
FAUST: Fast Per-Scene Encoding Using Entropy-Based Scene

Detection and Machine Learning

Anatoliy Zabrovskiy∗§, Prateek Agrawal†, Christian Timmerer∗‡, and Radu Prodan∗
∗ University of Klagenfurt, Austria

† Lovely Professional University, Punjab, India
‡ Bitmovin, Klagenfurt, Austria

§ Petrozavodsk State University, Petrozavodsk, Russia

Email: ∗§anatoliy.zabrovskiy@aau.at, †prateek.agrawal@aau.at
∗‡christian.timmerer@aau.at, ∗radu.prodan@aau.at

Abstract—HTTP adaptive video streaming is a widespread and
sought-after technology on the Internet that allows clients to
dynamically switch between different stream qualities presented
in the bitrate ladder to optimize overall received video quality.
Currently, there exist several approaches of different complexity
for building such a ladder. The simplest method is to use a static
bitrate ladder, and the more complex one is to compute a per-title
encoding ladder. The main drawback of these approaches is that
they do not provide bitrate ladders for scenes with different visual
complexity within the video. Moreover, most modern methods
require additional computationally-intensive test encodings of the
entire video to construct the convex hull, used to calculate the
bitrate ladder. This paper proposes a new fast per-scene encoding
approach called FAUST based on 1) quick entropy-based scene
detection and 2) prediction of optimized bitrate ladder for each
scene using an artificial neural network. The results show that
our model reduces the mean absolute error to 0.15, the mean
square error to 0.08, and the bitrate to 13.5% while increasing the
difference in video multimethod assessment fusion to 5.6 points.

I. INTRODUCTION

The number of adaptive video streaming applications and

platforms is constantly increasing. It becomes more demand-

ing to encode, distribute, share, and consume video streams

anywhere, anytime, and on any device. The main goal of

such streaming platforms is to provide the optimized streaming

quality to the client, considering the client’s preferences and

technical constraints [1], [2]. To achieve this goal, streaming

providers and services use various modern technologies and

standards, such as HTTP Adaptive Streaming (HAS) [3],

video codecs [4], and calculating the optimized bitrate lad-

ders for video files [5]. In HAS, a video stream consists

of multiple representations split into short video segments

typically between 2 s to 10 s, adaptively transmitted to a

client device depending on many influencing features, such as

network bandwidth or display resolution [3], [6], [7]. The HAS

technology allows compensating network speed fluctuations

by switching between available representations [8]. In some

implementations, such as MPEG-DASH [6], HAS is indepen-

dent of video codecs and can utilize various video compression

formats. This advantage allows choosing among several video

codecs, such as Advanced Video Coding (AVC) [9], High

Efficiency Video Coding (HEVC) [10], VP9 [11], AOMedia

Video 1 (AV1) [12], and Versatile Video Coding (VVC) [13].

In addition, the methods used to calculate a suitable bitrate

ladder play a vital role in HAS.

The most general and straightforward approach for selecting

bitrate-resolution pairs is using a ’one-size-fits-all’ concept

(or fixed/static/classic bitrate ladder) [5]. Such a static bitrate

ladder has a pre-defined and fixed set of representations

with various bitrate-resolution pairs covering multiple visual

qualities. Table I presents one example of a static bitrate ladder

from Apple’s video encoding documentation [14], widely used

because of its simplicity and ease of deployment. However,

encoding the entire video using a static bitrate-resolution

pair results in different visual qualities of the encoded seg-

ments [15]. This happens because limiting the static bitrate

prevents the video encoder from increasing the value for more

complex video scenes and vice-versa.

Besides using a simple static bitrate ladder, more sophis-

ticated methods use video complexity analysis, test (or trial)

encodings, and machine learning techniques to compute the

optimized bitrate ladder for a video sequence [16]. Netflix

introduced an approach called per-title encoding [5] to improve

the video quality, such as PSNR [17] and VMAF [18], by

choosing the most appropriate bitrates for videos depending

on their complexity. The per-title bitrate ladder outperforms

the static bitrate ladder in the overall objective quality and

reduced storage [5]. Several variants of the per-title encoding,

also known as per-title, per-shot, per-scene, and context-

aware, include proprietary industry [19]–[21] and research

solutions [22], [23]. Unfortunately, these solutions still rely on

multiple test video encodings to calculate the bitrate-resolution

ladder for a video [15], [24]. This typically results in more

intensive use of computing units, usually located in the cloud,

and increases the computation time and cost. Moreover, most

methods calculate the bitrate ladder for the entire video while a

single video can contain many video scenes and even segments

of completely different visual complexity [25], [26]. Thus, it

is advisable to split the video into scenes of similar visual

complexity and analyze them separately. Again, splitting high-

definition video into scenes of different complexity requires
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TABLE I. APPLE STATIC BITRATE LADDER 
(BITRATE-RESOLUTION PAIRS).

No. Bitrate [kbps] Resolution [width × hight]
1 145 416 x 234
2 365 640 x 360
3 730 768 x 432
4 1100 768 x 432
5 2000 960 x 540
6 3000 1280 x 720
7 4500 1280 x 720
8 6000 1920 x 1080
9 7800 1920 x 1080

significant computational resources and requires analyzing

video frames.

To decrease the scenes detection time and optimized bitrate

ladder calculation, we propose a novel and accurate method

called fast per-scene encoding using entropy-based scene
detection and machine learning (FAUST), which consist of

two phases: 1) entropy-based scene detection, and 2) optimized

per-scene bitrate ladders calculation. FAUST is a fast method

that calculates a temporal information metric and its entropy

for video sequences encoded at low bitrate and resolution,

which significantly saves computation time. Our approach

follows previous research [25], which showed a high corre-

lation between the temporal information of original videos

and its low bitrate and resolution encodings. We use FAUST

for per-scene encoding optimization and adaptive streaming

video with multiple media presentation descriptions where

adaptation at the video scene level is possible [27].

