AVRI2CDriver,

APM2SPIDeviceManager,...). A specific implementation is

carried out by using conditional preprocessor directives, de-

pending on the current configuration. The build is done

using makefiles, where the required configuration variables are

defined. All code for performing specific duties or operating

with devices is segmented within AP * libraries; linking the

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 269 --

Fig. 3. Some notable classes and their relations in the implementation of Arducopter

necessary libraries is carried out during the build by analyzing

the include sections of C++ files.

Later, after the development of other boards for processors

supporting the run of real-time or Linux operating systems, the

differences in the code and libraries became so significant that

the project for AVR was issued as a separate branch, which

is no longer supported. Nonetheless, this solution remains

one of the most cost-efficient and energy-efficient entry-level

reprogrammable quadcopters.

To build and upload the finished firmware in the form of a

.hex file (about 240kb in size), the corresponding goals were

written in the makefile. At the same time, an interesting feature

of the project is that the developers have implemented tests for

most of the libraries, which can be built and run directly from

the corresponding directory beside the library, while only the

necessary test code will be loaded into the APM board without

starting the entire work cycle. It allows us to learn and debug

the code to work with specific devices, such as motors.

V. CO-MODELING THE APM HARDWARE AND SOFTWARE

In this section, we discuss methods to model the hardware

and software architectures. The results were obtained by ana-

lyzing the current open-source source code in a development

environment and studying corresponding datasheets.

A. Modeling the APM hardware

Using the expressive capabilities of AADL, we implement

the description of the main components of the system accord-

ing to Section II-A. We model two processors with all their

pins used: ATM2560 as the main processor and ATM32U2 as

PWM and UART/USB converter. We describe the SPI0 and

SPI3 buses (exactly as AADL logic buses), which are used to

transfer data. By analyzing the source code of the libraries, we

describe the devices on the board. Next, we create a system

object which:

• composes all previously described devices;

• defines connections between processors, data buses and

devices.

An example of such a description is given below (in Fig. 4,

we then depict its graphical representation):

system implementation Ardupilot.impl
subcomponents
ATM2560: processor Processors::ATMEGA::

ATMEGA2560.impl;
ATM32U2: processor Processors::ATMEGA::

ATMEGA32U2.impl;
MagnetometerMC5843: device

MagnetometerMC5843;
BarometerMS5611: device BarometerMS5611;
AccelerometerMPU6000: device

AccelerometerMPU6000;
...
connections
--magnetometer
M1: port ATM2560.PD1 ->

MagnetometerMC5843.SDA;
M2: port ATM2560.PD0 ->

MagnetometerMC5843.SCL;
--barometer
B1: port BarometerMS5611.MOSI -> SPI0.

MISO;

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 270 --

Fig. 4. A simplified APM hardware model

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 271 --

B2: port SPI0.MOSI -> BarometerMS5611.
MISO;

B3: port BarometerMS5611.SCLK -> SPI0.
SCLK;

B4: port ATM2560.PG1 -> BarometerMS5611.
SS;

...
end Ardupilot.impl;

B. Scheduling in Arducopter

Due to processor limitations, task scheduling in ArduPi-

lot/ArduCopter is specific. The developers apparently had to

make a lot of efforts to make it work. Using the analysis of

the source code, we can show its logic in Fig. 6.

Such scheduling refers to non-preemptive periodic tasks.

Each task is characterized by its period and the maximum

estimated operating time (worst execution time). This time can

usually be estimated by measuring the exchange time with the

corresponding devices. When choosing a task, the scheduler

should take into account its interval and select those tasks that

can still be completed by their maximum duration in a given

time window. The remaining time is also taken into account.

By looking at the actual source code (see

https://github.com/ArduPilot/ardupilot/blob/ArduCopter-3.

2.1/ArduCopter/ArduCopter.pde#L777), we revealed that

APM flies with 32 possible running task abstractions. In

Table I, we present their parameters passed when creating

the AP Scheduler::Task scheduler tasks[] object. We also

profoundly analyzed the source code of these tasks and

provided the table with descriptions of their work based on

developers’ comments.

