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Abstract—Software test cases is an important study issue that components, and kernel. It is clear that this software has its own
has piqued the interest of many academics who are attempting to  complexity and Android manufacturers need comprehensive
create or suggest a heuristic strategy that might lessen the tests in order to make sure the system is working as it is
laborious manual effort that software engineers expend while expected to carry out and to fit the requirements of the

classifying test cases. The goal is to ensure that all features and organization in terms of hardware support and software [2]
apps have been tested and verified. In order to achieve that, there g pp ’

must be a good framework that can suggest or match the feature To address this issue, many researchers proposed several
labels with their test cases in a chronological way. Failing to do so methods, such as using manual tags or manual assignment for
will result in inaccurately labeled test cases. Therefore, the key feature labels, or even using an application lifecycle
objective of this paper is to propose a method that can do an > .
management system. Nevertheless, these proposed solutions are

automatic directory classification of test cases based on their test . . g
case description by applying the K-nearest neighbor classifier. still leading to inaccurately labeled test cases. Therefore, the key

Bag-of-word (Bow) and Term Frequency-Inverse Document objectivg Of. this paper iS.tO propose a method that can do an
Frequency were used as a vector representation and fitted the  automatic directory classification of test cases based on their

KNN classifier. The experimental result shows that using KNN-  test case description. The idea is to reduce the tedious manual
BOW has a good score compared to KNN-TF-IDF as it  effort that software developers currently spend classifying test
outperformed and achieved 77% accuracy in comparison with the  cases. The goal is to ensure that all features and apps have been
71% that KNN-TF-IDF achieved. Because of that, KNN-BOWisa  (e5ted and verified. In order to achieve that, there must be a good
good option for the directory classification based on fest case )0k that can suggest or match the feature labels with their
descriptions. The proposed method has a contribution to the . . .
domain and makes sure that using machine learning algorithms test cases n a chropologlcal way. H@ncg the result .Of this
can make easy directory classification of test case descriptions. proposed method will be the categor.lzgtlon of the directory
structure of the test cases by determining for each test case
which directory it must be or belongs to be in. The prediction
will be based on the whole component that the test case belongs
Software testing is the main component or principal element  to, and this will ensure whether the test cases were classified
in developing software efficiently and making certain of its  correctly or not.
correctness regarding the operation that is expected to be carried
out under distinctive input variables [1]. Numerous techniques
or strategies exist for performing software testing. The most
common ones are black box and white box testing. Other
classifications of the software testing methods can be done by
referring to how the testing is carried out. According to this,
classification test cases can be either manual testing or
automated testing [2].

I. INTRODUCTION

This paper is structured with five sections. The following
section provides related work of topic classification test cases.
The third section describes how it will look like the proposed
methodology that is going to be implemented in third section.
The fourth section presents the output of the proposed
framework and analyzation. Finally, the fifth section presents
conclusion and future work.

Manual testing is performed by preparing test cases manually II. BACKGROUND & RELATED WORK

and is more prone to human errors, whereas automatic testing is As classifying software test cases is an important research
carried out by recording the various test cases on the basis of ~ domain area, many researchers propose different methods, such
what actions the user has performed. This saves a lot of time in  as manual tagging, using application lifecycle management, and
writing test cases manually and improves the efficiency.  automatic topic classification. Each proposed method has its
Besides that, manual testing is not suitable for intensive  own pros and cons in terms of time- consuming tasks and
software, such as those companies that are manufacturing inaccurately labeled task cases. For instance, tests are labelled
Android phones [4]. Because we know that Android is a broad ~ manually at the studied Android smartphone vendor, and they
software platform that consists of many different layers  have defined tags and feature labels. These features need to be
composed of applications, drivers, operating system, categorized in an accurate way, unless the test cases are
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unsuccessful, which will cause the developer to not know which
features and apps were tested [1]. Meanwhile, application
lifecycle management is another method that has been proposed
to tackle this issue. ALM, in short form, is a way of managing a
pre-defined process to facilitate software development from
start to finish, such as product release or end product support.
The predefined process is such as defect tracking, fixing, or
testing, and it needs to be connected through a web interface or
be its own dedicated window application form [1], [2].

In a nutshell, it’s well-known that there is a great amountof
research that has been published in the area of automatic test
case generation methods in the past few years [2], [5]. Hence,
we can classify test case generation into three main types:
requirement-based, program-based, and random-based.