The main contributions of FAUST are:

• We proposed a fast entropy-based video scene detection

approach for the x264 video codec that uses temporal
information (TI) [28] of the video encoded at low resolution

and bitrate to split videos into scenes.

• We introduced a neural network for predicting the quality

metric for video segments with different sets of input

features, and minimized the mean absolute error to 0.15

and the mean square error (MSE) to 0.08.

• We introduced a fast per-scene encoding that does not

require multiple test encodings of the entire video, which

allowed us to reduce the bitrate to 13.5% on average while

increasing the difference in video multimethod assessment

fusion (VMAF) quality to 5.6 points.

The paper has six sections. Section II highlights the related

work. Section III explains the FAUST methodology and Sec-

tion IV describes its implementation. Section V evaluates the

experimental results, concluded in Section VI with an outlook

for future work.

II. RELATED WORK

Recent research [12], [20], [21], [29]–[34] presented dif-

ferent proprietary solutions dedicated to generating optimized

bitrate ladders for adaptive streaming.

Katsavounidis et al. [35] presented a perceptual video

encoding optimization that splits the video into shots with

similar visual complexity frames. They performed multiple

trial encodings of the video shots using different pre-defined

parameters, such as resolutions and qualities and calculated a

convex hull to generate an optimized bitrate ladder.

Silhavy et al. [22] applied random forest regression (RFR),

multilayer perceptron, and support vector regression (SVR)

to generate predicted per-title bitrate ladder using the VMAF

video quality metric. Similar to our approach, they avoided

test encodings of the videos. The results showed that RFR

has the lowest Root Mean Square Error (RMSE) for selected

bitrates and scores a VMAF prediction with a value of 3.22.

Cock et al. [23] presented a cloud method that enhances the

per-title ladder by identifying the best-fit bitrate for all video

segments (or chunks) depending on their complexity using a

Constant rate factor (CRF) based multi-pass video encoding.

They showed that the per-chunk encoding improved the video

quality and outperformed fixed bitrate ladder encoding. They

obtained the gains decrease for higher resolutions (1080p

encodes) to about 0.3 dB for PSNR metric and 0.45 for VMAF.

Takeuchi et al. [15] to optimize the bitrates proposed an

encoding solution based on SVR, test encodings, and percep-

tual video quality. They generated multiple bitrate-resolution

pairs (encoding recipe), keeping a constant just-noticeable

difference [36] gap. The solution had better storage and bitrate

reduction than the conventional static bitrate ladders. For most

videos, their method achieves smaller storage sizes compared

to the static bitrate ladder. The average BD-Rate [37] is -

34.3%.

Bhat et al. [38] proposed a real-time adaptive resolution

prediction for the HEVC codec and low bitrate scenarios. They

analyzed the first few frames of a video sample and use binary

classification to find suitable resolutions for video encoding.

The results indicated an average bitrate saving from 2.3% to

12.6%, depending on the video resolution.

Covell et al. [39] estimated an optimal constant rate factor

for a specific bitrate of a video segment using an artificial

neural network (ANN). They analyzed the relationship be-

tween the encoding parameters and the video complexity and

achieved an accuracy of 20% bitrate error.

Angeliki et al. [40] proposed a content-agnostic HEVC

codec that uses machine learning to predict the bitrate

ranges for selected resolutions based on original temporal

and spatial video characteristics. The method reduced the

number of test encodings to determine the values for a bitrate

ladder and reached a mean Bjontegaard Delta-Rate RSNR

(BDRSNR) [37] of 0.01 dB compared to the ground truth.

Kumar et al. [24] proposed a per-scene optimization frame-

work for video on demand HAS that determines the maximum

quality or minimum bitrate for various encoded representa-

tions. To detect video scenes, the authors used a threshold-

based algorithm implemented in an intelligent scene cut de-

tection and video splitting tool called PySceneDetect [41].

The framework adjusted the bitrate ladder depending on the
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Fig. 1. Process flow of proposed methodology

complexity of video content and reduced the bitrate of video

streams by up to 10% while preserving the video quality.

Most of the existing methods calculate optimized bitrate

ladders for a given video sequence using multiple test en-

codings [23], [24], [35]. In addition, scene detection on the

original high resolution videos [42] leads to more intensive

use of computational units, and increases the time and cost

of the encoding process [43]. Advanced methods use machine

learning techniques to predict the video quality and avoid test

encodings [22]. However, the disadvantage of such methods

is their low accuracy and speed. In general, these methods

calculate the optimized bitrate ladder for the entire video

sequence rather than for individual video scenes [22].

III. METHODOLOGY

This section presents our methodology comprising six se-

quential phases, shown in Fig. 1.

A. Encoding data generation

This phase selects videos of varying complexity of content,

which should contain sequences of video frames with different

spatial and temporal information [28].

The spatial information (SI) is a measure of the spatial video

complexity, calculated as follows:

SI = max
∀Fn

{σ [Sobel (Fn)]}, (1)

where Fn is a video frame at time n, and σ is the standard de-

viation across all the pixels in the Sobel filter of its luminance

component. The luminance component is a measure of the

intensity (or brightness) of a video signal. The max function

then selects the maximum standard deviation across all the

frames presented in the video sequence.

The temporal information (TI) reflects the amount of motion

in a video, defined based on a motion difference function

Algorithm 1: Algorithm for detecting video scenes. It

calculates the timestamps of starting points of video

scenes.