The question of the correctness of this scheduling remains

interesting. Since the algorithm is essentially a finite automa-

ton, the variables are only integer, and there is no need to

simulate switching between tasks, so it is possible to a) simu-

late this scheduling process based on Kripke transition systems

and b) check its correctness using software model checking

methods [25]. Correctness means the absence of situations of

overrunning a task and slipping a whole run of a task (depicted

in Fig. 6). In our repository [26], we include a Promela

model for such a scheduler. We implemented the algorithm

from the original C-code (presented in Fig. 6) in such a

modeling language with formalized semantics [27]. Then we

set requirements for control variables in LTL formulas and

start to play with model parameters. For example, we can

change maximum times to some unexpected values and check

statically the schedulability in these cases. Such modeling and

verification are the subjects of a further article.

C. Towards modeling ArduCopter software

To model a software architecture for reliable systems using

the AADL approach, it is necessary to describe the processes

and their interactions.

In AADL, a process is considered to consist of threads, so

we need to define the required number of processes and the

same number of threads within them. Using the predefined

periodicity properties, we can specify the timing of the work

of threads according to the data previously obtained in Table I.

An example of such a description for the crash check process

is given below (see our GitHub repository for the full system

description [26]):

thread thr_crash_check
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time => 0 ms .. 20 ms;
Period => 100 Ms;
end thr_crash_check;
thread implementation thr_crash_check.i
end thr_crash_check.i;

process process_crash_check
end process_crash_check;

process implementation
process_crash_check.i

subcomponents
thr: thread thr_crash_check.i;

end process_crash_check.i;

Such data can be used to statically check the correctness of

their schedulability for a given set of processes in the system

according to one of the scheduling algorithms [28]).
As for the relationship of processes, not everything is so

obvious here. Let us consider an example of describing a sim-

ple model of quadcopter processes from the POK repository

[29] (Fig. 5).

Fig. 5. An example of ArduPilot software model derived from AADL code
[29]

In this example, connections are defined as the transmission

of values of logical signals about speed, angle, coordinates.

For reliable real-world systems, as a rule, such connections

are formalized by using a message-oriented API standardized

for the desired class of systems (for example, ARINC 653 [30]

for avionics).
In our case, for a DIY device, the code is written sub-

sequently. It uses a bunch of static (global) variables to

transfer data between various components of the system. This

approach is challenging to analyze and leads to errors, because

a variable can potentially be changed to an incorrect value

in many places. Building all dependencies by variables for

about 30 processes in the system by hand is laborious. So,

currently, we are implementing software for automatic source-

code analysis to scan connections between such tasks through

shared variables.

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 272 --

TABLE I. TASKS TO RUN IN APM

Task id Interval
ticks

Max
time
(ms)

Description

1 rc loop 1 100 Reads user input from transmitter/receiver

2 throttle loop 2 450 Throttle loop: 1) gets altitude and climb rate from inertial lib; 2) checks if we

have landed; 3) checks auto armed status

3 update GPS 2 900 GPS data obtaining, logging and glitch protection run after every GPS message,

check for loss of GPS

4 update batt compass 10 720 Reads battery and compass, records throttle output

5 read aux switches 10 50 Checks aux switch positions and invokes configured actions

6 arm motors check 10 10 Checks for pilot input to arm or disarm the copter

7 auto trim 10 140 Slightly adjusts the ahrs.roll˙trim and ahrs.pitch˙trim towards the current stick

positions. Meant to be called continuously while the pilot attempts to keep the

copter level

8 update altitude 10 1000 Reads barometer and sonar altitude

9 run nav updates 4 800 Top level call for the autopilot. Ensures calculations such as ”distance to

waypoint” are calculated before autopilot makes decisions. 1) fetches position

from inertial navigation; 2) calculates distance and bearing for reporting and

autopilot decisions; 3) runs autopilot to make high level decisions about control

modes

10 update thr cruise 1 50 Updates throttle cruise if necessary: 1) gets throttle output; 2) calculates average

throttle if we are in a level hover 3) updates position controller

11 three hz loop 33 90 3.3hz loop: 1) checks if we have lost contact with the ground station; 2) checks

if we have breached a fence; 3) updates events

12 compass accumulate 2 420 If the compass is enabled then tries to accumulate a reading

13 barometer accumulate 2 250 Tries to accumulate a barometer reading

14 update notify 2 100 Updates the status of notify (LEDs)

