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Abstract—This paper is devoted to the detection of objects on a
road, performed with a combination of two methods based on
both the use of depth information and video analysis of data from
a stereo camera. Since neither the time of the appearance of an
object on the road, nor its size and shape is known in advance,
ML/DL-based approaches are not applicable. The task becomes
more complicated due to variations in artificial illumination,
inhomogeneous road surface texture, and unknown character
and features of the object. To solve this problem we developed
the depth and image fusion method that complements a search
of small contrast objects by RGB-based method, and obstacle
detection by stereo image-based approach with SLIC superpixel
segmentation. We conducted experiments with static and low
speed obstacles in an underground parking lot and demonstrated
the successful work of the developed technique for detecting and
even tracking small objects, which can be parking infrastructure
objects, things left on the road, wheels, dropped boxes, etc.

I. INTRODUCTION

The intelligent transport monitoring system for roads, park-

ing lots and highways must detect the sudden appearance

of obstacles on the road that can lead to an emergency.

Frequently objects, boxes, loads, etc. that have fallen from

passing vehicles can become a source of such obstacles (that

are especially dangerous on busy highways), as well as objects

moving at low speed (such as animals).

According to European Agency for Safety and Health at

Work (EU-OSHA), around a third of the deaths of people

in workplace accidents in the EU are related to transport [1].

What is more, within the accidents that involve the people the

reasons can be objects falling from vehicles. The EU-OSHA

review of accidents and injuries to road transport drivers notes

that ”If a cargo is not adequately secured, it can be a danger

to the driver and to others: the cargo can fall off the vehicle

and form an obstacle that in turn may hurt or kill the driver

or other road users... During strong braking or a crash the risk

of cargo falling off the vehicle is increased” [1].

For this purpose, monitoring systems used at intersections or

parking lots, consisting of surveillance cameras and, some-

times, depth sensors, it is logical to supply with the specific

functions for analyzing the traffic situation, timely detection

of both static and dynamic obstacles in real time, and warning

drivers. It is assumed that sensor data processing can take

place both on sensor systems if they have sufficient computing

resources (like edge computing), and in the cloud if there is a

high-speed data transmission channel (for cloud computing),

and, possibly, on the monitoring system server (if a computing

cluster is provided).

It should be noted that different monitoring systems may

have different restrictions on obstacle detection. So, Doppler

millimeter radars cannot register static objects, lidar systems

create dense point clouds that are difficult to process in real

time, and also have a limited working distance (about 200

meters). Artificial intelligence systems with the detection and

classification of objects can be inefficient, since neither the

time of the appearance of the object, nor its nature, size,

color, shape, etc. are known in advance. Moreover, it is

difficult to even prepare the necessary data set for training

a neural network, plus the performance of a ML/DL-based

system for real-time high-resolution image processing may be

questionable.

In this work, a stereo camera system was chosen for the

study, since it meets such requirements as, on the one hand,

it provides depth information by computing the disparity

map (and, consequently, the distance to the object), on the

other hand, the use of a video stream from one of stereo

cameras gives us the opportunity to apply computer vision

algorithms for object detection and tracking. Merging sensory

information for both depth and vision yields more accurate

object detection, positioning and characterization. Therefore,

this article focuses on a depth and image fusion algorithm

that takes advantage of the dual detection of road obstacles

through the different processing channels of stereo and RGB

information.

It should be noted that for monocular obstacle detection on

the road with frame-by-frame image analysis, we used the

OpenCV graph segmentation methodology with the follow-

ing pre-processing: converting an RGB image to HSV with

subsequent saturation increase, median filtering, erosion and

dilation to remove noise. For depth-based obstacle detection,

we use the recovery of disparity map from stereo (performed

automatically by selected stereo camera software Stereolabs

Zed 2 and Intel RealSense SDK), getting a dense point cloud

and then applying the superpixel algorithm, to speed up point

cloud processing and noise reduction to reduce the influence

of background noise, which fluctuates greatly with time and

illumination.

As restrictions on the experiments, we would note that the
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area-of-interest for the underground parking lot was investi-

gated with several types of objects such as boxes of different

sizes, the orange-white traffic cones, and a person in the cam-

era’s field of view). Since we used Stereolabs Zed 2 and Intel

RealSense stereo cameras available on the market and could

not change the baseline (the distance between the cameras),

the obstacle detection distance is limited to 10-15 meters. Due

to significant stereo camera noise in the raw data streams

from the SDK, we could not distinguish objects smaller than

10x10x10 cm without special RGB camera processing.