Input: V ideo duration in sec. (duration)
Input: Threshold value (threshold)
Output: Array of timestamps for starting points

of video scenes
// Indexing of arrays duration[] and

timestamps[] starts from one
1 avg ti[ ] ← {′val1′,′ val2′,′ val3′, ...′valP ′}
2 avg entropy[ ] ← {′val1′,′ val2′,′ val3′, ...′valN ′}
3 timestamps[ ] ← null
4

5 Function
calc_timestamps(avg ti, avg entropy):

6 output[ ] ← null
7 for i = 0 to duration do
8 if avg ti[i] ≥ threshold then
9 if avg entropy[i] ≥ threshold then

10 output ← i
11 end
12 return output
13 End Function
14 timestamps ←

calc timestamps(avg ti, avg entropy)

Mn between the luminance components for identically spaced

pixels in two sequential frames Fn and Fn−1:

Mn(i, j) = Fn(i, j)− Fn−1(i, j), (2)

where Fn(i, j) is the frame pixel located at row i and column

j at time n in the sequence. The TI metric is the maximum

standard deviation of Mn(i, j) calculated for all the pixels:

TI = max{σ [Mn(i, j)]}. (3)

Since adaptive and dynamic switching between represen-

tations usually starts at segment boundaries [44], the video

segment length becomes an important feature in adaptive video

streaming. Thus, the next step is therefore to create segments

from the selected video sequences between 2 s to 4 s in length,

as commonly used in industry and research [44], [45]. The 4 s
segments show a good trade-off between encoding efficiency

and video streaming performance [45], and 2 s segments

are typically used for low-latency streaming [44]. We then

extract the important features collected from the encoded video

segments for the dataset, such as segment name, input segment

size, resolution, etc.

B. Fast video scene detection

This phase detects video scenes using an entropy-based

approach that analyzes the average TI and TI entropy every

second and defines the boundaries between scenes. In general,

entropy is a term from information theory that shows the

uncertainty or disorder of the variable associated with an
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event [46]. It is a measure of the average information required

to describe the random variable. In other words, the entropy

value reflects the predictability of a variable, with high entropy

values for less predictable events. Let us assume a random

variable X representing the TI of a video sequence and xi

one possible values of X . We model the entropy of the TI

using the following equation:

H(X) = −
n∑

i=1

P (xi) · logP (xi), (4)

where P(xi) is the appearance probability of event xi. Based

on information theory and Eq. 4, an event with low probability

P (xi) is more informative and has high entropy. In our case

the mean TI and entropy of TI values are normalized between

0 and 1. A new video scene is detected if both average TI

and entropy TI reach a fixed threshold. By changing value

of threshold the sensitivity of the scene detection can be

modified. A lower threshold usually detects more scenes. In

our work, we used a threshold value of 0.5, which means that

if the mean TI and entropy TI for two consecutive seconds are

greater than or equal to 50%, then a new scene is detected.

We proposed an Algorithm 1 for the video scene detection.

The result of this algorithm is an array of timestamps for

the starting points of the video scenes. We merged the short

scene with the next longer video scene in a video because the

duration of the video scene should be kept at least the length

of the video segment. Finally, the output of this phase includes

information about the location, number, and duration of scenes

in the video sequence.

C. ANN based quality prediction

This phase prepares training and testing data and predicts a

full-reference metric called Luminance Peak Signal-to-Noise

Ratio (YPSNR) of video segments using ANN. We predict the

YPSNR video quality, as it is commonly used for an objective

assessment of video quality. [4]. Before training the ANN,

we pre-process the dataset generated in the first phase and

reduce the number of records by calculating the minimum

YPSNR for all combinations of segment name, width, height,

and encoding preset. Then, we split the dataset in training and

testing subsets.

We designed the ANN [47] by choosing a sequential model

where only the first input layer receives the actual variables,

and the hidden layers automatically detect the input shapes.

Next, we selected the appropriate activation functions [48] for

training it. We used a linear activation function for the output

layer as it does not limit the output of ANN to any range, and

a rectified linear unit (ReLU) non-linear activation function

for the hidden layers. The ReLU function is half-rectified and

converts the value to zero for all negative inputs. We used

the MAE that represents the absolute model prediction error

in units of the variable, and the MSE the squared average

difference between the actual and the predicted values to

Video
quality

Video
bitrate

Resolution X (high)

Resolution Y  (mid)

Resolution Z (low)

Convex hull
Bitrate-quality curve

Fig. 2. Example of convex hull. The figure adapted from [5]

evaluate the ANN output results,

MAE =
1

n

n∑

j=1

|yj − ŷj | (5)

MSE =
1

n

n∑

j=1

(yj − ŷj)
2

(6)

where, n is a number of predicted qualities, yj is the predicted

video quality and ŷj is the actual video quality. We tune

and update the training features of the ANN using MAE and

MSE, and repeat this process until we obtain consistency and

accuracy. Finally, we use the developed ANN model to predict

the YPSNR for all input instances of the dataset.

D. Convex hull calculation and interpolation

This phase calculates and interpolates the convex hulls for

the middle segments of all detected scenes. Fig. 2 presents

one schematic example of a convex hull for a single video

sequence. The convex hull is a red boundary line representing

the relationship between encoding bitrate and video quality

for different video resolutions. Typically, the convex hull line

points achieve Pareto efficiency and ideally have to be used

for an optimized bitrate ladder construction. To calculate the

convex hull, different approaches can be utilized. The most

popular method is making several test encodings of a video

using different encoding features [5]. In turn, our system

does not require any trial encodings because ANN provides

all information for convex hull construction. In our FAUST

approach, we assume that the complexity of the video content

of each scene is reflected by one middle segment. Thus, we

predict and calculate the convex hull for all video scenes using

middle segments and the ANN. If the video scene has an odd

number of segments, say 7, the middle segment will be number

4. In turn, if the video scene has an even number of segments,

say 6, then we consider segment 4 as the middle segment. The

FAUST approach using the ANN can automatically predict

the YPSNR quality for selected bitrate-resolution pairs, taking

into account the visual content complexity and x264 codec en-

coding features. It then applies cubic spline interpolation [49]
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Algorithm 2: Algorithm for selecting video bitrate

from the classic bitrate ladder for comparison with the

optimized bitrate ladder.

