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Abstract—Wrist pulse is one kind of biomedical signals, it
is affected not only by the heart beatings, but also by the
conditions of nerves, organs, muscles, skin, etc. Therefore, wrist
pulse signals can reflect a person’s physical state and it has been
widely used in health status analysis. However, previous works
mainly use traditional machine learning methods to analyze wrist
pulse signal. Because wrist pulse signal is high-dimensional and
complex, it is difficult for traditional machine learning methods to
learn effective information from them. This study aims to explore
the utilizing of deep learning methods on wrist pulse signal
analysis. We propose a novel multi-kernel Convolutional Neural
Network for wrist pulse signal classification. Our model can
handle multiple kinds of input features and each of them will pass
through a convolutional neural network that has three different
sizes of convolution kernel to capture multi-scale information in
different time steps. We compare our method with traditional ma-
chine learning methods on two tasks: Coronary Atherosclerotic
Heart Disease Classification and Traditional Chinese Medicine
Constitution yin deficiency and yang deficiency Classification.
Besides, we also research the influence of different input features
and different channels on wrist pulse signal analysis. The results
show that our model significantly improves the performance on
the two tasks, which proves the deep learning method is more
suitable to deal with complex wrist pulse data.

I. INTRODUCTION

Pulse diagnosis is one of the four major diagnostic methods

in Traditional Chinese Medicine (TCM). TCM sphygmopal-

pation (TCMS) is a combination of human arterial pulse

sensing and diagnosis [1]. It plays an indispensable role in the

diagnosis of TCM, because it is convenient, low cost and non-

invasive. But the wrist pulse signal is easily affected by factors

such as the environment and equipment during the collection

process. After denoising and baseline drift removal, the infor-

mation contained in the signal data is still very complex and

difficult to obtain. Data-driven deep learning is more effective

for processing such complex signal data due to its powerful

learning ability, adaptability, and portability. In this paper,

based on deep learning methods, we propose a Multi-kernel

Convolutional Neural Network (MkCNN) model to classify

pulse signal data. We compare our model with traditional ma-

chine learning methods in two tasks: Coronary Atherosclerotic
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Heart Disease (CAHD) Classification and TCM Constitution

yin deficiency and yang deficiency Classification.

The typical computational pulse signal analysis mainly

includes four stages:data collection, signal preprocessing, fea-

ture extraction and physiology or pathology medical problem

classification.There are three types of collector, i.e.,pressure,

photoelectric, and ultrasonic sensors, which are widely used

in data collection ; Signal preprocessing generally includes

denoise, baseline drift removal and period division; Feature

extraction usually extracts time domain features, frequency

domain features and wavelet features; Physiology or pathology

medical problem classification methods usually use SVM,

LDA, etc. The pulse signal can be regarded as approxi-

mately periodic change data. Traditional computational pulse

signal analysis is often difficult to capture the information

of complex pulse signals. Deep learning methods have no

additional feature engineering requirements, and it can learn

useful information directly from the original signal and get

better classification results. In this paper, we focus on feature

extraction and physiology or pathology medical problem clas-

sification, and propose a pulse signal classification framework

based on MkCNN.

The traditional feature extraction methods based on
feature engineering: At present, the feature extraction method

based on traditional feature engineering mainly obtains fea-

tures in different domains such as time domain, frequency

domain, etc. By using transform-based and non-transformable-

based methods. Common transform-based feature extraction

methods mainly include Hilbert-Huang Transform (HHT), Ap-

proximate Entropy (ApEn), Wavelet Packet Transform (WPT),

Wavelet Transform (WT). [2] calculate the extreme point

according to the single-period shape feature, and calculate

the periodic interval according to the continuous multi-period

pulse waveform. Then they introduce the wavelet transform

to measure the energy. Finally, they combine the obtained

features for subsequent classification. [3], [4] normalize the

single-period pulse waveform of each subject, extract the

amplitude features, frequency features and principal compo-

nent features of the pulse signal. Then they sort the different

features according to the contribution degree. In recent years,

Sample Entropy (SampEn) has been very successful in Electro
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Cardio Graph (ECG) signal analysis and CAHD diagnosis.