A. Requirement based

Requirement-based test case generation can also be called
specification test case generation [3], as the test case can be a
semi- formal or formal specification of the required data or a
function of the software under test [2]. The formal specification
can be driven by different formalisms of software requirements
such as logic programs, finite state machines, and first-order
logic ones [6] and [7]. On the other hand, the semi-formal
specification can also be driven by the diagram notation of
software systems. In the dataflow diagram, it has defined the
structure requirement as a hierarchy for the test case benchmark

(8]
B. Random based

Random-based test cases are related to a certain class of
probabilistic models that are generated during the execution
time of software operations. Through a random sampling, it
usually selects test cases over the input space of the software
based on a certain probabilistic distribution [7]. By applying
previous software operations at random, it can be recognized as
a simple random testing method, whereas applying a stochastic
model can be defined as a sophisticated one. And the
sophisticated ones have been applied to various models such as
Markov Chains and Bayesian Networks. In terms of fault
detection, reliability testing, and functional validation and
verification, the sophisticate [9].

C. Program based

Program-based test cases are based on analyzing the source
code of the program under test without taking into consideration
the execution of the program. And it doesn’t take into
consideration the behavior of the program during the execution
time as a dynamic mode. Because of that, it can be defined as a
static test creation or generation method. It is also path-oriented
because it always takes a certain path as an input during test case
generation. It is also noteworthy to mention that some
researchers define it as a goal-oriented method. Because it is
able to determine which path causes the branch or the statement
to be executed [8].

Feature labelling is also another way that researchers tackled
this issue, but it has a challenge in coming up with appropriate
features that each team should have. It has to be unique for each
feature for each team, and it has to be labeled manually, which
needs domain knowledge and investigation. This makes it
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similar to other tagging tasks which are time-consuming [1].

The proposed methodology is based on the requirement to
summarize test case descriptions. However, feature labels
cannot be assigned manually as it can cause human error, and
that is why we need to analyze the text of the test case
description to assign each feature label under which category it
belongs to. Meanwhile, text case description has gathered
Android smartphone vendors' data, and the data that has
gathered is the one we have to analyze and make the directory
classification based on the text analysis.

However, the method presented in this work is inspired by the
idea of an application lifecycle management system, which
other researchers have improved and come up with the idea of
topic classification. Because of that, we are continuing this work
and trying to expand the areas that other researchers left in the
feature labelonly to be applied in the test case descriptions.

III. METHODOLOGY

The main focus of the work is towards developing a method
that can do an automatic directory classification of test cases
based on test case description, and therefore, we know that
research methodologies are developed to achieve the work’s
objectives. As it describes the guidance that can be given to
achieve the system objective, we will explain the whole process
in detail.

A. Research Framework

In this framework, we are dealing with the test case
descriptions as mentioned before. Because of this, we first split
the raw data into two parts: training and testing. The ratio of each
part is half of the raw data, which means 50% for training and
50% for testing [1]. We tried to do looping for the data split.
However, we found out that there is duplicate data when we are
using a loop. Because of that, we followed the previous
researchers who split the dataset into (50) training andtesting.
After splitting the dataset, the next process is to find the best
performing parameters by tuning parameters from the training
dataset. The vectorizing of training text was the next step, which
intends to covert text into a bag-of-words. As we have test case
descriptions, we need to remove words that contain numeric
characters and words that appear less than 5% of the time in
eachtest case description. Not only bag-of-words, but we also
did the same for converting text into TF-IDF, which stands for
term frequency-Inverse Document Frequency. Here is the figure
demonstrating the whole process.

LoadALMS | Test Case Description

Split Test Case Description —|

| ||

Train Model < Sore
/

LT

Fitted Model || Average
Vectorization Predictand [ Score
_' _’ Measurement

Vectors and Labels

Vectorization

Fig. 1 Proposed Framework
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Fig. 1 shows what the proposed framework looks like and it also
shows how they interconnect each step while also illustrating
how the data can come from the training row dataset and testing
row dataset. However, there are certain things that have to be
done before fitting the model, and we would like to discuss
those things before we train the model. Here is the list of certain
things we have to do before we train the model:

e Data Transformation.

e Data Cleaning

e Lemmatizing and Steaming.
e Vectorization.