Input: Classic ladder bitrates (c bitrates)
Input: Optimized ladder bitrates (o bitrates)
Output: Selected bitrates array (selected bitrates)
// Indexing of arrays c_bitrates[]

and o_bitrates[] starts from zero
1 c bitrates[ ] ← {′val1′,′ val2′,′ val3′, ...′valP ′}
2 o bitrates[ ] ← {′val1′,′ val2′,′ val3′, ...′valN ′}
3 number classic ← lenght(c bitrates[ ])
4 number optimized ← lenght(o bitrates[ ])
5 selected bitrates[ ] ← null
6

7 Function select(c bitrates, o bitrates):
8 output[ ] ← null
9 for i = 0 to number optimized do

10 for j = 0 to number classic do
11 if c bitrates[j] ≥ o bitrates[i] then
12 output ← c bitrates[j]
13 end
14 end
15 return output
16 End Function
17 selected bitrates ← select(c bitrates, o bitrates)

to the convex hull points predicted by the ANN to estimate

unknown values that fall between the known values.

E. Per-scene encoding optimization

In this phase, we calculate the individual bitrate ladders

for all video scenes using predicted and interpolated convex

hulls. For each video scene, we select all points on the

interpolated convex hull that belong to the specific YPSNR

quality range. We use the selected video quality spacing e.g.,
1, 1.5, or 2 quality points to calculate the number of bitrate-

resolution pairs and values of quality targets for each scene.

For the selected quality points (or targets), our program finds

the appropriate bitrates and resolutions using an interpolated

convex hull. The FAUST approach output includes optimized

bitrate ladders for all scenes of an input video file.

F. Performance evaluation

This phase compares our per-scene encoding approach with

the classic bitrate ladder using three key metrics: bitrate

reduction, storage reduction, and quality difference [50]. We

calculate the bitrate reduction Br metric by comparing the

bitrate values used at different resolutions along the bitrate

ladder.

We proposed an Algorithm 2 to select the bitrate values from

the classic bitrate ladder. The algorithm selects the equal or the

next highest bitrate value from the classic bitrate ladder for all

bitrates from the optimized bitrate ladders. It then compares

the sum of all bitrates of optimized per-scene bitrate ladders

with the sum of selected bitrates from the classic bitrate ladder

and calculates the deviation percentage (bitrate reduction) as

shown in Eq. 7.

Br =

∑
bclassic −

∑
boptimized∑

bclassic
· 100 (7)

Similar to the equation Eq. 7, we calculate the storage
reduction metric as a deviation percentage for the sums of

the encoded file sizes. To compare video quality using both

approaches, we calculate the quality difference between the av-

erages of video quality metrics (i.e., YPSNR [4], VMAF [18],

and XPSNR [51]) measured for the encoded video scenes

using classical and optimized bitrate ladders.

IV. IMPLEMENTATION

This Section describes the implementation of our proposed

FAUST methodology. We run the experiments using Intel

i7-3720QM processor, FFmpeg software, and Python 3.6 to

calculate SI, TI, and YPSNR quality metric.

A. Encoding data generation

We first selected ten videos (see Table II) from the public

dataset [17]. Table II shows the main characteristics of original

video sequences. The Fig. 3 presents the SI and TI metrics of

the selected video sequences. The average TI and SI metric

values confirm the varying complexity of the video content.

Thus, we can argue that we used video sequences that repre-

sent a wide range of possible use cases and visual differences.

Using the FFmpeg [52] program v4.1.3, we divided all videos

into 240 video segments of 2 s and 4 s duration length. All

video segments are in raw Y4M video format.

After creating the raw Y4M segments, we encoded each

segment using the FFmpeg x264 codec implementation with

the veryslow encoding preset to maintain the highest quality

compared to the original video. The x264 video codec contains

the set of encoding presets as follows: ultrafast, superfast,
veryfast, faster, fast, medium (default preset), slow, slower,
veryslow, placebo; such that, for the same video sequence and

encoding bitrate with a slower x264 preset, typically there will

be a slower encoding speed and better video quality. According

to the FFmpeg technical manual [53], we did not use the

placebo preset as it does not significantly improve quality over

veryslow preset. Further in this paper, we consider all of these

prepared video segments as source files and use them for the

encoding.

Our work is primarily about HTTP Adaptive Streaming and

thus, we utilized the bitrate ladder as presented in Table III.

The selected bitrate ladder covers a wide range of encoding

bitrates and resolutions. This selection is based on publicly

available datasets proposed in the literature [54], industry use

cases, and video encoding recommendations [55], [56]. We

created the raw ANN training/testing dataset with 451440

encoding tasks (240 segments * 19 bitrates * 11 resolutions
* 9 encoding presets) for the segments of 2 s and 4 s length.

Creating a dataset with all possible combinations of encoding

features typically contributes to better training and accuracy
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TABLE II. ORIGINAL VIDEO FILE 
CHARACTERISTICS

Video Video Frames Duration
description category per second (in sec)

BBB Animation 30 60
Beauty Moving head 30 20

DrivingPOV Moving cars 60 20
HoneyBee Nature (flying bee) 30 20

Jockey Sports (running jockey) 30 20
Sintel Animation 24 60
TOS Animation and real 24 60

WindAndNature Rotating wind vanes 60 20
ReadySetGo Sports (horse racing) 30 20
YachtRide Moving yacht 30 20

TABLE III. BITRATE LADDER (BITRATE-RESOLUTION PAIRS). 
BITRATE VALUES ARE IN KBPS

# Bitrate Resolution # Bitrate Resolution
1 100 256x144 11 4300 1920x1080

2 200 320x180 12 5800 1920x1080

3 240 384x216 13 6500 2560x1440

4 375 384x216 14 7000 2560x1440

5 550 512x288 15 7500 2560x1440

6 750 640x360 16 8000 3840x2160

7 1000 768x432 17 12000 3840x2160

8 1500 1024x576 18 17000 3840x2160

9 2300 1280x720 19 20000 3840x2160

10 3000 1280x720

of a neural network model therefore we used all 11 unique

resolution values from the same bitrate ladder table for each

encoding bitrate as presented in Table III. In addition, we

calculated SI and TI metrics for all segments encoded at

low resolution (144p) and low bitrate (100 kbps) using the

ultrafast encoding preset. Calculating TI and SI metrics for

the original high-resolution video sequences is a very time-

consuming operation. Therefore, we used a fast approach

introduced in [25] which computes SI and TI metrics more

than ten times faster for video segments with low resolution.

