PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Applications for Monitoring and Visualizing Events
from the Cloud or Fog Environment

Nataly Zhukova

Saint-Petersburg Federal Research Centre
of the Russian Academy of Sciences
St. Petersburg, Russia
Nazhukova@mail.ru

Abstract—This article discusses applications for monitoring
and visualizing events from a cloud or fog environment.
Applications where images are processed by machine learning
algorithms for intelligent video surveillance systems are
considered. A review of analogues of programs that implement
the concept of the Internet of Things has been made. Examples of
the real use of ready-made systems in various fields are
considered. The problems of using systems with different
architectures are discussed. A proposed solution is in the
modification of the generalized architecture of the applications
for monitoring and visualizing events. It allows improve events
monitoring based on the ability to run applications on devices
with different technical characteristics and under different
operating systems. The solution is shown in the example of
ensuring the safety of escalator equipment. Three applications
have been developed for a smartphone, a desktop and a website
for the visualization of events from a cloud or fog environment.
The developed applications were tested on a large amount of data
(video information). Specific examples are given.

I. INTRODUCTION

At the moment, intelligent video surveillance systems are
widely used in various fields (https://felenasoft.com/xeoma/,
https://www.ispyconnect.com/, https://www.sighthound.com/):
traffic monitoring, ensuring security in kindergarten, school,
university, subway, clinic and/or hospital. The video
surveillance operator is now assigned a controlling function: he
or she must check the reliability of the event and confirm or
decline the assumption that was made by artificial intelligence
based on machine learning [1]. The interaction system of the
intelligent video surveillance operator is carried out through
applications for monitoring and visualizing events from the
cloud or fog environment, both through a website with a
personal account and through a separate application for a
desktop or tablet [2].

The processing of information received through CCTV
(Closed Circuit TeleVision) cameras is usually executed at
different levels, which is caused by the low computing power
of embedded technological computers and CCTV cameras
themselves [3]. This may be a fog computing environment in a
neighboring room of a small organization or, if it is impossible
to get by with a fog computing environment at the system
design stage, a cloud on a server in a data center in another
country: Holland, Estonia, Germany, Sweden, etc., which can
be very far from the video surveillance system, but in this case,

Alexey Subbotin

St. Petersburg State
Electrotechnical University "LETI"
St. Petersburg, Russia
Alesul543@gmail.com

fine-tuning routing is required to reduce communication delays
(flickers).

Such data processing systems have a three- and four-tier
architecture, where the first tier is a tool for monitoring and
visualizing events (PC, smartphone, built-in technological
computer with a screen and support of a touchpad, joystick,
steering wheel, buttons and other possible controls), the second
tier is a high-performance cloud for image processing, and the
third is an information warehouse with a data lake. Sometimes
there is a fourth tier or instead of the second - a fog computing
environment [4], [5].

A fog environment differs from a cloudy environment in
several ways:

e proximity to devices with programs for visualization
and information collection (sometimes video cameras
are connected directly to the fog server via coaxial
cables or twisted pairs via expansion cards and Wi-Fi);

o relatively low performance compared to cloud servers,
but higher performance than PCs;

e the possibility of secure data storage, confirmed by
security certificates from the manufacturer of servers
for fog environments, which is sometimes necessary
when working with medical data (fluorographic
images, etc.), where unsupervised use is prohibited in
many countries without permission, as well as the
safety of state secrets, commercial secrets and
copyright;

e availability of customized software (drivers, limited
functionality for the developer - API and development
tools, diagnostic utilities, preinstalled programs and
libraries for machine learning, customized Linux
operating system, etc.);

e the possibility of cluster organization of servers for fog
computing, where each server is a separate unit, and the
entire computing system can be scaled.

The problem is the incompatibility of the technical
characteristics of computers and devices. A new approach is
needed when applications work with a fog environment from
different devices using different technologies. At the same
time, fog computing should be used to accelerate image
processing based on machine learning in order to improve the
efficiency of intelligent video surveillance.

ISSN 2305-7254

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

II. BACKGROUND

Applications for monitoring and visualizing events [6] can
be divided into several types depending on the technologies
used:

 website (usually PHP, JavaScript, JQuery, React, Node.js,
Vue.js, Bootstrap, Laravel, Symfony, WordPress, Moodle,
etc.);

* application for PC under Windows, Linux, MacOS (in
development environments: NetBeans, Qt, Visual Studio, Code
Gear; in languages: Java, C++, C#);

« smartphone application for Android, i10S, Symbian, etc.

Applications for smartphones (having extensions: *.apk,
* ipa, *.sis, *.sisx, *.jad, *.jar) can be divided into several main
classes:

» wrapper programs for websites, which in fact are not
separate applications but use a separate component on the
“browser” form, where a specially prepared page opens (either
in the phone's memory or on the server using the protocols:
HTTP/HTTPS);

* programs that run and work directly on a smartphone and
can work offline;

* programs for interacting with remote servers (clouds, fog
environments), where part of the program logic is executed on
a smartphone, and the second part on a server for data
processing.

An application on a smartphone [7] for monitoring and
visualizing events assumes that the program on the smartphone
is constantly in memory and periodically (1 time in N seconds,
usually 10 seconds) accesses the server, where the flag state is
set in the cloud (usually it is file) about the occurrence of a new
event. To visualize an event on a smartphone, a status bar is
provided (at the top of the screen), and in active mode, the
monitoring events are visualized directly on the main screen.

Recently, smartphone apps have become more popular than
binaries (*.elf, *.exe, *.app) for desktop Linux, Windows, and
MacOS. The principle of operation of such applications is
based on a permanent connection to a remote server via the
Telnet protocol with sending commands from the server to the
client program to receive information about the event. Transfer
of archives with information, as a rule, is carried out with
TLS/SSL encryption protocols [8].