[5] quantify the complexity of pulse signal by calculating

SampEn, and prove that SampEn is also suitable for pulse

signal analysis. Common non-transformable feature extraction

methods mainly include pulse waveform reference points,

autoregressive models and editing distances. [6] train an au-

toregressive model on the training dataset to calculate the data

residuals on the test dataset, and use the mean and variance

of the data residuals as features to combine with doppler

ultrasound diagnostic parameters for disease classification. [7]

use Edit Distance with Real Penalty to calculate the similarity

of different pulse waveforms, and classify them according

to the similarity. [8] extract six spatial features by locating

the reference point of the pulse signal and combine them

with Empirical Mode Decomposition (EMD)-based spectral

features as the final feature. [9] use a gaussian function to

fit a single-period pulse waveform and extract key points

in the fitted curve as preliminary extracted features, then

they calculate the similarity between features and removes

redundant features separately. Finally, they use a statistical

differences method to select disease-sensitive features. Based

on the Discrete Fourier Series (DFS) curve fitting method, [10]

determine the number of DFS items by fitting the residuals

of the signal and the original signal, and use the coefficients

selected from each item as features. In order to completely

extract the pulse features from the entire signal, [11] redefine

the wrist pulse is a combination of periodic stationary time

series and aperiodic distribution, and decompose the wrist

pulse signal into two-dimensional independent components.

The above traditional feature extraction methods are mostly

based on single-period pulse signal extraction, which ignores

information between periods. Due to the patient’s irregular

pulse rate and other physiological factors. The change between

periods can also reflect a person’s physical health, which plays

a non-negligible role in pulse diagnosis.

The feature representation methods based on deep learn-
ing: The physiological signal data is a kind of unstructured

data, which has inconsistency in length, and the discrete spec-

tral lines are not distributed at equal intervals. Deep learning

methods can directly obtain high-level feature representations

containing changes within and between periods from this data.

Based on a multi-path deep neural network, [12] extract local

and global feature representation of signal data. Based on a bi-

directional long short-term memory network, [13] extract time

series feature representation of different lengths. Based on a

bi-gated recurrent unit network, [14] extract the hierarchical

feature representation of signal data at a different level for

emotion classification. Pulse data is a kind of quasi-periodic

physiological signal data. But, deep learning methods are not

widely used in solving pulse signal classification problems

at present. Generally, deep learning methods can effectively

obtain more abundant representation when processing complex

unstructured data.

The classification of physiological or pathological med-
ical problems: Traditional machine learning classification

methods need the help of feature engineering, while deep

learning methods can automatically extract features on predic-

tion. [2], [3], [5] use LDA and SVMs methods to classify pulse

signals. [15] apply multiple kernels learning on classifying.

[7] classify basing on Edit Distance with Real Penalty (ERP)

with the Difference Weighted KNN (DFWKNN) classifier.

Due to pulse have characteristics like the appearance (deep or

floating), rate (rapid or slow), intensity (forceful or forceless),

rhythm (tidy or not, whether there is a pause) and morphology,

it is an important pattern identification in TCM. The traditional

machine learning classifier is difficult to implement in large-

scale samples due to the limit of feature engineering, and it is

sensitive to the selection of parameters and kernel functions.

Deep learning technology has been widely used in ECG

signals which are similar to pulse signals. [16] introduce the

DNN to the arrhythmia classification experiment. The results

show that the DNN achieves the best accuracy, sensitivity

and specificity. [17] design 1 Dimension-CNN for arrhythmia

classification, and it achieves an average accuracy of 91.33%

in the classification experiments of 17 arrhythmia diseases.

The success of deep learning on ECG signals also brings

many possibilities for pulse signal analysis. Deep learning

methods can effectively obtain complex and indistinguishable

pulse information, and improve the accuracy of pulse signal

analysis in consequence.
Traditional methods are ineffective in capturing the local

and global period information, and deep learning methods

trend to building model without considering TCM theory. To

solve these problems, we propose the MkCNN which can

effectively learn the local and global information of pulse

signal and integrate TCM theory into extracted features. These

efforts make us achieve better results in the pulse signal

classification task. Detailed contents will be introduced in the

fourth section.
We summarize our contributions as follows:
• We innovatively propose a multi-kernel convolutional

network for pulse signal analysis basing on deep learning

knowledge, which has achieved significantly improved on

the Coronary Atherosclerotic Heart Disease Classifica-

tion and Traditional Chinese Medicine Constitution yin

deficiency and yang deficiency Classification. The exper-

iment results prove that our model has good robustness

and portability.

• We compare the classification performance of differ-

ent features (features extracted by feature engineering

and preprocessing), different classification models (SVM,

LDA, XGBoot, MkCNN) and different pulse channels

(pulse signals collected from cun, guan, chi on left and

right hand according to TCM theory), which make our

work very useful for reference.