The Pearson’s [57] correlation coefficient between encoded

segments (144p) and original video segments (2160p) for

TI and SI metrics indicates a positively strong and highly

correlated relationship, respectively [25]. Finally, each entry

in our raw encoding dataset contains the following fields:

segment name, input segment size, segment size 144p, en-
coding bitrate, si 144p, ti 144p, segment duration, width,
height, encoding preset, fps, and ypsnr quality.

B. Fast video scene detection

We implemented a proposed scene detection algorithm (see

Algorithm 1) to find and split video sequences into visually

independent scenes. Our approach analyzes the average value

and entropy of the TI metric for each second of the video

sequence and detects a new scene if both average TI and

entropy TI reach a certain threshold. The scene detection

Fig. 3. Average spatial information (SI) and temporal information (TI) for
video sequences.

TABLE IV. SELECTED INPUT SETS FOR THE 
ANN MODEL

ANN model No. of input set
input features 1 2 3 4 5 6 7

height x x x x x x x

width x x x x x x x

number of pixels x - x x x x x

encoding preset x x x x x x x

encoding bitrate x x x x x x x

si 144p x x - x - x -

ti 144p x x x - - x -

input segment size x x x x x - -

segment size 144p x x x x x - -

segment duration x x x x x x x

fps x x x x x x x

algorithm uses the TI values for 144p encoded videos which

are presented in our raw encoding dataset.

C. ANN based quality prediction

After identifying multiple video segment features and de-

tecting all video scenes for three animation video sequences

(BBB, Sintel, and TOS), we selected and grouped the most

significant features from the raw encoding dataset to the ANN

input sets. Note, we only used animated video sequences be-

cause there are multiple video scenes in them. We also derived

a new feature for the ANN model called number of pixels
by multiplying video segment width and height. We used an

input set with the selected features for training and testing of

neural network individually. In total, we selected seven sets of

input data, as shown in the Table IV. For example, the first set

contains all possible input features from height to fps, marked

as x.

We pre-processed our raw encoding dataset. To do this,

we first sorted the dataset in ascending order by two fea-

tures ypsnr quality and encoding bitrate and then reduced

the number of entries by taking only the first YPSNR quality
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TABLE V. CHARACTERISTICS OF ANN 
MODELS

Characteristic Optimized value
No. of neurons in input layer from 7 to 11

No. of hidden layers 7

No. of neurons in hidden layers 300/128/128/128/128/128/300

No. of neurons in output layer 1

Learning rate default value

No. of epochs passed 400

Training / testing / validation data 70%/20%/10%

Hidden layer activation function ReLU

Output layer activation function Linear

Optimizer Adadelta

Loss function MAE

Metric MAE, MSE

Batch size 64

Initializing weights truncated normal

TABLE VI. ANN MODELS INPUT 
FEATURES

Input feature Description
height video height (in pixels) from the Table III

width video width (in pixels) from the Table III

number of pixels video height * video width

encoding preset
ultrafast, superfast, veryfast, faster, fast,

medium, slow, slower, veryslow

encoding bitrate video bitrates (in kbps) from the Table III

si 144p SI metric of 144p video

ti 144p TI metric of 144p video

input segment size original segment size in bytes

segment size 144p 144p segment size in bytes

segment duration 2s and 4s segment length

fps 24, 30 and 60 from the Table II

for all possible combinations of [segment name, width, height,
and encoding preset]. This means that the transformed dataset

contains the minimum YPSNR quality values that can be

achieved with the selected encoding features. Finally, we

rounded up all YPSNR quality values to one decimal place

and created a new dataset for training and testing the ANN

with 436 973 records.

To predict the YPSNR quality for middle segments of

detected video scenes, we used the Keras Python library [58]

to implement the ANN model for all input sets (see Table IV)

independently. The ANN models consist of seven to eleven

input neurons, seven hidden layers, and one output neuron. We

considered Adagrad, Adadelta, and RMsprop [59] optimization

algorithms for the compilation of the ANN model and finally

selected Adadelta after evaluating its performance with others.

Adadelta optimization algorithm is an advanced optimizer of

Adagrad, which adapts learning rate hyperparameter based on

a moving window of gradient updates rather than collecting all

past gradients’ information. This specific property of Adadelta

makes it better than other optimization algorithms to learn and

adjust the learning parameters by default, even with multiple

updates. Table V shows the ANN model characteristics and

Table VI explains ANN input features in detail. We received

predicted YPSNR quality as an ANN output and further used

Fig. 4. The convex hull of the Sintel video sequence. Scene #0

it to calculate the convex hull. To assess the output results of

ANN models, we used MAE and MSE metrics. We analysed

the model performance in Section V in detail.

D. Convex hull calculation and interpolation

After developing and deploying the ANN model in the

proposed system, we predicted YPSNR quality metrics for

the middle video segment of each video scene for all possible

combinations of bitrate and resolution presented in the Ta-

ble III. In total, we predicted 209 (19 bitrates * 11 resolutions)
quality values for each middle segment. For each series

of predicted quality points, our proposed FAUST approach

calculated the convex hull curve [60]. Fig. 4 shows a convex

hull example of Sintel video for scene number zero. The same

color points belong to the same resolution. For example, the

blue color represents the video resolution of 216p, where 216

is the video height (see Table III). We applied the cubic spline

interpolation function [49] to find and estimate the unknown

values of the convex hull that fall between known values. We

further used the predicted and interpolated convex hulls to

select the appropriate bitrate-resolution pairs for the optimized

bitrate ladders for each video sequence.

E. Per-scene encoding optimization

To build an optimized bitrate ladder for each video se-

quence scene, we used interpolated convex hulls of the middle

segments. Our approach selects all points that belong to the

interpolated convex hull range from 30 to 45 dB. Typically,

the viewer does not perceive the YPSNR quality above 45 dB

while values below 35 usually indicate visible artifacts [5].