15 one hz loop 100 420 Runs at 1Hz: 1) logs battery info to the dataflash; 2) performs pre-arm checks

and display failures every 30 seconds; 3) auto disarm checks; 4) makes it

possible to change AHRS orientation at runtime during initial config; 5) checks

the user has not updated the frame orientation; 6) updates assigned functions

and enable auxiliar servos

16 ekf dcm check 10 20 Detects if EKF (the position and attitude estimation system) variances or DCM

yaw errors that are out of tolerance and triggers failsafe

17 crash check 10 20 Disarms motors if a crash has been detected. Crashes are detected by the vehicle

being more than 20 degrees beyond its angle limits continuously for more than

1 second

18 gcs check input 2 550 Looks for incoming commands on the GCS links

19 gcs send heartbeat 100 150 GCS send message(MSG HEARTBEAT)

20 gcs send deferred 2 720 GCS send message(MSG RETRY DEFERRED)

21 gcs data stream send 2 950 Sends data streams in the given rate range on both links

22 update mount 2 450 Updates camera mount position

23 ten hz logging loop 10 300 Logging

24 fifty hz logging loop 2 220 Logging

25 perf update 1000 200 Logging performance

26 read receiver rssi 10 50 Reads the receiver RSSI as an 8 bit number for MAVLink

RC CHANNELS SCALED message

27 telemetry send 20 100 Sends FrSky telemetry if enabled

28 userhook fast loop 1 100 Runs 100Hz user hook if enabled

29 userhook 50 hz 2 100 Runs 50Hz user hook if enabled

30 userhook medium loop 10 100 Runs 10Hz user hook if enabled

31 userhook slow loop 30 100 Runs 3Hz user hook if enabled

32 userhook super slow loop 100 100 Runs 1Hz user hook if enabled

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 273 --

Fig. 6. Main scheduler loop for APM (built from its open-source code)

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 274 --

Fig. 7. Preliminary software model for ArduCopter tasks generated by our C/C++-code analyzer [26]

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 275 --

We programmable analyze forests of control-flow graphs

[31], [32] with functions of interests, obtained from ASTs

of ArduPilot .cpp/.pde files and monitor read and write (L-

value/R-value) access to variables. Then we generate AADL

code in the form of the example [29]. Current results are

presented in Fig. 7. The analyzer only processes assignments

to variables or field structures. One can see from the diagram

that global information on Euler angles is distributed between

six tasks. In this way, we can track such data paths without

looking at complicated code in various source files.

VI. DISTRIBUTED CONTROLLERS WITH RESPECT TO

SAFETY

Considering the scheduling issues (see Fig. 6 and Table

I), we see how difficult it is to select heuristics so that

the processes in the system on such weak processors work

correctly. Accordingly, if we need some complex calculations

to assess our state, for example, various kinds of physical

models to check the safety of operation [33], it is evident that

it is easier to transfer data for processing to another device and

not implement another process inside. In this case, we come

to the concept of distributed controllers.

Distributed controllers act in real-world cyber-physical sys-

tems to process dedicated information and interchange it with

other system parts. The examples of such systems can be

cars that have more than one electronic control unit related

to different functions (engine, transmission, safety systems)

and airplanes where different controllers are located in several

parts of chassis, and they are joined together to process infor-

mation faster and to make reservations according to reliability

requirements.

In this section, we discuss passing state to another controller

in a unified way. Since APM is an Arduino-compatible device,

as we can see in Fig. 4, there are several SPI buses for

peripherals and user actions. Analyzing the code, we found

that it is possible to use the SPI bus [34], [35], which is

potentially utilized to connect an external optflow device.

Examining the source code of the interaction, we came to

a way to connect a different controller via SPI, as shown in

Fig. 8.

The code for operating with an external controller consists

of initializing and registering the exchange process (in this

case, writing some code in sensors.pde). The exchange in-

cludes taking time on the SPI bus, turning on the transfer

by giving a signal to the SS pin, sending and simultaneously

receiving data using the existing library to work with SPI.

Our tests of the implemented exchange with an STM32f106
controller show that such an exchange is possible. However,

it requires voltage matching using a 5V <> 3.3V logic

converter, as well as an additional software check for data

integrity.