As the main research contribution of this article, we would

like to highlight the following:

1) A combined algorithm for detecting obstacles on the

road using dual channels for processing stereo and mono

information, followed by depth and image fusion with

specially selected metrics.

2) An improved technique for detecting obstacles on the

road applying a monocular camera with frame-by-frame

image analysis, associated with graph segmentation and

special pre-processing, using saturation increase, median

filtering, erosion and dilation, rather than using neural

networks and a priori known scene (i.e. a pre-recorded

scene with an obstacle-free road).

The rest of the paper is organized as follows: The Section

II considers research papers on road obstacles detection. The

detailed methodology and implementation of our proposed

algorithm is explained with examples in the Section III. The

Section IV describes the experimental setup, tests and results.

Finally, we discuss and conclude in the Section V.

II. RELATED WORK

The problem of obstacle detection on the road is devoted to

many different studies and reviews [2]–[4]. Part of the research

is devoted to the real-time detection of obstacles from on-

board sensors of intelligent transport systems, driver assistance

systems and automated vehicles [2], [5], [6]. And as noted in

[2], the most common autonomous support functions for com-

mercially available premium piloted vehicles are autonomous

highway driving, semi-autonomous parking, and braking.

The methods that apply image processing are various. For ex-

ample, the method described in article [5] uses morphological

filtering of camera frames to detect obstacles in front of a

moving vehicle in order to warn the driver about avoiding

collisions (in this case, other road users can often be consid-

ered as an obstacle). In our case, we use traffic monitoring

with a stationary sensor (i.e. stereo camera).

Frequently, the detection of known classes of objects on the

road for transport tasks is carried out using ML/DL-based

approaches [7], [8]. But, as we have already noted, if the

type, shape and moment of an obstacle’s appearance on the

road is not known in advance, the efficiency of applying

neural networks can be questionable. In addition, assembling

a dataset for neural network training can be a difficult task.

Often in studies, to detect obstacles cameras and computer

vision algorithms are used [3], [7]. However, sometimes depth

sensors such as stereo cameras [6], [8], LiDARs [2], [9] and

millimeter wave radars [2], [10] can be applied as well.

In our study, we use a stereo camera, as it combines the

advantages of using depth information (and therefore the

distance to the object) and the ability to process the video

stream using computer vision algorithms.

III. METHODOLOGY AND ALGORITHM IMPLEMENTATION

Obstacles detection experiments have been performed on

dataset collected by our own in underground parking scenario

(see the Section IV). For ZED2 camera (Fig. 13a) the dataset

includes video sequence from left and right RGB cameras

and disparity map, retrieved via stereo camera SDK. For Intel

RealSense Camera (Fig. 13b) the dataset consisted of left and

right grayscale images, RGB image for color data and disparity

map, obtained by camera SDK. The dataset scenario is as

follows: parking spaces and parking passages with the boxes

of 10x10x10 cm and 20x20x20 cm being thrown or brought

by human in the camera field of view.

The proposed method of depth and RGB image fusion for road 
obstacle detection, and its detailed workflow is demonstrated 
in Fig. 1.

A. RGB image-based obstacle detection

We are faced with the task of searching for all the obstacles

that can lead to traffic accidents. Therefore, our goal is to

find both objects that were already on the ground when the

camera was turned on, and objects that appeared in the field

of view later. That is why we cannot apply a method that

uses the so-called key frame, that is, a reference image in

which we are sure that there are no obstacles. Also, we

cannot implement a method that requires a priori information

about the foreground and background, because we do not

have enough information about the possible obstacle and

its properties. Among the widespread image segmentation

methods, the graph segmentation described in [11] seems to

be very promising for solving our task, since it segments the

image both in terms of spatial and color Euclidean distance

(equation 1).

dist(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 + ...
√

...+ (ri − rj)2 + (gi − gj)2 + (bi − bj)2
(1)

where x and y are 2D coordinates of pi and pj image points,

and r, g, b are the intensities of the red, green, and blue pixels,

respectively.

The Fig. 2 shows the original test image (left) and its graph 
segmentation with the implemented color map (right) without 
preprocessing. Note that hereinafter we use the OpenCV 
implementation of graph segmentation with the following 
parameters: sigma = 0.6, k = 1074 and min size = 185.
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Fig. 1. The methodology of depth and image fusion for road obstacle detection using stereo camera

Fig. 2 demonstrates that the floor is segmented quite well. 
However, only the larger box from two target objects (light 
brown boxes) that are used here as obstacles, is segmented. 
But even this box is faded in the image with some cracks. The 
small box is not segmented at all.