We used a 30 dB lower bound for YPSNR metric in order

to have lower bitrate(s) in optimized bitrate ladders to match

the bandwidth constants of more clients. We used a 1.5-point

YPSNR quality interval for each scene to calculate the number

of bitrate-resolution pairs and quality targets for them. The

higher the value of the selected quality interval between the

two video qualities results, the smaller the number of bitrate

in the resulting bitrate ladder. The resulting number of bitrate-

resolution pairs varies for different scenes and depends directly
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TABLE VII. THE TIME REQUIRED TO DETECT VIDEO SCENES FOR 
BBB VIDEO SEQUENCE USING THREE METHODS

Operation FAUST FFmpeg PySceneDetect
(in sec) approach filter [61] tool [41]

encoding to 144p 8.9 n/a n/a
calculating TI 0.9 n/a n/a
scene detection 0.1 27.7 34.0

Total time 9.9 27.7 34.0

TABLE VIII. THE TIME REQUIRED TO DETECT VIDEO SCENES FOR 
SINTEL VIDEO SEQUENCE USING THREE METHODS

Operation FAUST FFmpeg PySceneDetect
(in sec) approach filter [61] tool [41]

encoding to 144p 6.4 n/a n/a
calculating TI 1.2 n/a n/a
scene detection 0.1 21.7 25.5

Total time 7.7 21.7 25.5

on their visual complexity. For the selected quality targets, we

find the bitrates and resolutions using an interpolated convex

hull. Finally, we calculate a set of optimized bitrate ladders

for all video scenes of the input video file.

V. RESULTS AND ANALYSIS

In this section, we present the results to analyze the perfor-

mance and to examine the advantages of using the proposed

FAUST approach for per-scene encoding optimization.

a) Fast scene detection: On real encoding platforms,

various algorithms and tools are available to detect scenes in a

video sequence. We compared our FAUST approach with two

popular and optimized scene detection tools: (i) FFmpeg [61]

and (ii) PySceneDetect [41].

• The FFmpeg filter analyzes the difference between video

frames using a pre-defined threshold,

• PySceneDetect uses the detect-threshold method to

find scene changes and split the video into individual

scenes [24].

Table VII shows the performance comparison among three

methods in terms of scene detection time of BBB video se-

quence. The results show that our proposed FAUST approach

takes 8.9 s to encode BBB video for low resolution (144p)

and bitrate (100 kbps). In addition, it takes 0.9 s to compute

TI metric for low resolution (144p) video. However, the scene

detection time is just 0.1 s, very short compared to the FFmpeg

and PySceneDetect tools, since we analysed and detected the

scenes for low resolution videos. The total scene detection

time (see Table VII, last row) shows that the FAUST method

detects scenes almost three times faster than FFmpeg and more

than three times faster than PySceneDetect tool. Tables VIII

and IX show the performance comparison for Sintel and TOS

videos, respectively. We see that for Sintel and TOS videos

for all three methods, the scene detection time is lower than

for the BBB video sequence. This is because the frame rate

for Sintel and TOS is 24 and for the BBB it is 30. Fewer

TABLE IX. THE TIME REQUIRED TO DETECT VIDEO SCENES FOR 
TOS VIDEO SEQUENCE USING THREE METHODS

Operation FAUST FFmpeg PySceneDetect
(in sec) approach filter [61] tool [41]

encoding to 144p 6.6 n/a n/a
calculating TI 0.9 n/a n/a
scene detection 0.1 19.9 25.4

Total time 7.6 19.9 25.4

TABLE X. THE NUMBER OF SCENES DETECTED FOR THE DIFFERENT 
THRESHOLDS

Threshold BBB Sintel TOS
0.45 14 / 10 9 / 7 7 / 6

0.50 11 / 8 6 / 4 7 / 6

frames in video faster processing time. The number of scenes

detected for Sintel, BBB and TOS videos, for two different

thresholds are shown in Table X. The results include two

values for each video sequence and threshold, for example 9/7

for Sintel video with a threshold of 0.45. This means that the

proposed approach initially detects nine scenes, out of which

two are very short (less than 2 s) and thus combined with

others, resulting in a total of seven scenes.

b) Convex hull prediction: We evaluated the ANN model

on various input sets and tuned the model characteristics (see

Table V) to find the most appropriate input features that

minimize the MAE and MSE accuracy metrics. Table IV

presents each input feature set and Table XI shows the MAE

and MSE results for all seven input sets. The results show

that ANN model with 2nd set of input features predicts the

optimized video quality by minimizing MAE and MSE up to

0.15 and 0.08, respectively. The 2nd set includes all default

input features except for number of pixels but it takes video

width and height. number of pixels is a multiplication of

video width and height so indirectly, it takes all the ANN input

features for the video quality prediction. The 6th input features

set (without files size) achieves second highest performance

with 0.15 MAE and 0.09 MSE and compromises slightly with

2nd set performance in terms of MSE value. Interestingly, the

results for the ANN model with the 7th set of input features

(without TI, SI and file size information) produce the worst

performance with 2.98 MAE and 14.1 MSE. It shows that the

excluded features in the 7th set have the maximum impact on

the ANN model performance. Thus, we see that overall 2nd

input set achieves maximum performance followed by 6th set,

4th set, 1st set, 3rd set, 5th set and 7th set.