1) Data Transformation

The first step that we have done was data transformation. As
probably formatted data improves the quality of the data, it was
compulsory to do so. And this transformed data will make easier
to fit the model. Here is the actual figure of the dataset before
I’ve done data transformation.
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Fig. 2 Actual dataset

Fig. 2 shows what the actual dataset looks like. We can see
that the test case description is in different columns, which
makes it complex to fit the training model. Because of that, we
can see there is a high demand for data transformation in order
to improve the structure of the data, which has a direct effect on
the data quality. The upcoming figure will show us what the data
looks like after we have done data transformation.

Fig. 3 demonstrates how data become after transformation
and it is clean that is unlike in Fig. 2. The main reason that we
did data transformation is to get each test case description in
one row so that it can be easy for the model to categorize
based on the word count in the training model.

2) Data Cleaning

The second step that was data cleaning by removing numbers,
punctuations and capitalization from the test case descriptions.
We know that as long as we have a cleaned data, we can have a
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successful project as it is the start point. And that makes me to
take a proper care to clean the data by removing unnecessary
information such as numerical words or alphanumerical.

Fig. 3 Data transformed

3) Lemmatizing and Steaming

The idea of steaming is to find the core root of the word whereas
the lemmatizing is to reduce the inflected words to ensure the
root word where it belongs in the language. Before we vectored
the words, we have to return every verb by it is base-form which
means it is core root. The upcoming figure four shows how the
original test case description was and the next figures will
demonstrated how it changed after we have done the
lemmatizing.

['bluetooth’, 'fails', 'when', 'playing', ‘music', 'via', 'adp', 'then', 'switching', 'to', 'phone’, ‘call', 'if',
'i', 'play', 'music', "through', 'my', 'car', 'stereo’, 'using', 'the', 'built’', 'in', 'android’, 'music', ‘player’
, 'over', 'adpavrcp', 'then’, ‘either’, 'make’, 'or', 'receive’, 'a', 'call’, 'my', 'stereo’, 'tries’, 'to', 'switc
h', 'to', 'phone', 'mode’, 'this', 'handoff', 'fails', 'then', 'when', 'the', 'call’, 'is', 'ended', 'the', 'music’
, 'stutters', 'terribly', 'playing', 'a', 'second', ‘of', 'music', 'then', 'a', 'second', 'of', 'silence', 'off', '
and', ‘on', 'i', 'have', 'to', 'kill', 'the', 'bluetoath’, 'connection', 'and', 'recomnect', 'for', 'music', 'to’,
'play', 'agian', 'i', 'an', 'using', 'a', 'motorola’, 'droid', 'rumning', 'vpdate', 'build', 'ese', 'the', 'car', '
stereo', 'is', 'a', 'pioneer', 'dehpub', 'with', 'btb', 'bluetooth’, ‘adapter’, 'steps’, 'to', ‘reproduce', 'the',
‘problem’, ‘pair', 'device', 'with', 'the', 'stereo’, 'start', 'playing', 'music’, 'using', 'the', 'built', 'in', '
player’, 'over', 'adp', 'either', 'make', 'a‘, 'phone', 'call’, 'or', 'receive', 'a‘, 'phone', 'call’, 'what', 'hap
pened', 'the', ‘car', 'stero', 'switches', 'to', ‘gephone', 'modege’, 'but', 'no’, ‘phonme’, 'audio’, 'is’, 'heard’,
‘switching', 'the', 'phone', 'to', 'speaker', 'allows', 'me’, 'to', 'conduct’, 'the’, 'call’, 'through’, 'the', 'dr
oids', 'speakerphon', 'end', 'the', 'call', 'the', 'stereo’, 'switches', 'back', 'to', 'adp', 'streaming', 'mode’,
‘and', 'music', 'will', 'attempt', 'to', 'play', 'again', 'but', 'stutter', 'what', 'you', 'think', 'the', 'correct
', 'behavior', ‘should’, ‘be', 'the’, 'music', 'should', 'pause’, 'and', 'the', 'stereo’, 'should', ‘switch', 'phon
e', 'node', 'so’, 'the', 'phone', 'conversation', 'can’, 'be', 'held', 'through', 'the', 'car', 'stereo', 'hands’,
'free', 'when', 'the', 'call’, 'is', 'ended', 'the', 'stereo’, 'should', 'switch', 'back', 'to', 'stereo’, 'mode’,