Fig. 2. Original test image (left) and its graph segmentation with implemented

color map (right) without pre-processing

Among the shortcomings of the method for our task, we

can note its over-sensitivity to some local changes in light

and color, when some random cracks and shadows can be

identified by the algorithm as separate segments. To avoid this

shortcoming, we implemented image pre-processing, which

consists of several steps.

At the first stage, we tried to make local changes in color

and light smoother. For this purpose we blended the image

with its inverse copy using the so-called soft light blending

(the equation 2) [12], [13]. To avoid the discontinuity at the

50% gray level that is inherent in the main method, the Pegtop

formula was used [13].

fpegtop(a, b) = (1− 2b)a2 + 2ba, (2)

where a is the pixel intensity value for the image being

processed, and b is the pixel intensity value for its inverse

copy, b = 255 − a. Both images are of type uint8 and all

image pixels are in the range of intensities from 0 to 255.

Now that we have applied the Pegtop soft light blending, we 
can see in Fig. 3 the changes in the segmentation. The small 
box is still not segmented, but the big number of cracks in the 
large box have disappeared, as well as a part of the shadow 
near the column.

Fig. 3. Original test image (left) and its graph segmentation visualized as the

colormap (right) using Pegtop soft light blending with an inverse copy of the

image

The Fig. 4 shows another example of soft light blending 
with an inverse copy of the image with the same segmentation 
settings. The finally s egmented fl oor ar ea af ter su ch pre-

processing is detected at a greater distance and does not fade 
with the wall. In addition, road poles that are located together 
in the foreground of the image are correctly segmented from 
each other.

At the second step of pre-processing, the conversion from the

RGB color space to the HSV color space (the equation 3) was
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Fig. 4. Original images (left) and images with the results of their graph

segmentation (right). The bottom images are before pre-processing, and the

top image - after Pegtop soft light blending (with its inverse copy) applied to

the bottom original image

performed (see, the Fig. 5, left), since in most cases this 
provides better image contrast.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ← max(R,G,B)

S ←
{
V −min(R,G,B) if V �= 0

0 otherwise

H ←

⎧⎪⎨
⎪⎩

60(G−B)/(V −min(R,G,B)) if V = R
120 + 60(B −R)/(V −min(R,G,B)) if V = G
240 + 60(R−G)/(V −min(R,G,B)) if V = B

0 if R = G = B
ifH < 0 then H ← H + 360

(3)

where R, G and B are red, green and blue color space

components respectively; H , S and V are Hue, Saturation

and Value color space components, which are in the range of

0 � H � 360, 0 � S � 1, and 0 � V � 1.

Fig. 5. Original test image after RGB to HSV color space conversion (left)

and its graph segmentation visualized as the colormap (right)

Both target boxes are now segmented, however there are more 
unwanted segments in the image, especially in the floor area 
(Fig. 5, right). After increasing the saturation by 50%, 
the image contrast improved even more (Fig. 6, left). The 
quality of the segments for both boxes increased, and some 
unnecessary segments on the right side disappeared, but new 
large segments appeared on the left side (Fig. 6, right).

Although the graph segmentation filter has some parameters to 
adjust the size and number of segments, median filtering was 
performed to avoid false segments due to small cracks and 
spots on the ground. The Fig. 7 shows the results of this 
step. The kernel size in this case is 5×5. The boxes now have 
fairly clean individual segments, and the number of incorrect 
segments is quite small.

Fig. 6. Original test image after increasing the saturation in the HSV color

space conversion (left) and its graph segmentation visualized as the colormap

(right)

Fig. 7. Original test image after increasing the saturation in the HSV

color space conversion and image blurring (left) and its graph segmentation

visualized as the colormap (right)

However, to reduce further the number of unwanted segments,

morphological erosion with a fairly large kernel (7x7 in our

case) was implemented in the segmented image, as shown in

Figure 8. It is a possible optional step (that is why we did not

show it on the workflow in Fig. 1) that can be applied to the

segmented image (7, right) if there is a lot of small spots.