• Pulse diagnosis is one of the main diagnostic methods

in the clinical diagnosis of TCM. Our model achieves

the accuracy of 91.9% in CAHD classification task and

78.3% in TCM constitution yin deficiency and yang defi-

ciency classification task. The results indicate MkCNN

has important practical significance in modern TCM

auxiliary diagnosis decision.

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 76 ----------------------------------------------------------------------------



The rest of the paper has been divided into five basic

sections. ”Section II” introduces our specific reference work

on feature engineering and deep learning methods, ”Section

III” introduces the acquisition and preprocessing process of

pulse signal data, and ”Section IV” describes feature extraction

methods and physiology and pathology medicine The classi-

fication method of the problem, ”Section V” introduces the

experimental settings and experimental results, and analyzes

the experimental results meticulously. Finally, ”Section VI”

concludes the proposed work and gives some hints on its scope

in the near future.

II. RELATED WORK

In this section, we mainly introduce the approaches most

relevant to this paper, including the feature engineering method

and Deep learning.

A. Feature Engineering
It is a common practice to use feature engineering to extract

features from pulse signal data. [8] propose a spatial feature

extraction method for blood flow velocity signal. This method

calculates the time and amplitude feature of the signal key

points, and extracts each period signal spatial features by

calculating the ratio. Compared with the traditional pulse

signal period features in [11], this method is more intuitive

and it is difficult to locate key points. [3] use the PCA

method to compress data, and obtain good results. The blood

flow velocity signal of the wrist is highly correlated with the

pulse signal, and the pulse signal data is quasi-periodic, and

the periods are highly similar. Inspired by this, we use the

PCA method to compress the pulse signal data and remove

redundant features while extracting the spatial features.

B. Deep Learning
In recent years, deep learning algorithms have been proved

to have great potential in the field of medical image. [18]

propose a residual neural network for the cochlear detection

model. The model is composed of three residual CNNs and

is trained on three images of different sizes. The experimental

results show that the network can accurately detect the cochlea.

[19] propose a single-view 2D CNNs for lung nodule detec-

tion. Unlike previous 3D CNN-based frameworks, this model

uses single-view 2D CNNs to improve computational effi-

ciency, which achieves the most advanced performance while

reducing the complexity of the calculation. [20] propose a

CNN network model, which uses a multi-channel architecture

to ensure that the learned vectors do not deviate too far from

the original value to prevent overfitting. Inspired by the simple

CNN with little hyperparameter tuning and static vectors [20],

we use the features extracted by existing feature engineering

methods. Through fine-tuning to learn task-specific vectors

and further gains in performance. Considering that the pulse

signals are multi-channel time series data, we combine the

features of the pulse signal data to construct a multi-kernel

CNN network structure. By setting different size convolution

kernels, the model learns more comprehensive information

from the pulse signals.

III. PULSE SIGNAL COLLECTION AND PRE-PROCESSING

In this section, we mainly introduce the collection device

information, data collection process, and data preprocessing

method.

A. Data Collection

We use the ZM-IIIC intelligent pulse signal collector, which

is composed of MH-IIA single-probe pulse transducer, ZM-

IIIC pulse collector (including A/D converter) and serial com-

munication cable. The transducer can be placed in cun, guan

or chi according to the need to detect pulse information. ZM-

IIIC intelligent pulse signal collector has two output modes:

digital signal and analog signal. The analog signal can be

connected to the printer to print out various pulse waveform

graph, and can also be connected to the display instrument or

other recording instruments; the digital signal is connected to

the user computer. In addition, it can save the collected signal

into files which is convenient for further research. In this work,

we use the device to collect six channels of pulse signals of

cun, guan, chi on the left and right hand respectively. We show

these data collected positions in Fig. 1, and collect 40 seconds

of data in each channel with the sampling rate is 1000Hz.

B. Pulse Signal Preprocessing

Because the sampleable available area of the pulse signal

on the wrist is very small, the inaccurate placement of the

sampling device will cause serious distortion of the data, which

are shown in Fig. 2. Hence, we select the data manually after

sampling to ensure that the data used is valid.

The data after manual selecting still has noise and drift.

Therefore, we further process the data to solve these problems.

Because removing data drift needs to extract the key points of

the data, and the noise will affect the detecting of key points.

We use the wavelet transform to denoise the signal in the first

step. Then, we use the cubic spline method to fit the drift

curve, thus obtain the drift removal signal. The details are

explained in the following subsections.

Fig. 1. Position of cun, guan, chi
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Fig. 2. Distorted waveform samples

1) Pulse Denoising: The causes of pulse signal noise are

power frequency signal interference, vibrate of the sampling

position, etc. The frequency of these noises is much greater

than the pulse signal (the frequency of the effective data in

the pulse signal is lower than 20Hz [21]). So the noise can be

removed according to the characteristics in the data.