The website [9] works in a similar way, where the
visualization of events from surveillance cameras is updated in
a frame after entering the personal account. Since constantly
updating the page takes up much browser memory, the
UDP/RTP protocol is used without error control. Basic
information is transmitted via HTTP/HTTPS protocols.

A generalized scheme for visualizing and monitoring events
(Fig. 1) can be represented as three main blocks: technological
computers in communication nodes (1), desktop programs for
PCs (2) and Internet of Things devices (3), where smart
watches are located, touch pads, and smartphones (lower right
corner in Figure 1). In the center are fog computing
environments, which are not always present in the architecture
and greatly reduce the delays when accessing the cloud. In the
cloud server, images are directly processed using machine

372

learning (ML) algorithms, and information is stored in storage,
which is most often represented as a data lake [10]. This form
of storage is recommended by MEC vendors and is often used

in off-the-shelf solutions of various intelligent video
surveillance systems.
1 \ Datar Big
T : processing
i | Technology :)
computer S
[H [
Storage
£ d
STILLTLUILY Internet of
= -:-‘.-‘ Things |
Ramly @ |
! Router 'I/\{{?O E
| W 7

| Desktop :

Fig. 1. Generalized scheme for the visualization and monitoring of events

The event visualization program is an integral component
of the Mobile Edge Computing (MEC) concept, which is
widely represented by various vendors, such as Microsoft
Azure MEC, Intel Smart Edge, Accenture, Cognizant, HCL,
Tech Mahindra and many others [11]. Now, the MEC concept
is used almost everywhere: from fast food chains (McDonalds,
KFC, Burger King, Dodo Pizza, etc.), to oil rigs and medical
operations [12]. In some cases, solution providers provide a
separate platform for organizing edge computing; in other
cases, it is a hardware-software implementation of the MEC
concept at the device level. For example, Huawei
(https://www.huawei.com/) introduced its processors (GRU,
NP and Al chipsets) with support for edge computing. Applied
adaptation for the interaction of 5G devices in B2C and B2B
format for Huawei Packet Core Network programs is provided,
reducing the load on computing directly on the device. Another
ASUS IoT company (https://iot.asus.com/) presents ready-
made device-level solutions (technological computers,
industrial motherboards, routers, small-scale storage, etc.,
devices) with ready-made solutions in the field of artificial
intelligence, machine learning, network security and Android
FOTA support for millions of devices (smart badges, video
cameras, industrial robots, etc.).

A platform based on the MEC concept provides only an
approach and basic tools for working with edge computing, and
the creation of an intelligent video surveillance system and a
program for visualizing and monitoring events is reserved to
the developer.

III. DESCRIPTION OF THE PROBLEM

The main problems [13], [14], [15] of applications for
visualization and monitoring of events from an intelligent
observation system that is located in a cloud and/or fog are as
follows:

infinitely large video stream traffic from different
surveillance cameras for one device [16];

reliability of events [17] during frame-by-frame
demonstration of an image with a certain time interval
(from 10 seconds or more);

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

absence of a fog environment and, as a result, strong
communication delays (flickers);

security of the system if the images are classified
(commercial, state, military, medical, etc.) and protected
by copyright [18];

availability of only one visualization device: API for
development environment for desktop (Windows 11,
Linux KDE, MacOS Leopard), smartphone (Android or
i0S), technological computer (Advantech, Siemens);
synchronization of information about one object from
different surveillance cameras into one event (robbery,
fire, terrorist threat, etc.);

synchronization restoration of the retrospective and
chronology of events from one object received from
different sources and places of observation (checkpoint,
corridor, workshop, locker room, dining room, pantry,
crime, fixation of drunken robbery, etc.).

The obsolescence of software and the lack of image
processing using machine learning [19] in monitoring and
control systems for various metropolitan infrastructure facilities
(railroads, schools, supermarkets, subways, clinics, etc.)
motivate the modernization of existing security systems to
improve their effectiveness. A good applied task for new
programs for the visualization and monitoring of events can be
a monitoring system for escalator equipment in the subway,
where the length of escalators can reach up to 140 meters.
Cases of accidents and catastrophes that happen in different
subways of the world are not uncommon. The reason for this
was a malfunction of the brakes, electrics, engines. At the
moment, a frequency converter (FC) is used without indication
of the states of the complex of escalator systems. The incoming
high-frequency current from the municipal power grid is
converted by the inverter into the permissible current for the
operation of motors (50 Hz, 380 and 220 W). A modern status
indication and a visualization and monitoring program with
event diagnostics are required for the Advantech embedded
technological computer, which supports control and
configuration via the touch screen. On the panel computer, it is
possible to diagnose engine malfunctions using machine
learning (ML), recognize illegal entry into the service premises
of the escalator and attempt to open control cabinets. It is
necessary to visualize diagnostic information from the
centralized power grid and urban substations.

At the moment, monitoring the status of the escalator
equipment is insufficient: there is an indication panel where
information is received from sensors, there is video
surveillance from video cameras on the TV screen received via
coaxial cables, but there is no image recognition, which would
greatly simplify the work and increase the efficiency of the
security service at the subway. It is necessary to modernize not
only the FC cabinet but also the workplace of the escalator
equipment dispatcher. It should be a modern visualization
application (a website with the ability to view real-time
statistics). There is a need in a desktop application with low
requirements on computing resources. Since the website cannot
be run on the Advantech TPC-61T-E3AE technology
computer, an application (GUI) for the KDE or Gnome
desktop, designed in GTK and Qt, is needed.