Fig. 8. Original test image after increasing the saturation in the HSV color

space conversion and image blurring (left) and its graph segmentation after

morphological erosion of the segmented image shown as a colormap (right)

Then the segments can be clustered using DBScan, which is a

popular density-based clustering algorithm, or even found by

looking for unique values. To improve the recognition rate and

reduce the number of false alarms caused by cracks and marks

on the ground, it is recommended to manually select the region

of interest (ROI) that does not include stationary objects,

road passages and parking lanes. The result of the algorithm

implementation with selected ROI is shown in Fig. 9. The red

color in the upper right figure indicates that obstacles are being

detected.

B. Stereo-based obstacle detection

While RGB image segmentation techniques are quite robust

when they detect even very small objects, they are still limited

by contrast of object to background. For better detection of

obstacles with low contrast to the background, a disparity map

generated by a stereo camera was used. This method also has
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Fig. 9. Original test image (top left), and its segmented image (bottom left), the

segmented image with selected ROI (bottom right), and the result of obstacle

detection (top right)

some limitations. First, the accuracy of the stereo image is 
directly proportional to the distance, the maximum value of 
which depends on the baseline between the cameras. In our 
case, the baseline is about 15 cm, so the maximum distance 
is limited to about 10 m, and the best accuracy is in the range 
of 1.5-4 m. Second, all disparity map acquisition methods are 
not very accurate in the presence of structureless and mirror 
surfaces, therefore, in this case, the disparity map appears to 
fluctuate on these surfaces, making smaller obstacle detection 
harder or even impossible (Fig. 10).

Fig. 10. The example of fluctuations in disparity map obtained from Stereolabs

ZED 2 camera

To improve the accuracy of obstacle recognition, we used the

disparity map averaging by relevant RGB image segments, ob-

tained using SLIC segmentation [14]. To improve the accuracy

of obstacle recognition, we used the disparity map averaging

by relevant RGB image segments, obtained using SLIC seg-

mentation [3]. In other words, in this particular case, the RGB

image is used as a source for for disparity map segmentation.

The positive feature of most superpixel segmentation methods

is that they provide high-quality detection of object edges. It

also speeds up the next steps because you can work with fewer

superpixels instead of working with all the pixels in the image,

which can be very slow at higher resolutions.

Although the disparity map contains depth information, we

intend to find 3D clusters therefore we need to convert it

to 3D point cloud by converting UVZ coordinates to XYZ

coordinates. An obstacle can be defined as a volume above

the ground level, so to search for such an object, we should

find the ground points, and detect all points above this level

that represent an obstacle in our case. To find the ground level,

which is usually a plane, we use RANSAC algorithm [15] that

is a robust model fitting method to detect the ground using a

plane model.

Point cloud clustering is performed by DBScan [16] as this 
algorithm is very efficient for clustering points by density. 
In Fig. 11, the red 3D superpixels represent the result of 
RANSAC clustering, and other cluster colors show various 
obstacles in 3D space.

Fig. 11. Point cloud after RANSAC and DBScan clustering

In Fig. 12 the clusters of found obstacles projected onto 
the image. The large objects, such as cars and big boxes are 
detected robustly, however the smaller boxes are faded with a 
floor c luster due t o t he poor quality of t he d isparity map.

C. Fusion

In order to take advantage of both methods: searching small

contrast obstacles in the RGB-based method and finding larger

obstacles without the influence of contrast, we fused the

bounding boxes from both algorithms using non-maximum

suppression by central point distance. This will allow us to

gain the obstacle detection rate in the scene, using both stereo

and image analysis techniques.

IV. EXPERIMENTAL SETUP, TESTS AND RESULTS

We conducted various experiments in the region of interest of

the underground parking with several types of objects, such

as boxes of different sizes (10x10x10cm and 20x20x20cm),
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Fig. 12. The results of object segmentation by stereo image-based method

with SLIC superpixel segmentation

orange-white traffic cones and, sometimes, a person in the

camera’s field of view. Thus, we collected our own dataset for

such objects by moving the boxes in space and placing them

on the floor at different angles to the camera, and sometimes

throwing them into the camera’s field of view so that they

rolled along the floor at low speed.