Fig. 4 Text case Description

Fig. 4 shows one of the test case descriptions that we have in
our dataset. However, we have not done lemmatizing it yet, but
we have done it only for data transformation and data cleaning
which makes now easily to be readable. Nevertheless, the next
upcoming figure will demonstrate how the same text case
description will look like after lemmatizing. However, before
lemmatizing we have to tokenize the words and then do the
lemmatizing.
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bluetooth fails when playing music via adp then switching to phone call if i play music through my car stereo using
the built in android music player over adpavrcp then either make or receive a call my stereo tries to switch to pho
ne mode this handoff fails then when the call is ended the music stutters terribly playing a second of music then a
second of silence off and on 1 have to kill the bluetooth connection and reconnect for music to play agian i am usi
nq & motorola droid running update build ese the car stereo is a pioneer dehpub with bth bluetooth adapter steps t
o reproduce the problem pair device with the stereo start playing music using the built in player over adp eithe
r make @ phone call or receive a phone call what happened the car stero switches to gephone modege but no phone &
udio is heard switching the phone to speaker allows me to conduct the call through the droids speakerphon end the
call the stereo switches back to adp streaming mode and music will attempt to play again but stutter what you thin
k the correct behavior should be the music should pause and the stereo should switch phone mode so the phone conve
rsation can be held through the car stereo hands free when the call is ended the Sterea should switch back to ster
e0 node and the nusic resune without issue this issue does not occur when playing music or other audio using third
party players such as dogocatcher or tunewiki when using either of those prograns the phone works and the audio res
unes oroperly

Fig. 5 Text case Description Tokenized

Fig. 5 shows how the same test case description looks like after
we have done tokenization word by word that makes easy to be
either lemmatized or steamed. We can see from the test case
description that words are not the core root. For instance, the
word ‘playing’ has not yet transformed to it is core root, but the
next step is to do that action which lemmatizing or steaming.

['bluetooth’, 'fails', 'when', 'play', 'msic', 'via', 'adp', 'then', 'suitch', 'to’, 'phove', ‘all', 'if', ‘', '
play', 'music’, 'through', 'my', 'car', 'stereo’, 'use', 'the', 'build', 'in', 'android’, 'music', 'player', over'
, 'adpavrep', 'then’, ‘either', ‘make', 'or', 'receive’, 'a', 'all', 'my', 'sterea’, 'try', 'to’, 'switch', 'to’,
"phone’, 'sode’, 'this', 'handoff', 'fail’, 'then’, 'when', 'the', 'call’, 'be', 'end', 'the', 'music', 'stutter',
"terribly', 'play', 'a', 'second’, 'of', 'music', 'then', 'a', 'second', 'of', 'silence', 'off', 'and', ‘on’, 'i',
"have’, 'to’, 'Kill', 'the', 'bluetooth', ‘connection’, 'and', 'recomnect’, ‘for', 'music’, 'to’, 'play’, 'agian’,
1!, 'be', 'use', 'a', 'motorola’, 'droid', 'run', 'update', 'build’, 'ese', 'the', 'car', 'sterea’, 'be’, 'a', 'pi
oneer', 'dehpub', 'with', 'btb', 'bluetooth', ‘adapter', 'step', 'to’, 'reproduce’, 'the', 'problen’, 'pair', 'devi
ce', 'with', 'the', 'stereo’, 'start', 'play', 'music', 'use', 'the', 'built’, 'in', 'player', 'over', 'adp’, 'eith
er', 'make', 'a', 'phone’, 'call', 'or', 'receive’, 'a’, 'phone’, 'call’, 'what', 'happen', 'the', 'car', 'stero’,
"switch', 'to', 'ephone’, 'modege’, 'but’, 'no', 'phone’, ‘audio’, 'be', 'hear', 'switch', 'the’, 'phane’, 'to', '
speaker', "allow', 'me', 'to', 'conduct', 'the', 'call’, 'through', 'the', 'droids', 'speakerghon’, 'end’, 'the', '
call', 'the', 'stereo’, 'switch', 'back', 'to', 'adp', 'stream’, 'mode’, 'and', 'music', 'will', 'attempt’, 'to', '
play', 'again’, ‘but', 'stutter', 'what', 'you', 'think', 'the’, ‘correct', 'behavior', 'should’, 'be', 'the', ‘mus
ic', 'should', 'pause’, 'and', 'the', 'stereo’, 'should', 'switch', 'phone’, ‘nede’, 'so’, 'the', 'phone', 'convers
ation’, 'can', 'be', 'hold', 'through', 'the', 'car', 'stereo’, 'hand', 'free’, 'when', 'the', 'call', 'be', 'end’,
'the', 'stereo’, 'should', 'switch', ‘back', 'to’, 'stereo’, ‘mode’, 'and’, 'the', 'music’, 'resume', ‘without', 'i
ssue', 'this', 'issue', 'do', 'mat', occur', 'when', 'play', 'misic’, 'or', ‘other', 'audio', 'use', 'third', 'par
ty', ‘player', 'such', 'a', 'doggcatcher', ‘or', 'tunewiki', 'when', 'use', ‘either', 'of', 'those', 'progran’, 'th