A truly modern way to monitor and visualize events can be
implemented as a smartphone application, which was

373

developed in Java in the Intelli] IDEA development
environment for mobile programs from JetBrains
(https://www jetbrains.com/idea/). ~For development, the

Ultimate 2021.3 version was chosen since it supports not only
the Android mobile platform, for which the APK application is
being developed but also JavaScript, SQL, Ruby, PHP, which
are necessary for storing statistics in the smartphone’s memory,
the cloud, and interacting with the fog environment [20], [21],
[22] and the logic of displaying block elements on forms in the
application. Platforms were chosen as a cloud computing and
data storage system: mClouds (https://mclouds.ru/) and Selectel
(https://selectel.ru/) with the possibility to connect via remote
desktop to a VMware virtual machine. The chosen
configuration was 8vCPU 3.1-3.9 GHz, 32 GB RAM, 110 GB
SSD with Ubuntu VPS/VDS operating system on mClouds
platform and 50 TB data lake in hybrid cloud on Selectel
platform with migration capability and high fault tolerance for
machine learning.

Applications from different technology stacks are needed to
monitor and visualize events that solve the following tasks:

e indication of events in a single complex (one system)
with an artificial intelligence (AI) system based on
neural networks;

pattern recognition in the video information stream
based on machine learning;

processing images with the definition of the type of
security situations;

indication of escalator equipment (motors, pumps,
electrics, alarms, video cameras, etc.);

e provision of centralized information from substations.

What is needed is a comprehensive assessment of situations
based on information from deterministic sources, generalized in
a single program.

IV. SOLUTION METHOD

The solution of the considered problem is the development
of a new system for visualizing and monitoring events in the
escalator's electrical network, consisting of three programs: a
website, an application for Linux KDE (*.elf) and a
smartphone application (*.apk) for the Linux operating system
Android 10/11 (https://www.android.com/) because this OS is
more popular than iOS.

A constructive modernization of the inverter is needed,
adapted to global trends. There is a need in a screen for
diagnosing and monitoring the status of the electrical system of
the escalator. The solution at the design stage of a new inverter
unit is to add an Advantech (https:/www.advantech.com/)
TPC-61T-E3AE embedded process computer in an impact-
resistant housing (ABS) and IP65 screen protection to the wall
of the inverter housing. The TPC-61T-E3AE or PPC-3120-
RE9A series touch panel is suitable for demonstrating
production processes and monitoring and visualizing events
from a cloud or fog environment [23], [24], [25]. However, a
better decision is to purchase a PPC-3211W series process
computer since the technical characteristics (memory,
processor, interfaces, screen characteristics, etc.) are
significantly higher than those in the previous models. The
KDE Linux desktop application should be installed on a 512
MB MicroSD card and run within 2-5 minutes, which includes

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

Linux boot time with hardware test function, X-Window
(/etc/X11/fly-dm/Xsession) and shell startup KDE with
autologin (/fly-dmrc), where from autoload (/etc/rc.local) the
application for monitoring and visualizing events is launched.

The outdated PC program needs to be replaced with a
modern website that supports HTMLS and CSS3.2. Unlike a
Windows desktop program, a website can be opened from any
computer on the network and even a tablet and/or smartphone,
regardless of the operating system (Android, i0S, Symbian,
etc.). In a fog or cloud environment, an Apache web server
with a PHP preprocessor on FreeBSD 13.0
(https://www.freebsd.org/) should be installed, which is best for
a web server and configured over HTTP via Webmin 1.941. In
addition, FreeBSD is installed perfectly on a VMware virtual
machine in the cloud without additional drivers. Creating
dynamic pages from the "htdocs" directory is done using Perl
5.34.0 (https://www.perl.org/get.html) and in some cases PHP
8.0.13 (https://www.php.net/), AJAX is used for loading
content (in the formats: JSON, XML), and JavaScript and the
jQuery 3.3.6 library (https://jquery.com/) are used for
supporting menus and logic on the website.

The most popular development environment for mobile
devices is Android Studio 4.13
(https://developer.android.com/studio) from Google. The
development of programs for Android and iOS is carried out in
the cross-platform language Dart with the ability to build
applications for different operating systems. However, the
application requires a set of API functions to interact with the
SQL database, so the Intelli] IDEA Community Edition
development tool was chosen with the ability to upgrade to
Ultimate 2021.2.3. Networking with the cloud or fog
environment is organized through the Maven web server and
the Swagger framework for exchanging information about
events in XML and JSON, the profile of which is uploaded to
the SwaggerHub service (https://swagger.io/), which provides
high-speed interaction and collaborative development. The
SwaggerHub service supports OpenAPI Development (except
native: SwaggerAPI and SwaggerUl) to simplify the
development of APK network applications for mobile devices
(Samsung, Nokia, Xiaomi, HUAWEI, DEXP, Itel, Tecno,
TCL, BQ, Blackview, INOI, Infinix, Vivo, realme, Oukitel,
OPPO, Motorola, Doogee, Honor, etc.).

After brainstorming and discussion with subject matter
experts and management, nine expected performance indicators
(Table 1, first column) and expected outcomes (second column)
were defined.

TABLE I. REQUIRED INDICATORS

. Expected
Indicator Result
1. | Reduction of escalator failures 20%
2. | Increase of the accuracy of event detection 25%
3. | Decrease of requests for equipment repair 35%
4. | Efficiency of decision-making 30%
5. | Speed of interaction 10%
6. | Reduction the priority of ancillary services 15%
7. | Satisfaction with the system 40%
8. | Accuracy in making managerial decisions 15%
9. | Increase of the efficiency of the department 10%

374

The architecture of the new event visualization and
monitoring system consists of three types of programs, which
are central to the intelligent video surveillance system. When
the application receives a signal from a fog environment or a
cloud (a flag file that signals an event found based on complex
information from various things: video cameras, sensors,
centralization and power supply management systems,
disconnection of supply feeders, substations, malfunctions of
engines, pumps, etc.), then a certain decision is made:
receiving a signal state in the application of the operator on a
smartphone [26], a technological computer in the FC or on the
PC screen. The scheduling is used to determine the least
loaded route to the cloud or fog environment, determine the
busyness of the node and reduce delays (flickers) when
choosing an appropriate route to the image processing server.
Thus, a highly deterministic system with a high degree of
reliability is obtained [27], [28], [29].