Further, the successful operation of the SPI bus leads us to

the idea that it is possible to use SPI devices to work with

field buses, allowing for increased distances and an increased

number of nodes on the network. We assume that the CAN bus

[36] can also be used here. The architectural diagram obtained

Fig. 8. APM connection to a different controller using SPI

by writing an AADL code for such a case is shown in Fig.

9. So far, we have connected the MCP2515 CAN transceiver

[37] to the APM via SPI and ported the open-source code [38]

for such a device, initially developed by Seeed company. Our

results are presented in a dedicated repository on GitHub [39].

VII. CONCLUSION

As a result of a large number of modeling in this work,

we can conclude that this kind of design analysis dramat-

ically helps in understanding the essence of the operation

of a complex computer-appliance cyber-physical system and

teaches how to design such systems correctly. We applied

the co-modeling by obtaining architectural models of a real

APM board. These models can be further used to assess the

properties of the safe behavior of such a system. We also

created a solution for the distributed connection of controllers

to offload the scheduler. All current results are only based on

free software and are freely available.

We can note that to represent a real-world CPS, we have

used both UML, automata, AADL models, create code in

special modeling languages. So, the usage of only one lan-

guage is not possible for expressive modeling. Also, currently,

there are no such tools exist to make it possible to easily

move between various parts of the CPS model (or their

interconnected relations). One solution can be the usage of

AADL annexes [40] to create a composite model and the

various visualizers as well as validators for it, but it is not

yet done by the communities.

As further work, we are thinking of analyzing the full

source code and building connections between processes in

the system through variables, assessing their number and fault

tolerance of the solution. We will also continue to work with

the CAN bus.

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 276 --

Fig. 9. Architectural diagram of a CAN bus usage

REFERENCES

[1] K. R. Krishna, Agricultural drones: a peaceful pursuit. CRC Press,
2018.

[2] C.-H. Lai and C.-M. Chu, “Development and evaluation of STEM based
instructional design: An example of quadcopter course,” in International
Symposium on Emerging Technologies for Education. Springer, 2016,
pp. 176–191.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, “El-
ements of reusable object-oriented software,” Design Patterns. mas-
sachusetts: Addison-Wesley Publishing Company, 1995.

[4] S. M. Staroletov, M. S. Amosov, and K. M. Shulga, “Designing robust
quadcopter software based on a real-time partitioned operating system
and formal verification techniques,” Proceedings of the Institute for
System Programming of the RAS, vol. 31, no. 4, pp. 39–60, 2019.

[5] T. Myers, G. Dromey, and P. Fritzson, “Comodeling: From requirements
to an integrated software/hardware model,” Computer, vol. 44, no. 4, pp.
62–70, 2010.

[6] S. Shiraishi, “An AADL-based approach to variability modeling of
automotive control systems,” in International Conference on Model
Driven Engineering Languages and Systems. Springer, 2010, pp. 346–
360.

[7] A. Khoroshilov, D. Albitskiy, I. Koverninskiy, M. Olshanskiy, A. Pe-
trenko, and A. Ugnenko, “AADL-based toolset for IMA system design
and integration,” SAE International Journal of Aerospace, vol. 5, pp.
294–299, 2012.

[8] P. H. Feiler, B. A. Lewis, and S. Vestal, “The SAE architecture analysis
& design language (AADL) a standard for engineering performance
critical systems,” in 2006 IEEE Conference on Computer Aided Control
System Design, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intelligent Control.
IEEE, 2006, pp. 1206–1211.

[9] S. Staroletov, N. Shilov, I. Konyukhov, V. Zyubin, T. Liakh, A. Rozov,
I. Shilov, T. Baar, and H. Schulte, “Model-driven methods to design
of reliable multiagent cyber-physical systems,” in CEUR Workshop
Proceedings, vol. 2478, 2019, pp. 74–91.

[10] OSDAY (in Russian), 2019. [Online]. Available: https://osday.ru
[11] S. Staroletov, “Work-in-progress abstract: Revealing and analyzing ar-

chitectural models in open-source ardupilot,” in 2021 IEEE 27th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2021, pp. 207–209.

[12] ArduPilot Copter, 2020. [Online]. Available: https://ardupilot.org/copter/
[13] History of ArduPilot, 2019. [Online]. Available: https://ardupilot.org/

planner2/docs/common-history-of-ardupilot.html
[14] Atmel ATmega640 / V-1280 / V-1281 / V-2560 / V-2561 Datasheet, 2014.