Fig. 6 Text case Description Lemmatized

Fig. 6 illustrates how the test case description looks like after
we have done lemmatizing. It is clear that every word has turned
back by it is core root. For instance, if we take a look the work
‘play’ it was ‘playing’ before we have done the lemmatization.
However, it can be seen now that every word has turned back by
it is base form after used WordNet Lemmatized and Snowball
Steamer from Corpus dictionary. And it makes easy to either
create the bag-of —word or TFIDF as long as we have the core
root of each word.

B. Train a model with best parameters

We used K-nearest neighbor as our statistical model and fed
the vectors which is the best parameters that come from either
bag-of- words or TF-IDF. In our model construction, we used
python scikit- learn library. In order to measure the distance of
a concerned vector against other vectors in the training dataset
in bag-of-words, we used minkowski metric to measure it. We
know there in no need for cosine distance in bag-of- words
because documents sizes are relatively similar and that is why
there is no need for size normalization of cosine distance. On
the other hand, in order to measure the distance of a concerned
vector against other vectors in the training dataset in TF-IDF,
we used cosine metric, because there is a need for size
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normalization when we are measuring the cosine distance.
While training the model, we found out that the best performing
K is 4 via tuning and thus we used in this model K equal to four.

C. Vectorizing the testing dataset

It is not similar to the train dataset, during testing dataset; we
are not supposed to check the word accuracy. Because we know
that during the training it fitted the model only the words that
does not appeared in the test dataset and word count vector are
based on the corpus dictionary in the training part.

D. Predict and Measurement

In order to make sure how our categorization has done
correctly, we have to evaluate our model prediction result and
make sure the measurements. As we said, K-nearest neighbor is
our statistical model in order to categorize the most voted
categories as predicted label. There could be certain points that
the classifier cannot categories the labels and such output is
unpredictable and it does not contribute or affect the
performance of the model. In term of performance, we will
discuss in the result section.

IV.RESULT AND DISCUSSIONS

In the subsequent section, results and discussions are going to
be discussed and we will present the accuracy that achieved by
each model with several of metrics that we tried it. Knn- BOW
has achieved the best accuracy with its minkowski metric while
Knn-TF- IDF has also proved its aptitude in term of a achieving
a good accuracy but not much as Knn-Bow. Here is the details
of each of them.

A. Dataset Description

The dataset that is used in this study was collected by two
Android smartphone vendors who asked that we keep their
names anonymous. The dataset consists of various test cases, but
previous researchers had picked six test cases that came from
six teams in the company out of 50. The reason they chose is that
these test cases were managed in ALMS (the application
lifecycle management system) [1]. The following table shows
us the different domains that we have in the dataset.

TABLE I. DATASET DESCRIPTION

eam ID

Test Domain Test Cases

0 ultimedia 2286

1 Multimedia 2286

) /Android OS & Linux Kernel 2286

3 /Android OS & Linux Kernel 2286

4 Cellular & Connectivity 2286

5  |Cellular & Connectivity 2286
Total test cases 13716

B. Results and Discussions

The anticipated proposed methodology for classifying test
cases based on categories applies to the K nearest neighbor
classifier that uses different metrics to calculate the distance
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between the real vectors by summing up their absolute
differences. In this work, we used minskowsi and cosine metrics
as the metric of the K nearest neighbor.