According to the TOGAF architecture description standard,
the first level of Business assumes a strategy to reduce injuries
and accidents in the metro area and to increase the accuracy of
identifying situations, making decisions quickly and
responding quickly. At the Data level, a description of the
interaction in the system at the data level is assumed. In this
system, information is exchanged according to the principle of
signals and scheduling theory with information processing on
the server and storage in the cloud. At the Application level,
an intelligent video surveillance system interacts with
employees and management through three types of
applications (mobile, desktop, website), where the current
situation is displayed. At the Technology level, applications
are developed in Java, Qt, PHP, etc., using libraries for
network interaction.

The ISO 15288 standard is supported, the target system is
the application, the system in the production environment is
the operating system (Android, Ubuntu Linux, FreeBSD), and
the provisioning system is the cloud and/or fog environment.

According to the architecture description standard, DoDAF
2.0.2, the operational view is information based on video,
sensors, etc., for the operator of the intelligent video
surveillance system; the system view is the software of the
computer where the application is running; the technical
presentation consists of three components: a smartphone, a
technological computer and a PC website.

V. APPLICATION DESIGN

The proposed solution is implemented in the form of
applications with the ability to measure the defined five
indicators (Table I) and compare the expected results with the
actual results. A schematic diagram of the software interface
has been developed (Fig. 2), which contains menus, settings,
statistics and frames with video streams (in the center of the
application form) to view events that are generated centrally on
the server from various sources: power supply centralization
system, engine operation, pumps, sensors and video cameras.

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

LEX
: Settings '
| 2ttt W PTTTmmmmmmm e, W T, (]
H MENU Vi ' H
T RRCECEEED .+ + Videostream 1 i | Videostream 2 ;
o P P '
Ty e v '
,: | T msmssssess pessssessssseseey]
I Event ' Event :
H Statistics H

Fig. 2. Software interface diagram

The programs developed by the authors of the article for
monitoring and visualization interact with other modules in the
cloud or fog environment [30], [31], [32], which also interact
with each other using the XML format (RSS 2.0):

1) software control and decoding module (processing
information from sensors of the escalator and the centralized
power supply system, decoding the video stream into a series
of frames, network transmission of information using secure
SSL and TLS protocols and sending results to the cloud);

2) a software module for processing information in the
cloud (receiving connections via an encrypted VPN channel
and establishing connections via SSL and TLS protocols with a
list of trusted IP addresses, unpacking an archive with
information, processing a series of frames, transferring the
results to the fog environment, and then to the devices for event
visualization).

A series of processed images (in the format: Portable Network
Graphics, *.PNG) obtained from various sources (cameras)
with additional information are packed into packages (archives)
by the 7-Zip 21.04 program (https://www.7-zip.org/) with
passing parameters via the console to script files in BASH 5.1
(*SH) and are unpacked with the Gzip 1.8 program
(http://www.gnu.org /software/gzip/), since it is adapted for
Ubuntu Linux and FreeBSD; therefore, it works faster than 7-
Zip and other archivers. Packets are transmitted using the
httpdyou 0.37 utility from the rss2fido 0.52 software package
(http://rss2fido.sf.net/) for downloading and modifying XML
files after receiving a status signal on the server about the event
found for the visualization program on the device of the
intelligent video surveillance operator.

VI. CASE STUDY

Three applications have been developed for monitoring and
visualizing events: a website, a Linux desktop program KDE,
and an Android mobile application.

The website is running FreeBSD 13.0 under a Nginx 1.25.0
web server (https://nginx.org/) but can be ported to any other
system that supports a PHP parser. The website is hosted on the
local machine (http://localhost) and opened in the Google
Chrome browser. Such a site can be opened on any device
(Android, i0S, Symbian) and under any operating system
(OpenBSD, CentOS, Astra Linux, Ubuntu Studio, QNX,
macOS, etc.). In the center (Fig. 3) there are frames in which
PNG images are updated every 3 seconds so as not to heavily

375

load traffic and not freeze the browser page. At the bottom of
each frame is an indication panel. In this case, all is well
(Event: Good). In case of a dangerous situation, there will be
messages: Alarm, Alert, Trouble, Worry, Error - depending on
the degree of danger determined by artificial intelligence.

On the right side of the website page there is a menu (Fig.
3), switching on which allows watch the stream (tab: View)
with visualization of events for the video surveillance operator.
Next, for the operator select views and angles (tab: Choose),
configure the parameters of video cameras (tab: Cameras),
sensors - their parameters and connection (tab: Sensors), test
equipment and identify faults (tab: Test). Next, configure the
network (tab: Net) and obtain the support of a technical
specialist (tab: Support). In the upper right corner are
shimmering cubes, signaling the state of the connection with a
cloud or fog environment. The design of the site follows the
interface scheme (Fig. 2) and has the HTMLS format based on
the generalized DOM structure of the HTMLA4 sites.

i

- O X
PMVECFE (moncam) 25124 X | == (+]
& C @ localhost/mncam/ Q & » = e
View A program for monitoring
and visualizing events
Choose from a cloud or foggy
environment
Cameras
Sensors
Test
Event: Good Event: Good
'] »

[

Fig. 3. Appearance of the website for monitoring and visualization of events

The Linux application (MnCam?2.4.7c.elf) for the KDE
desktop is required for technology computers (Advantech,
Siemens, etc.) where there are severe limitations on computing
resources. The source files of the project were compiled under
Windows 11. In the center of the main form of the application
(Fig. 4), there are two video streams (Stream 1 and 2) from
surveillance cameras obtained from the cloud or fog, with the
ability to switch up to 5 objects (selection on the right) and up
to 9 threads for one object in one instance of using the Next
button. The menu is made in the traditional way for desktop
applications in the form of a drop-down list. Additional
windows with settings appear from the Window menu item,
which repeats the functionality of the pages on the website
(Choose, Cameras, Sensors, Test, Net, Support).