[Online]. Available: https://microchip.com/downloads/en/devicedoc/
atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561
datasheet.pdf

[15] MS5611-01BA03 Barometric Pressure Sensor, with stainless
steel cap. [Online]. Available: https://www.te.com/commerce/
DocumentDelivery/DDEController?Action=showdoc&DocId=Data+
Sheet%7FMS5611-01BA03%7FB3%7Fpdf%7FEnglish%7FENG DS
MS5611-01BA03 B3.pdf

[16] Honeywell 3-Axis Digital Compass IC HMC5843. [Online]. Available:
https://www.sparkfun.com/datasheets/Sensors/Magneto/HMC5843.pdf

[17] J. Delange, “AADL in practice: Become an expert in software architec-
ture modeling and analysis,” Reblochon Development Company, 2017.

[18] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina: An environ-
ment for AADL models analysis and automatic code generation for high
integrity applications,” in International Conference on Reliable Software
Technologies. Springer, 2009, pp. 237–250.

[19] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the prototype to
the final embedded system using the Ocarina AADL tool suite,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 4,
pp. 1–25, 2008.

[20] J. Hugues, “AADLib, a library of reusable AADL models,” 2013.

[21] OpenAADL/AADLib boards-ardupilot, 2018. [Online]. Avail-
able: https://github.com/OpenAADL/AADLib/blob/master/src/aadl/
boards/boards-ardupilot.aadl

[22] P. Feiler, “The open source AADL tool environment (OSATE),” Carnegie
Mellon University Software Engineering Institute Pittsburgh, Tech. Rep.,
2019.

[23] ArduPilot Project, 2015. [Online]. Available: https://github.com/
ArduPilot/ardupilot/tree/ArduCopter-3.2.1

[24] R. Miles and K. Hamilton, Learning UML 2.0: a pragmatic introduction
to UML. ”O’Reilly Media, Inc.”, 2006.

[25] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[26] Co-modeling-Ardupilot, 2021. [Online]. Available: https://github.com/
SergeyStaroletov/Co-modeling-Ardupilot

[27] V. Natarajan and G. J. Holzmann, “Outline for an operational semantics
of Promela.” The Spin Verification System, vol. 32, pp. 133–152, 1996.

[28] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[29] POK Ardupilot example. [Online]. Available: https://github.com/
pok-kernel/pok/tree/main/examples/case-study-ardupilot

[30] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A
portable ARINC 653 standard interface,” in 2008 IEEE/AIAA 27th
Digital Avionics Systems Conference. IEEE, 2008, pp. 1–E.

[31] L. Serrano, “Automatic inference of system software transformation
rules from examples,” Ph.D. dissertation, Sorbonne Université, 2020.

[32] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, and G. Muller, “A
foundation for flow-based program matching: using temporal logic and
model checking,” in Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2009, pp.
114–126.

[33] S. Staroletov, “Automatic proving of stability of the cyber-physical
systems in the sense of Lyapunov with KeYmaera,” in 2021 28th
Conference of Open Innovations Association (FRUCT). IEEE, 2021,
pp. 431–438.

[34] S. Srot, “SPI master core specification,” OpenCores, 2004.

[35] F. Leens, “An introduction to I2C and SPI protocols,” IEEE Instrumen-
tation & Measurement Magazine, vol. 12, no. 1, pp. 8–13, 2009.

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 277 --

[36] R. Bosch, “Bosch CAN Specification Version 2.0,” 1991. [Online].
Available: https://www.nxp.com/docs/en/reference-manual/BCANPSV2.
pdf

[37] Microchip, “Stand-alone CAN controller with SPI interface,” 2005.
[38] Arduino MCP2515 CAN interface library. [Online]. Available:

https://github.com/autowp/arduino-mcp2515

[39] Ardupilot-SPI-CAN, 2021. [Online]. Available: https://github.com/
SergeyStaroletov/Ardupilot-SPI-CAN

[40] J. Delange and P. Feiler, “Architecture fault modeling with the AADL
error-model annex,” in 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2014, pp. 361–368.

__PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

-- 278 --