Here is the result that we found after we did data cleaning,
lemmatizing, and steaming and applied it to the K-nearest
neighbor with a bag of words. Although we tried different
metrics for KNN- BOW, such as minskowski and cosine, we
found that using minskowski is a good option as a metric. This
means using Minkowski as a metric is outperformed by using
cosine as a metric. Here are the two outputs.

KNN with BOW accuracy = 76.66958296879557%

[[1e16 25 27 2@ 5 65]
[ 85 925 19 35 30 51]
[ 85 50 889 46 25 35]
[ 63 75 39 881 30 43]
[ 115 74 77 83 729 67]
[ 79 50 76 79 47 818]]
precision recall fl-score support
4} 0.70 9.88 0.78 1158
1 0.77 9.81 0.79 1145
2 0.79 0.79 0.79 1130
3 0.77 09.78 0.77 1131
4 0.84 0.64 0.73 1145
5 0.76 0.71 0.73 1149
accuracy 0.77 6858
macro avg 0.77 0.77 0.77 6858
weighted avg 0.77 0.77 0.77 6858
KNN with BOW accuracy = 76.55293088363955%
[[1821 31 26 15 15 50]
[ 92 933 19 38 30 41]
[ 84 70 870 41 38 35]
[ 56 54 44 914 30 33]
[ 167 79 85 85 725 64]
[ 93 46 80 100 43 787]]
precision recall fl-score support
(%] 0.70 9.88 0.78 1158
1 0.77 0.81 0.79 1145
2 0.77 0.77 0.77 1130
3 0.77 0.81 0.79 1131
4 0.83 9.63 0.72 1145
5 0.78 0.68 0.73 1149
accuracy 0.77 6858
macro avg 0.77 0.77 0.76 6858
weighted avg 0.77 0.77 0.76 6858

Fig. 7 Knn-Bow minkowski (Lem-Ste)

In Fig. 7, it can be seen that using lemmatization is a good
option in terms of the accuracy, which is outperformed by
steaming by using Minkowski as a metric. However, as we can
see, F1's results in both metrics are also most similar. This shows
us how they are also close to each other. On the other hand, the
upcoming figure will demonstrate how the result is after the
cosine me tric is applied.
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KNN with BOW accuracy = 71.63896179644212%

[[1011 31 15 24 28 49]
[ 160 926 11 32 63 13]
[ 109 79 836 35 50 21]
[ 74 101 79 805 36 36]
[ 107 101 102 128 701 6]
[ 114 102 98 110 91 634]]
precision recall fl-score support
0 0.67 0.87 0.76 1158
1 0.69 0.81 0.75 1145
2 0.73 0.74 0.74 1130
3 0.71 0.71 0.71 1131
4 0.72 0.61 0.66 1145
5 0.84 0.55 0.66 1149
accuracy 0.72 6858
macro avg 0.73 0.72 0.71 6858
weighted avg 0.73 0.72 0.71 6858
KNN with BOW accuracy = 71.18693496646252%
[[996 33 13 36 41 39]
[ 94 968 30 34 66 13]
[125 72 831 45 45 12]
[ 93 76 88 791 55 28]
[121 96 101 114 707 6]
[112 103 166 98 81 649]]
precision recall fl-score support
(%] 0.65 0.86 0.74 1158
1 0.70 .79 0.75 1145
2 0.71 0.74 0.72 1130
3 0.71 .70 0.70 1131
4 0.71 0.62 0.66 1145
5 0.87 0.56 0.68 1149
accuracy 0.71 6858
macro avg 0.72 0.71 0.71 6858
weighted avg 0.72 0.71 0.71 6858

Fig. 8 Knn-Bow cosine (Lem-Ste)

Moreover, Fig. 8 shows us that using steaming is a good choice
in terms of accuracy and fl-score compared to the lemmatizing
Nevertheless, the overall good accuracy is achieved by using
lemmatization in a Minkowski metric.

On the other hand, KNN-TF-IDF has applied the same data
after cleaning, lemmatizing, and steaming by applying the
cosine metric. We found out that using steam is also superior to
using lemmatization in terms of accuracy and f1- score. As the
upcoming figure illustrates.