The diagnostic messages correspond to the classification as
on the website (at the bottom of the images in the Event field).
At the moment, everything is fine (the message Event: Good is
issued). At the bottom of the main form, there is a statistics
field with the ability to search (field: Put search), clear log files
(button: Clear), open in a text editor (button: Open) and on a
web page (by button: Web) in a convenient form of a table with
filtering and advanced search capabilities. The statistics web

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

page is located on the same server as the event monitoring and
visualization web site but differs by only one directory on the
server: http://localhost/mncam/stat/ and runs using the same
PHP preprocessor.

—
lyel MnCam 2.4.7c: A program for monitori... — (m} X
File Edit Options Settings Window Help

Stream 1 Strea —
k1Y - Choose bject 1 (esca v|
A bject 1 (esca |
et leam 1 (engi
eam 2 (pum |
Test eam 3 (subs
eam 4 (corri
[SO -
Support
= Mext
Event: | Good Event: | Good

[004]); Establishing an encrypted TLS / SSL connection - successfull
[003]: Transmitting a packet with information from the server ... 17

2.5 T BTV TR P RS P

\;[00?]: Connecting to the cloud server (ip: 178.71.120.100) ...

1097 ey

Putsearch:l[o-’-?]:ka'ﬁﬂd |[Clear J Open Web

Fig. 4. Desktop App Appearance

A program has also been developed for a smartphone (Fig.
5) in APK format (monCam1.4.7b.apk), which is a standalone
application, not a shell with a “browser” component and runs
directly on the device, thanks to the IntelliJ] IDEA Ultimate
development tool, which contains independent components and
does not download an HTML site, which, in fact, is not a
standalone program but a demonstration of the internal function
of the built-in Android browser. After removing the browser
from the smartphone's memory, the shell program will not
work on its own.

As presented in Fig. 5 Smartphone Application is a separate
running application under the Android OS. In the center of the
screen is an image of the engine compartment of the escalator
in the subway. People were found on the received frame from
the cloud, and this event is defined as STRANGERS. The
operator of the escalator safety system is prompted to make his
choice using the buttons on the display: acknowledge the event
(ACCEPT), deny (ERROR) or pay attention (ATTENTION).
In the lower right corner of the application, the time of a certain
situation (strangers in the office) is fixed. In the left corner,
there is a back button that allows you to go to the application
settings. This approach is not a limitation of the functionality
but, on the contrary, does not distract the security operator from
unnecessary settings and indicators (testing the network,
equipment components on the server, video cameras, sensors,
centralization systems, information from substations, etc.).

The performance of the proposed solution has been estimated
in the following conditions:

e 14 streams from Panasonic Full HD HC-V730 cameras
at 24.0 pixels;

e Network connection 100 Mbps;

e HPE Apollo 6500 Fog Computing Environment
(https://www.hpe.com/);

e Splitting the video stream into a series of 10 frames per
second;

e 1920x1080 resolution every frame and 350 dpi depth
with full color reproduction and transparency (alpha
channel transmission);

e Fog should have HPE Ezmeral Runtime and ML Ops
5.3 from HP installed;

e Samsung Galaxy J3 (2016) smartphone with 1.5GHz
ARM Cortex-A7 processor, ARM Mali-400 GPU,
1.5GB RAM and 32GB internal storage.

G
[+ RTTENTION +]

LN
STRANGERS

ERROR C] ACCEPT

Current

time

J

Fig. 5. Smartphone App Appearance

o~
Nt

Nine performance indicators need to be measured. The
conditions for repeating the case are the development of three
visualization programs, setting up the receipt of batch
information about events (a series of processed frames with
additional information in XML) from the cloud or fog
environment. The first measure of effectiveness is the reduction
in the number of escalator failures (Table II). After estimating
the results regarding failures in the operation of a group of
escalators in a separate section, it was found that the number of
failures decreased by 28.98%, although no more than 20% was
expected, which is a good result.

TABLE II. FAILURES IN THE WORK OF ESCALATORS

Period Before Now Less
1 Jan. — 31 Mar. 2019 23 16 30.44
1 Oct. — 31 Dec. 2019 19 14 26.32
1 Jul. — 30 Sep. 2020 15 9 40
1 Oct. — 31 Dec. 2020 21 13 38.1
1 Jan. — 31 Mar. 2021 27 17 37.04
1 Apr.— 30 Jun. 2021 18 15 16.67
1 Jul. — 30 Sep. 2021 14 12 14.29
Average (%): 28.98

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

The second measure of effectiveness is the improvement of
the event detection accuracy (Table III). After estimating the
results regarding the accuracy of identifying events related to
the failure of the escalator equipment, it was found that the
accuracy was improved by 27.1%, although no more than 25%
was expected, which is a good result. Events have become
more precise.