For our experiments on road obstacle detection, we used the

Intel RealSense and Stereolabs Zed 2 stereo cameras available

on the market (the stereo cameras’ photo in the Figure 13

and characteristics in the Table I). Intel RealSense Depth

Camera D455 is the stereoscopic camera for both indoor and

outdoor applications with possibility to observe the guaranteed

measuring range from 0.6 to 6 m (in some cases, over 10m that

varies with lighting conditions) [17], [18]. For Intel RealSense

camera the dataset consisted of left and right grayscale images,

RGB images for a color camera and disparity map, obtained

with camera’ SDK. Intel RealSense SDK 2.0 provides an

on-chip self-calibration option that allows D455 stereo camera

calibration in less than 15 seconds without the need for

specialized targets [17]. Stereolabs Zed 2 is also the the

stereoscopic camera for indoor and outdoor applications with

120° Wide-Angle Field of View, and the measuring depth

range of 0.2 to 20 m (since it has wider baseline) [19], [20]. Its

SDK has the lightweight neural network for stereo matching

that can bring some benefits for stereo depth sensing, spatial

object detection and Positional Tracking [19]. For Stereolabs

ZED 2 camera dataset includes video streams from left and

right RGB cameras and a disparity map, retrieved from stereo

camera SDK.

Since we could not adjust the baseline (the distance between

the cameras), the obstacle detection range is limited to 10-

15 meters. Due to the significant stereo camera noise in the

raw data streams from the cameras’ SDK, the use of the stereo

algorithm alone without RGB camera processing (discussed in

the Section III) is not sufficient to distinguish objects smaller

than 10x10x10cm.

The experiments were carried out on a conventional computer

with an integrated graphics card, the characteristics of which

(a) Stereolabs ZED 2 (b) Intel RealSense D455

Fig. 13. The stereocameras that we used to collect the road obstacle datasets

in a parking lot scene

TABLE I. DEPTH CAMERA SPECIFICATION FOR INTEL REALSENSE D455 
[18] AND STEREOLABS ZED 2 [20]

Intel RealSense Depth Camera D455 Configuration
Stereo depth resolution 2x (1280x720) @30fps

Depth streaming up to 90 fps
Depth Field of View (H × V) 87° × 58°

Depth range 0.6 to 6 m
Depth Accuracy <2% up to 4m

Baseline 95 mm
RGB streaming resolution 1920x1080 @30fps
RGB sensor FOV (H × V) 90° × 65°

Stereolabs Depth Camera ZED 2 Configuration
Stereo depth resolution 2x (2208x1242) @15fps

2x (1920x1080) @30fps
2x (1280x720) @60fps
2x (672x376) @100fps

Depth Field of View (H × V) 110° x 70°
Depth Range 0.2 - 20 m

Depth Accuracy <1% up to 3m
<5% up to 15m

Baseline 120 mm

are given in the Table II.

TABLE II. SPECIFICATIONS OF MACHINE

System Configuration
Operating System Windows 10

Processor 3.2 GHz Intel core i7-8700
Video adapter Intel UHD Graphics 630 (350 - 1200 MHz)

RAM 16 GB
Hardware memory 1000 GB

DirectX version 12
OpenGL version 4.5

Let’s analyze the results of field experiments in a parking 
lot scenario. The Fig. 14 shows the intermediate and final 
results of frame-to-frame processing with our dual channel 
obstacle detection method for three boxes of different sizes 
as obstacles. The Figure 15 demonstrates the results of video 
processing for a moving box and a moving person that were 
taken as target objects. The green bounding boxes in the 
’FINAL’ frames (right bottom pictures) in Fig. 14 and 15 
are the result of the stereo camera-based obstacle detection, 
whereas the blue ones are the RGB image-based obstacle 
detection. Here, you can see the interesting example when 
each channel detects definite o bstacles, w hereas combining 
them into Depth and Image Fusion method helps to detect 
each obstacle in the region of interest (ROI) that increases the 
robustness of obstacle detection.

Let us comment in details the processing steps in the frames 
of Fig. 14 and 15, focusing on the text annotations in the 
upper left corner of each picture:
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• ’base’ is the image from the left camera of the stereopair

(Intel RealSense Depth Camera D455);

• ’depth’ is the depth map;

• ’segmentation’ is the results of the subsequent SLIC,

RANSAC and DBSCAN clustering;

• ’bbox’ is the bounding boxes around separate clusters of

the subsequent SLIC , RANSAC and DBSCAN cluster-

ing;

• ’average bbox’ - the results of averaging ’bboxes’ over 5

frames (that was done to increase robustness of moving

obctacle detection);

• ’graph detection’ - bounding boxes around separate seg-

ments based on RGB image-based segmentation,

• ’ROI’ shows the selected region of interest (ROI) in

pink color that was used as a mask to compute there

bounding boxes around separate clusters of subsequent

SLIC, RANSAC and DBSCAN clustering and bounding

boxes averaged over 5 frames;

• ’graph ROI’ demonstrates the bounding boxes around

separate segments of RGB image-based segmentation

with selected ROI and bounding boxes averaged over 5

frames;

• ’FINAL’ is the fusing result of ‘ROI’ and ‘graph ROI’

bounding boxes that shows the outcome of our Depth

and Image Fusion method.