Finally, we selected the 2nd input features set for ANN

model to predict the quality of the video segment to construct

further and interpolate the convex hull. Fig. 5 shows the

predicted and actual interpolated convex hulls for the medium
encoding preset and scene number 3 of the Sintel video

sequence. The convex hull using predicted data is very similar

to a convex hull using real data.
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TABLE XI. MAE AND MSE METRICS FOR DIFFERENT SETS OF INPUT 
FEATURES OF THE ANN MODEL

ANN model MAE MSE Input set
input set description

1 0.16 0.10 default (all features)

2 0.15 0.08 w/o number of pixels

3 0.17 0.09 w/o SI

4 0.16 0.08 w/o TI

5 0.23 0.17 w/o SI and TI

6 0.15 0.09 w/o file size

7 2.98 14.1 w/o TI, SI, file size

Fig. 5. Convex hull on predicted data (blue color) and actual data (red color) 
for Sintel video sequence, scene #3. Medium encoding preset

c) Performance analysis with classic bitrate ladder:
Table XII shows the comparison between the proposed FAUST

approach and the classic bitrate ladder on three key metrics:

bitrate reduction, storage reduction, and quality difference. We

described these key metrics in detail in the Section III. We

selected the equal or next highest bitrate value from the classic

bitrate ladder to compare with all bitrates of optimized bitrate

ladders generated by the proposed FAUST approach. Then,

we compared the sum of all the bitrates of the FAUST bitrate

ladders for each scene with the sum of the selected bitrates

from the classic bitrate ladder to calculate the overall bitrate

reduction. The bitrate reduction depends on the streaming

video use case and increases in multiples with the number

of real remote viewers (or clients) and thus becomes a crucial

performance metric.

Table XII shows the key metric results for the BBB, Sintel

and TOS video sequence. The FAUST approach reduces the

bitrate while maintaining a higher VMAF video quality for

all tested video sequences compared to the classic bitrate

ladder. The largest bitrate reduction is 15.6% for BBB video

sequence, and the smallest bitrate reduction is 12.3% for TOS

video. The average bitrate reduction and VMAF difference

calculated for three testing video sequences are 13.5% and 5.6

TABLE XII. COMPARISON OF THE FAUST APPROACH VERSUS THE CLASSIC 
BITRATE LADDER FOR BBB, SINTEL AND TOS VIDEO SEQUENCES

Metric BBB Sintel TOS Average
value

Bitrate reduction (in %) 15.6 12.5 12.3 13.5
Storage reduction (in %) 10.5 12.4 11.7 11.5
VMAF difference 4.7 3.7 8.3 5.6
YPSNR difference 1.2 0.3 1.5 0.6
XPSNR difference -0.1 0.0 0.7 0.2

TABLE XIII. PERFORMANCE COMPARISON BETWEEN FAUST AND 
MIPSO [24]

MiPSO FAUST
approach approach

Number of video sequences 3 3

Scene detection time for BBB 34.0 sec 9.9 sec

Convex hull calculation slow fast

Minimum bitrate reduction 10% 12.3%

VMAF quality difference 6.2-7.7 3.7-8.3

points, respectively. The average difference values for VMAF,

YPSNR, and XPSNR quality for all three videos are positive,

which shows that the proposed FAUST approach improves

both the bitrate reduction and the overall video quality.

d) State-of-the-art comparison: We analyzed and com-

pared the performance of the proposed FAUST approach with

a state-of-the-art framework called MiPSO (Multi-Period Per-
Scene Optimization For HTTP Adaptive Streaming) presented

by Kumar et al. [24]. For this, we investigated and compared

their scene detection method with our entropy-based scene de-

tection approach. The MiPSO approach utilizes the threshold-

based mode of PySceneDetect [41] tool for video scenes

detection. The threshold-based mode analyzes the original

high resolution video sequence for changes in the average

frame brightness and requires more computing resources and

processing time than our FAUST approach. Table. XIII shows

the detailed comparison of both approaches for the BBB

video sequence in terms of different features and performance

parameters. We see that the bitrate reduction and VMAF

quality difference are very similar for both approaches, but the

video scene detection time using our FAUST approach (9.9 s)
is more than three times faster than the MiPSO framework

algorithm, i.e. 34 s. The major reason behind the performance

similarity is because both the approaches use an interpolated

convex hull to calculate the bitrate ladder for each scene,

and the test video sequences are also identical. The major

advantage of our proposed FAUST approach is that it can

detect video scenes very quickly compared to the MiPSO

framework. Moreover, there is no need to run multiple tests

(or trial) encoding to build a convex hull to calculate per-

scene bitrate ladders with the FAUST approach. Instead of

numerous test encodings, the proposed FAUST approach con-

structs the convex hull using the ANN predicted video quality,

that significantly saves time and computational resources. For
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example, the FAUST approach for the Sintel video sequence

takes 0.4 seconds to make all the quality predictions for the

convex hull calculation on an Intel Core i5 processor while

with MiPSO based approach, this will take much longer, as

test video encodings are required.

e) Summary: The results show that the proposed FAUST

approach requires relatively little time to calculate the opti-

mized per-scene bitrate ladders for a video. Additionally, the

proposed FAUST approach predicts the video quality metric

for the selected video segments by minimizing MAE and MSE

to 0.15 and 0.08, respectively. Finally, we can summarise that

the FAUST approach has a higher bitrate reduction than the

state-of-the-art approach.

VI. CONCLUSIONS AND FUTURE WORK

In this research, we propose a novel approach called FAUST

to quickly and accurately calculate optimized bitrate ladder

for each video scene. The FAUST approach includes fast

entropy-based scene detection and segment quality prediction

using the ANN model. We performed scene detection on

low bitrate and resolution versions of video sequences, which

greatly speeds up the processing time. We developed the ANN

model based on encoding dataset generated using x264 video

codec, multiple encodings with different bitrates, presets and

resolutions. Our results show that the selected set of ANN

model input features gives an improved prediction of video

quality. The proposed ANN model predicts the YPSNR quality

metric for the segments, minimizing MAE and MSE to 0.15

and 0.08, respectively. In particular, the results show that our

FAUST approach, with fast scene detection and ANN based

video quality prediction, can reduce bitrate to 13.5% while

increasing the difference in VMAF quality to 5.6 points.

Future work includes experiments on new emerging video

codecs and adding more sophisticated approaches for multiple

quality metrics prediction, such as intelligently selecting and

analyzing the content complexity of a few very short samples

of a video scene to make prediction about the required bitrate

ladder for the entire scene. Additionally, we will investigate

using the data of the previously optimized per-scene bitrate

ladders for different scenes to predict the convex hull for a

new video scene with a similar video content complexity.
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“ComplexCTTP: Complexity Class Based Transcoding Time Prediction
for Video Sequences Using Artificial Neural Network,” in 2020 IEEE

______________________________________________________PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 301 ----------------------------------------------------------------------------



Sixth International Conference on Multimedia Big Data (BigMM), 2020,
pp. 316–325.