TABLE III. EVENT DETECTION ACCURACY

Event Earlier Now More
Fire 0.81 0.94 13%
Lighting off 0.87 0.98 11%
Robbery 0.62 0.87 25%
Illegal entry 0.51 0.96 45%
Fur. breakage or destruction 0.64 0.91 27%
Terrorist threat 0.57 0.89 32%
Flooding 0.73 0.9 17%
Engine destruction 0.68 0.87 19%
Escalator damage 0.52 0.93 41%
Substation accident 0.6 0.95 35%
Power failure 0.57 0.9 33%
By average: 27.1%

The third performance indicator is the decrease in the
number of requests for equipment repair (Table IV). After
estimating the results for the third quarter of 2021 regarding
escalator equipment repair requests in a separate section, it was
found that the number of requests has decreased by 37.2%,
although no more than 35% was expected, which is a good
result. There were fewer requests for equipment repair, which
means that specialists began to manage on their own for
repairs.

TABLE IV. APPLICATIONS FOR EQUIPMENT REPAIR

Title Previously Now More
Engine 4 2 50%
Switch 21 12 42.86%
Cable 5 3 40%
Defense 16 9 43.75%
Grounding 5 4 20%
Bearings 3 2 33.34%
Miscellaneous 39 27 30.77%
By average: 37.2%

The fourth indicator of efficiency is the efficiency of
decision-making on the repair of escalator equipment (Table
V). After estimating the results regarding the efficiency of
repairing equipment, which is an integral part of the escalator,
it was found that the time was reduced by 31.07%, although no
more than 30% was expected, which is a good result. The
speed of repair and commissioning of the escalator has

The fifth indicator of efficiency is the speed of interaction
between subway support services in orser to repair the escalator
equipment (Table VI). After estimating the results regarding
the time spent on interaction in the elimination of failures in the
operation of escalator equipment in a separate section, it was
found that the time increased by 13.68%, although no more
than 10% was expected, which is a good result. Reduced
interaction time with firefighters, police and many support
services.

TABLE VI. SPEED OF INTERACTION

Service Before Now More
Police 10-15 min. 7-12 min. 12.7%
Ambulance 5-7 min. 2-4 min. 23.18%
Fire department 12-17 min. 10-15 min. 8.29%
Tap water 20-30 min. 15-25 min. 6.851%
Electric 15-25 min. 12-20 min. 7.31%
Mechanical 40-60 min. 30-50 min. 5.94%
Security 2-5 min. 1-3 min. 31.46%
By average: 13.68%

The sixth performance indicator is the deprioritization of
support services, self-repair (Table VII). After estimating the
results regarding the priority of support services in the repair of
escalator equipment in a separate section, it was found that the
indicator decreased by 16.51%, although no more than 15%
was expected, which is a good result. The priority of auxiliary
services has decreased due to the new system.

TABLE VII. ANCILLARY SERVICES PRIORITY

Service Before Now Less
Police 79.1% 67.82% 11.28%
Ambulance 68.31% 52.7% 15.61%
Fire department 52.6% 37.2% 15.4%
Tap water 67.9% 51.42% 16.48%
Electric 72.41% 53.4% 19%
Mechanical 61.2% 47.23% 13.97%
Security 58.4% 34.61% 23.8%
By average: 16.51%
The seventh performance indicator is the overall

satisfaction with the system and the ease of use of applications.
Satisfaction with the system (Table VIII) was higher than
expected and amounted to 63.2% versus 40% previously
estimated, relative to negative response options. A standard
psychological questionnaire was used, consisting of 100 open-
ended questions to assess attitudes towards the application. The
passage was organized through Google Forms online in free
time (https://forms.google.com/).

TABLE VIII. SATISFACTION WITH THE SYSTEM

increased, which increases the satisfaction and quality of the Position Agree | Against | False | Neutral Better
escalator system. Duty 43 21 4 32 51.2%
TABLE V. EFFICIENCY OF REPAIR Dispatcher 52 17 6 25 67.31%
Electrician 37 14 2 47 62.2%
Title Previously Now More Hydraulic 29 21 7 43 27.6%
Engine 8-10 hours 6-9 hours 17.4% Operator 31 8 13 48 74.2%
Switch 15-20 min. 12-17 min. 23.82% Security guard 17 3 29 51 82.36%
Cable 4-7 hours 2-5 hours 48.2% Passenger 62 14 5 19 77.5%
Defense 30-50 min. 20-35 min. 39.51% By average: 63.2%
Grounding 2-3 hours 1-2 hours 49.73%
Bearings 5-8 hours 4-7 hours 12.1%
Miscellaneous 20-60 min. 15-45 min. 26.7% The eighth performance indicator is the accuracy of
By average: 31.07% managerial decision-making (Table IX). The accuracy of

377

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

managerial decision-making can only be assessed by the
manager. A standard Google calendar (https:/calendar.google.
com/) was used to record management decisions and for their
further analysis. Despite the fact that it was planned to increase
the accuracy of managerial decision-making by 15%, it turned
out to be higher and amounted to 18.62%, which is a good
result. Management made fewer mistakes and gained
confidence in their decisions.

TABLE IX. ACCURACY IN MAKING MANAGEMENT DECISIONS

Solution 1 week 2 ! 3 Mqre
weeks month | months | precisely
Dismissal 0.015 0.023 0.034 0.136 11.1%
Retraining 0.13 0.168 0.221 0.82 15.9%
Job transfer 0.041 0.055 0.075 0.31 13.3%
Rebuke 0.087 0.124 0.174 0.692 12.6%
Hiring 0.152 0.206 0.28 0.87 17.5%
Sick leave 0.28 0.37 0.51 0.861 32.6%
Time off 0.185 0.26 0.37 0.795 23.3%
Vacation 0.236 0.321 0.437 0.84 28.1%
Prize 0.109 0.147 0.2 0.805 13.6%
Meetings 0.292 0.39 0.542 0.856 34.2%
Innovation 0.17 0.251 0.36 0.845 20.2%
Software impl. 0.1 0.138 0.19 0.764 13.1%
Testing 0.104 0.14 0.194 0.84 12.4%
Approbation 0.072 0.1 0.142 0.568 12.7%
By average: 18.62%

The last indicator is the performance of the entire
department (Table X). After estimating the results, the
effectiveness of the entire department (team of repair) in
servicing escalator equipment increased by 11.85%, although
no more than 10% was expected, which is a good result. The
efficiency of the department and individual specialists has
increased.