KNN with TFIDF accuracy = 71.12860892388451%

[[1ee8 32 17 26 46 29]
[ 109 915 35 32 36 18]
[ 122 93 813 15 61 26]
[ 162 65 103 781 40 40]
[ 117 81 107 186 718 16]
[129 96 73 98 110 643]]

precision recall fl-score support

0 0.64 0.87 0.73 1158

1 0.71 0.80 0.75 1145

2 8.71 0.72 0.71 1130

3 8.74 0.69 0.71 1131

4 8.71 0.63 0.67 1145

5 0.83 8.56 0.67 1149

accuracy 9.71 6858

macro avg 0.72 0.71 0.71 6858

weighted avg B8.72 8.71 8.71 6858
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KNN with TFIDF accuracy = 71.6243802857976%

[[1012 27 22 29 43 25]
[ 96 935 24 27 43 20]
[ 136 80 818 20 61 21]
[ 88 76 106 785 44 32]
[ 187 102 114 99 713 10]
[ 113 88 83 95 121 649]]

precision recall fl-score support

0 0.65 0.87 0.75 1158

1 0.71 0.82 0.76 1145

2 0.70 0.72 0.71 1130

3 0.74 0.69 0.72 1131

4 0.70 0.62 0.66 1145

5 0.86 0.56 0.68 1149

accuracy 0.72 6858

macro avg .73 0.72 0.71 6858

weighted avg .73 0.72 0.71 6858

Fig. 9 Knn-TF-IDF cosine (Lem-Ste)

Overall, we have two different vector representations to be
fitted the K-nearest neighbor classifier, here the results based on
the distance metric and word root which has proportional effect
to the accuracy of the model.

TABLEIL. RESULT
Results
Model Distance Word root Accuracy (%) | Fl-scores
Metric
KNN- minkows Steaming 76.55 77
BoW ki
KNN- cosine Lemmatizing 71.18 71
BoW
KNN- minkows Lemmatizing 76.66 71
BoW ki
KNN- cosine Steaming 71.63 72
BoW
KNN-TF- cosine Steaming 71.62 72
IDF
KNN-TEF- cosine Lemmatizing 71.12 71
IDF

The best accuracy is achieved with the Knn-Bow compared to
the Knn-TF-IDF. Yet, using Minkowski as a distance metric
with lemmatizing is a good option, which scored 76.66 as
accuracy and 77 as fl-score. However, applying Knn-bow with
cosine as a distance metric has achieved a low accuracy
compared to applying Knn-TF- IDF using cosine as a distance
metric has scored 71.62 as an accuracy, but both achieved the
same f1-score, which is 72.

C. Comparative analysis

However, in comparing with previous researchers who have
classified their performance results in terms of Name-LDA or
Name- WC, we find that WC is better than LDA in their model,
which makes B, C, E, and F have good performance in terms of
F1 score, and we compared that result with the result that we
achieved. As adopted from [1], their model has scored from 0.3
to 0.88 for both WC and LD performance, yet the separation
will be WC for F1 scores of 0.71 (B, C, E, F), whereas the rest
will go through LD (A, D).

On the other hand, our model has scored 76.66 as accuracy
and 77 as fl-score, which outperformed the result of the WC
performance that was adopted by [1] researchers. This shows us
analyzing the text has achieved the best accuracy in terms of
classifying different modules.
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V. CONCLUSION

Automatic directory classification based on machine
learning is proposed for this methodology, which can play an
essential role for test case classification that spends a lot of time
for testers in order to make sure which feature or apps are
working as they are expected to carry out. The K nearest
neighbor is used to be the algorithm that has done the
classification and fitted two different vector representations:
bag-of-words and TF-IDF, which stands for term frequency-
inverse document frequency. We found out that using KNN-
BOW has a good result and outperformed using KNN-TF- IDF.
Because of that, KNN- BOW is a good option for directory
classification based on test case descriptions. Moreover, we
found out how much such a system could be deployed by an
Android smartphone vendor and how much work developers
would have to invest in order to make a working system.

VI.FUTURE WORK

This proposed method can be further improved and applied
to other fields such as reinforcement learning and online
learning, or it can be applied to other machine learning
algorithms in order to improve the result.

Meanwhile, domain-specific specialization in the NLP and
IR pipelines has the potential to increase both machine learning
and run- time performance. Words like 802.11 and H264 should
be considered domain knowledge and not separated by a naive
tokenizer. It is feasible that the feature label might be enhanced
by collecting user suggestions and collaborating with the teams,
albeit each team will have their own set of features.
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