[26] P. Agrawal, A. Zabrovskiy, A. Ilangovan, C. Timmerer, and R. Prodan,
“FastTTPS: fast approach for video transcoding time prediction
and scheduling for HTTP adaptive streaming videos,” Cluster
Computing, Nov 2020. [Online]. Available: https://doi.org/10.1007/
s10586-020-03207-x

[27] N. Kim and B. Lee, “Analysis and Improvement of MPEG-DASH-based
Internet Live Broadcasting Services in Real-world Environments,” KSII
Trans. Internet Inf. Syst., vol. 13, no. 5, pp. 2544–2557, 2019. [Online].
Available: https://doi.org/10.3837/tiis.2019.05.017

[28] ITU-T, “Subjective video quality assessment methods for multimedia
applications,” International Telecommunication Union, Geneva, Recom-
mendation ITU-T P.910, Apr. 2008.

[29] Y. A. Reznik, K. O. Lillevold, A. Jagannath, J. Greer, and J. Corley,
“Optimal Design of Encoding Profiles for ABR Streaming,” in
Proceedings of the 23rd Packet Video Workshop, ser. PV ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
43–47. [Online]. Available: https://doi.org/10.1145/3210424.3210436

[30] Bitmovin, “Encoding Software and Per-Title Encoding,” https://
bitmovin.com/per-title-encoding, 2020, [Online; accessed 23-August-
2021].

[31] C. Systems, “Cambria FTC Source-Adaptive Bitrate Ladder based on
the encoding complexity of the source video,” https://capellasystems.net/
products/transcoding/cambria-ftc/features, 2020, [Online; accessed 23-
August-2021].

[32] Beamr, “Content-adaptive bitrate (CABR) technology,” https://beamr.
com, 2020, [Online; accessed 23-August-2021].

[33] Brightcove, “Context Aware Encoding,” https://www.brightcove.com/en/
context-aware-encoding, 2020, [Online; accessed 23-August-2021].

[34] E. Labs, “QoE Smart Encoding and Stream Optimizer,” https://www.
epiclabs.io/product-lightflow-optimize-video-stream, 2020, [Online; ac-
cessed 23-August-2021].

[35] I. Katsavounidis, “Dynamic optimizer — a perceptual video encoding
optimization framework,” 2018, [Netflix Technology Blog, accessed 23-
Aug-2021].

[36] ITU-T, “Objective perceptual video quality measurement using a jnd-
based full reference technique,” International Telecommunication Union,
Geneva, Recommendation ITU-T J.144, Apr. 2004.

[37] G. BJONTEGARD, “Calculation of average psnr differences between
rd-curves,” ITU-T VCEG-M33, 2001. [Online]. Available: https:
//ci.nii.ac.jp/naid/10016799583/en/

[38] M. Bhat, J. M. Thiesse, and P. Le Callet, “A case study of machine
learning classifiers for real-time adaptive resolution prediction in video
coding,” in 2020 IEEE International Conference on Multimedia and
Expo (ICME), 2020, pp. 1–6.

[39] M. Covell, M. Arjovsky, Y. Lin, and A. C. Kokaram, “Optimizing
transcoder quality targets using a neural network with an embedded
bitrate model,” in Visual Information Processing and Communication
VII, San Francisco, California, USA, February 14-18, 2016, O. G.
Guleryuz, A. Said, and R. L. Stevenson, Eds. Ingenta, 2016, pp. 1–7.
[Online]. Available: http://ist.publisher.ingentaconnect.com/contentone/
ist/ei/2016/00002016/00000002/art00016

[40] A. V. Katsenou, J. Sole, and D. R. Bull, “Content-gnostic bitrate
ladder prediction for adaptive video streaming,” in 2019 Picture Coding
Symposium (PCS), 2019, pp. 1–5.

[41] “Intelligent scene cut detection and video splitting tool,” https:
//pyscenedetect.readthedocs.io/en/latest/, 2020, [Online; accessed 23-
August-2021].

[45] S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming
over HTTP Dataset,” in Proceedings of the 3rd Multimedia Systems
Conference, ser. MMSys ’12. New York, NY, USA: ACM, 2012,
pp. 89–94. [Online]. Available: http://doi.acm.org/10.1145/2155555.
2155570

[42] D. Rotman, D. Porat, and G. Ashour, “Robust and efficient video
scene detection using optimal sequential grouping,” in 2016 IEEE
International Symposium on Multimedia (ISM), 2016, pp. 275–280.

[43] D. Vatolin, D. Kulikov, E. Sklyarov, S. Zvezdakov, and A. Antsiferova,
“Video Transcoding Clouds Comparison 2019,” Moscow State Univer-
sity, Tech. Rep., 11 2019.

[44] N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Overhead and perfor-
mance of low latency live streaming using MPEG-DASH,” in IISA 2014,
The 5th International Conference on Information, Intelligence, Systems
and Applications, July 2014, pp. 92–97.

[46] S. Rossi and L. Toni, “Understanding user navigation in immersive
experience: An information-theoretic analysis,” in Proceedings of the
12th ACM International Workshop on Immersive Mixed and Virtual
Environment Systems, ser. MMVE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 19–24. [Online].
Available: https://doi.org/10.1145/3386293.3397115

[47] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A.
Mohamed, and H. Arshad”, “State-of-the-art in artificial neural network
applications: A survey,” Heliyon, vol. 4, no. 11, Nov 2018. [Online].
Available: https://doi.org/10.1016/j.heliyon.2018.e00938

[48] C. Nwankpa, W. Ijomah, and A. G. S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” ArXiv,
vol. abs/1811.03378, 2018.

[49] “A cubic-spline interpolation,” https://docs.scipy.org/doc/scipy/
reference/tutorial/interpolate.html, 2020, [Online; accessed 23-August-
2021].
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