TABLE X. DEPARTMENT EFFICIENCY

TABLE XI. RECEIVED INDICATORS

Position Previously Now More
Boss 89.7% 96.82% 7.12%
Electricians (3 people) 76.31% 91.37% 15.06%
Programmer 85.4% 94.7% 9.3%
Operator 94.72% 98.35% 3.63%
Mechanic 62.59% 86.72% 24.13%
By average: 11.85%

As a result of all the experiments, a summary table was
constructed (Table XI) with the obtained and expected results
for all 9 items. To reproduce experiments, it is necessary to
develop programs for processing statistics or open logs in
Microsoft Excel 2019, apply a filter and functions: average,
sum, rounding, percentage, and fill in the resulting tables.
Computer with specifications: Intel Core i3-10105F, 4x3.7
GHz, 16 GB DDR4, GeForce GTX 1050 Ti, 512 GB SSD with
Windows 10/11 preinstalled. A permanent Internet connection
with access to Microsoft Azure (https://azure.microsoft.com/)
is required.

Over time, in retrospect, the indicators were somewhat
higher than expected by experts, but this is normal in the first
months of the system's operation. In general, good, positive
results were obtained.

378

. Expected | Received
Indicator Result Result
1. | Reduction of escalator failures 20% 28.98%
2. | Increase of the accuracy of event detection 25% 27.1%
3. | Decrease of requests for equipment repair 35% 37.2%
4. | Efficiency of decision-making 30% 31.07%
5. | Speed of interaction 10% 13.68%
6. | Reduction the priority of ancillary services 15% 16.51%
7. | Satisfaction with the system 40% 63.2%
8. | Accuracy in making managerial decisions 15% 18.62%
9 Increase of the efficiency of the 10% 11.85%
department

VII. CONCLUSION

The article discusses applications for monitoring and
visualizing events from a cloud or fog environment that allows
increase the efficiency of subway services in several indicators.
Results were achieved in 9 indicators: reduction of escalator
breakdowns by 29%, increase in the accuracy of event
detection by 27%, etc.

The authors of the article developed three applications for
monitoring and visualizing events: for a smartphone, for a
desktop and a website - information about which was obtained
from a cloud or fog environment. The stages of the work of
programs are considered, and separate details are disclosed.
Specific examples of the work of the program to ensure the
safety of escalator equipment are given. The novelty of the
proposed solution lies in the possibility to work with a fog
environment from different applications, regardless of the
technical characteristics of the computer and operating systems,
and artificial intelligence methods based on machine learning
are used. The research materials are images from security
cameras and additional information from escalator sensors,
power supply centralization systems and substations.

The task of visualizing and monitoring events from a cloud
or fog environment is also relevant for many other subject
areas. Therefore, for example, in the process of visualizing
events from the service premises of escalators, it may be
necessary to recognize events on the tape, platform and track
area. The developed programs can also be used not only in the
subway but also in airports, shopping centers and other public
places. The research was supported by the state budget (project
No. FFZF-2022-00006).

ACKNOWLEDGMENT

The author expresses his gratitude to the State Unitary
Enterprise "Petersburg Subway" (http://www.metro.spb.ru/),
FRC RAS (http://www.spiiras.nw.ru/) for scientific support
and the opportunity to create the article.

REFERENCES

[1] Zeyu Jiao, Huan Lei, Hengshan Zong, Yingjie Cai, Zhenyu Zhong.
Potential Escalator-related Injury Identication and Prevention Based
on Multi-Module Integrated System for Public Health. Machine
vision and applications. March 2021, pp. 1-17

Yannuzzi M., Milito R., Serral-Graci R., Montero D., Nemirovsky
M.: Key ingredients in an IoT recipe: fog computing, cloud
computing, and more fog computing. In: 2014 IEEE 19th
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), December 2014,
pp. 325-329 (2014)

Aazam M., Huh E.: Fog computing and smart gateway-based
communication for cloud of things. In: 2014 International Conference

(3]

PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

on Future Internet of Things and Cloud, August 2014, pp. 464-470
(2014)

Bhatia J., Patel T., Trivedi H., Majmudar V.: Htv dynamic load
balancing algorithm for virtual machine instances in cloud. In: 2012
International Symposium on Cloud and Services Computing, pp. 15—
20. IEEE (2012)

Saecker M., Markl V.: Big Data Analytics on Modern Hardware
Architectures: A Technology Survey, pp. 125-149. Springer, Berlin
(2013)

Bonomi F., Milito R., Natarajan P., Zhu J.: Fog Computing: A
Platform for Internet of Things and Analytics, pp. 169—186. Springer
International Publishing, Cham (2014)

Sarkar S., Chatterjee S., Misra S.: Assessment of the suitability of fog
computing in the context of internet of things. IEEE Trans. Cloud
Comput. 6(1), 46-59 (2018)

Huang C., Lu R., Choo K.K.R.: Vehicular fog computing:
architecture, use case, and security and forensic challenges. IEEE
Commun. Mag. 55(11), 105-111 (2017)

Tanwar S., Tyagi S., Kumar N.: Multimedia Big Data Computing for
IoT Applications: Concepts, Paradigms and Solutions, vol. 163.
Springer (2019)

Jaykrushna A., Patel P., Trivedi H., Bhatia J.: Linear regression
assisted prediction-based load balancer for cloud computing. In: 2018
IEEE Punecon, pp. 1-3. IEEE (2018)

Subbotin, A. Improving the Mobile Edge Computing Architecture
Using Fog Computing Environments / A. Subbotin, N. Zhukova, P.
Glebovskiy // Conference of Open Innovations Association, FRUCT.
—2021.—No 30. — P. 388-395.