Since the performance of RGB image-based obstacle detection

approach was not optimized well and takes more time than

stereo camera-based obstacle detection, we tested the obstacle

detection with Depth and Image Fusion method for moving

objects at low speeds.

Fig. 14. The results of test frame processing using our dual channel obstacle

detection method in a parking lot scenario with three boxes as obstacles.

The bottom row shows the work of the 1st channel of the RGB image-

based obstacle detection (the detected boxes are in blue color), and the right

column represents the 2nd channel of stereo camera-based obstacle detection

(the detected box is in green color). The bottom right picture demonstrates

the result of Depth and Image Fusion where all boxes are detected with

the combination of dual channel processing that increases the robustness of

obstacle detection. The region of interest is shown in pink color

Fig. 15. The results of test frame processing using our dual channel obstacle

detection method in a parking lot scenario with a moving box and a person

as obstacles. The bottom row shows the work of the 1st channel of the RGB

image-based obstacle detection (the detected box is in blue color), and the

right column represents the 2nd channel of stereo camera-based obstacle

detection (the detected person is in green color). The bottom right picture

demonstrates the result of Depth and Image Fusion where all obstacles are

detected. The region of interest is shown in pink color

V. CONCLUSIONS AND DISCUSSION

A. Conclusions

In this paper, we presented a methodology for dual detection

of obstacles on the road recorded with Stereolabs Zed 2 or

Intel RealSense D455 depth camera. We have shown with

case study for detection objects with sizes of 10x10x10cm

and 20x20x20cm that combining sensory information for both

depth data and video, provides more accurate detection, posi-

tioning and characterization of objects. The depth and image

fusion algorithm developed with the methodology demon-

strates the advantages of dual detection of road obstacles using

various stereo and RGB processing channels that complement

each other.

To detect obstacles on the road using RGB streaming with

frame-by-frame image analysis, the OpenCV graph segmenta-

tion technique was used, followed by pre-processing: convert-

ing an RGB image to HSV with subsequent saturation, median

filtering, erosion, and dilation to remove noise. For stereo-

based obstacle detection, we use disparity map reconstruction

from stereo (performed automatically by selected stereo cam-

era SDK), get a dense point cloud, and then apply a superpixel

algorithm based on SLIC segmentation to speed up the point

cloud processing, compute a floor plane using the RANSAC

algorithm and detect objects using 3D DBSCAN clustering.

Since we have the significant background noise, which fluctu-

ates greatly with time and illumination in the raw data streams

from the SDK (we observes it for both Stereolabs Zed 2 or

Intel RealSense D455 depth camera output data, and suppose

that it goes from disparity map estimation), we could not

distinguish between objects smaller than 10x10x10 cm without

the special processing of RGB channel. Thus, the applying

dual detection of obstacles on the road with the developed
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depth and image fusion algorithm gives encouraging results.

The main research contribution of this paper:

• A stereo camera-based depth and image fusion algorithm

for road obstacle detection that take advantages in search-

ing small contrast objects by RGB-based method and

finding larger obstacles without the influence of contrast

by stereo image-based approach with SLIC superpixel

segmentation.

• An improved road obstacle detection technique using a

monocular camera with frame-by-frame image analysis

that applies the OpenCV graph segmentation after the

preliminary processing: converting an RGB image to

HSV color space with saturation increase, median filter-

ing, morphological erosion and dilation, instead of using

neural networks and a pre-recorded scene.

B. Discussion

In some cases, when the angular size of the detected object

is close to the size of all sorts of different random cracks

or spots, in the first part of the algorithm (by image) there

may occur false positive alarms of system. Since they are not

constant, but for units of frames, in general one can try to

filter them by detection time, which, in its turn will for sure

affect the quality and detection rate of objects, actually being

in the camera frame.

Although the presented method has only been tested in a

parking scenario at relatively short distances, it is reasonable

to assume, based on the theory of stereo vision and epipolar

geometry, that the method can be used at longer distances by

increasing the baseline for stereo camera (which is only about

15 cm in our case) and focal length. In our further research we

suppose to compare this detection method with existing ones

in terms of accuracy, algorithm performance, and robustness

to the various object detection.
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