Bhatia J., Dave R., Bhayani H., Tanwar S., Nayyar A.: Sdn-based
real-time urban traffic analysis in vanet environment. Comput.
Commun. 149, 162-175 (2020)

Bhatia J., Modi Y., Tanwar S., Bhavsar M.: Software defined
vehicular networks: a comprehensive review. Int. J. Commun. Syst.
32(12), e4005 (2019)

Dastjerdi A.V., Gupta H., Calheiros R.N., Ghosh S.K., Buyya R.: Fog
computing: principles, architectures, and applications. CoRR,
abs/1601.02752 (2016)

Liu Y., Fieldsend J.E., Min G.: A framework of fog computing:
architecture, challenges, and optimization. IEEE Access 5, 25445—

25454 (2017)

Dragi Kimovski, Roland Math: Cloud, Fog or Edge: Where to
Compute? IEEE Internet Computing 2101.10417, 1-8
(2021)

Khaled Matrouk, Kholoud Alatoun: Scheduling Algorithms in Fog
Computing: A Survey. International Journal of Networked and
Distributed Computing 9(1); January (2021), pp. 59-74.

Zeeshan Ali, Shehzad Ashraf Chaudhry, Khalid Mahmood, Sahil
Garg, Zhihan Lv, Yousaf Bin Zikria. A clogging resistant secure
authentication scheme for fog computing services. Computer
Networks. ~ Volume 185, 11 February 2021, 107731
[https://doi.org/10.1016/j.comnet.2020.107731].

Ahmad Raza Hameed, Saif ul Islam, Ishfaq Ahmad, Kashif Munir.
Energy- and performance-aware load-balancing in vehicular fog
computing. Sustainable Computing: Informatics and Systems.
Volume 30, June 2021, 100454
[https://doi.org/10.1016/j.suscom.2020.100454].

379

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Vasileios Karagiannis, Stefan Schulte. Distributed algorithms based
on proximity for self-organizing fog computing systems. Pervasive
and Mobile Computing. Volume 71, February 2021, 101316
[https://doi.org/10.1016/j.pmcj.2020.101316].

Wanchun Dou, Wenda Tang, Bowen Liu, Xiaolong Xu, Qiang Ni.
Blockchain-based Mobility-aware Offloading mechanism for Fog
computing services. Computer Communications. Volume 164, 1
December 2020, Pages 261-273
[https://doi.org/10.1016/j.comcom.2020.10.007].

Mandeep Kaur, Rajni Aron. Energy-aware load balancing in fog
cloud computing. Materialstoday: Proceedings. 17 December 2020.
[https://doi.org/10.1016/j.matpr.2020.11.121].

Raafat O. Aburukba, Taha Landolsi, Dalia Omer. A heuristic
scheduling approach for fog-cloud computing environment with
stationary IoT devices. Journal of Network and Computer
Applications. Available online 4 February 2021, 102994
[https://doi.org/10.1016/j.jnca.2021.102994].

Maria Gorlatova, Hazer Inaltekin, Mung Chiang. Characterizing task
completion latencies in multi-point multi-quality fog computing
systems. Computer Networks. Volume 181, 9 November 2020,
107526 [https:/doi.org/10.1016/j.comnet.2020.107526].

Fenghe Wang, Junquan Wang, Wenfeng Yang. Efficient incremental
authentication for the updated data in fog computing. Future
Generation Computer Systems. Volume 114, January 2021, Pages
130-137 [https://doi.org/10.1016/j.future.2020.07.039].

Changhao Zhang. Design and application of fog computing and
Internet of Things service platform for smart city. Future Generation
Computer Systems. Volume 112, November 2020, Pages 630-640
[https://doi.org/10.1016/j.future.2020.06.016].

Masoumeh Etemadi, Mostafa Ghobaei-Arani, Ali Shahidinejad.
Resource provisioning for IoT services in the fog computing
environment: An autonomic approach. Computer Communications.
Volume 161, 1 September 2020, Pages 109-131
[https://doi.org/10.1016/j.comcom.2020.07.028].

Sunday Oyinlola Ogundoyin, Ismaila Adeniyi Kamil. A Fuzzy-AHP
based prioritization of trust criteria in fog computing services.
Applied Soft Computing. Volume 97, Part A, December 2020,
106789 [https://doi.org/10.1016/j.as0¢.2020.106789].

Hadi Zahmatkesh, Fadi Al-Turjman. Fog computing for sustainable
smart cities in the I[oT era: Caching techniques and enabling
technologies - an overview. Sustainable Cities and Society. Volume
59, August 2020, 102139 [https://doi.org/10.1016/j.s¢s.2020.102139].
Julian Bellendorf, Zoltan Adam Mann. Classification of optimization
problems in fog computing. Future Generation Computer Systems.
Volume 107, June 2020, Pages 158-176
[https://doi.org/10.1016/j.future.2020.01.036].

Xincheng Chen, Yuchen Zhou, Long Yang, Lu Lv. Hybrid fog/cloud
computing resource allocation: Joint consideration of limited
communication resources and user credibility. Computer
Communications. Volume 169, 1 March 2021, Pages 48-58
[https://doi.org/10.1016/j.comcom.2021.01.026].

José Santos, Tim Wauters, Bruno Volckaert, Filip De Turck. Towards
end-to-end resource provisioning in Fog Computing over Low Power
Wide Area Networks. Journal of Network and Computer
Applications. Volume 175, 1 February 2021, 102915
[https://doi.org/10.1016/j.jnca.2020.102915].