The traditional low-pass filter can effectively remove the

interference of the power frequency signal, but due to the

error between the actual low-pass filter and the ideal low-

pass filter. The wavelet transform scheme to remove noise

does not have such a problem. Therefore, as shown in Fig.

3, we use discrete Meyer wavelet transform to decompose

the data. After the original signal is decomposed once, cD1

(detail coefficients, high frequency) and cA1 (approximation

coefficients, low frequency) are obtained, and cA1 is further

decomposed to obtain cA2, cD2. Similarly, cA3 and cD3 are

obtained. The noise in the pulse signal exists in cD1, cD2

and cD3 [4], these three components are set to zero, and

the reconstructed signal is noiseless. The visualization of this

method to remove noise is shown in Fig.4.

Fig. 3. Wavelet transform based pulse signal denoising

Fig. 4. The visualization of removing noise. Blue line is the Original Pulse
Signal and orange line is the Denoised Pulse Signal

2) Baseline Drift Removal: The collector applies inconsis-

tent pressure will cause the baseline drift. In order to perform

accurate pulse signal analysis, this interference needs to be

eliminated. Based on the Previous works [9], [22], and [23],

we propose a drift-removal scheme that combines the data

frequency and length characteristics. The flow diagram is

shown in Fig. 5). Firstly, we detect the peak points and valley

points of the data after noise denoising (as shown in B and C

of Fig. 5), the detail steps are as follows:

• Step 1: Perform discrete fourier transform on the sampled

data to find the fundamental frequency f of the pulse

signal. The period length of T of a single pulse signal

can be estimated by T = 1/f . According to T , the total

number of periods N = t/T within the sampling time t
can be estimated.

• Step 2: Find the peak point in [0, T ] sampled data, marked

as P1, the corresponding time is t1, P1 is the first peak

point of all sampled data.

• Step 3: Taking P1 as the starting point, the next peak point

is detected within the range of [t1+0.5×T, t1+1.5×T ],
marked as P2, and the corresponding time is t2.

• Step 4: Repeat the previous step until all the peak points

in the sampled data are detected.

• Step 5: The minimum point between two adjacent peak

points is the valley point.

Then we set the valley point as the starting point of each

pulse period. Performing cubic spline interpolation on these

starting points (as indicated by D in Fig. 5) to obtain an

estimate of baseline drift, then subtract this estimate. The

overall waveform moves to a unified baseline (as indicated

by E in Fig. 5).

Finally, the drift removal data is obtained, and the visual-

ization is shown as F in Fig. 5. Comparing with the methods

in [9] and [23], our scheme uses an improved onsets detection

method to solve the case of missing detection at the start and

end of the valley point. It achieves similar performance to the

adaptive cascade filter with less calculation and more robust.
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Fig. 5. Remove the drift process flow diagram. The arrow in the figure E
indicates the baseline drift of the waveform image

IV. METHOD

In this section, we mainly introduce feature engineering

methods and Multi-kernel Convolutional Neural Networks

(MkCNN). The overall framework of the method is shown

in Fig. 6. The framework mainly includes three modules. The

Data Preprocessing and Feature Engineering module provide

the input feature for MkCNN with Single-feature module

and MkCNN with Multi-feature module. Among them, Data

Preprocessing has been introduced in section III-B. The rest

modules will be expanded in this section.

A. Feature Engineering

In this section, we divide the single period of the pulse

signal, and then extract the spatial features and principal

component analysis features.

1) period division: In section III-B2, we use the proposed

onsets detection method to locate the starting point of all

periods accurately, and then we can divide the data into single

periods. In order to calculate the average value of the split

single-period signals, we pad all the single-period signals to

the same length. After zero-padding operation [10], the all

single-period waveforms are shown in Fig. 7(a). We divide the

summation of data by the number of periods to get the average

period as shown in Fig. 7(b); We divide the summation of data

by the maximum value of periods to get the normalized period

as shown in Fig. 7(c). The single-channel pulse data can be

divided into several periods pi, i = 1, · · · , n, and the summed
period data is P .

P =

n∑

i=1

pi (1)

The formula for calculating the average period p̄ and

normalized period p̂ of single-channel data is as follows:

p̄ = 1
nP

p̂ = P
max(P )

(2)

TABLE I FIDUCIAL POINTS OF BLOOD VELOCITY
SIGNAL

Points Feature Meaning

a Onset of one period
b Peak point of primary wave
c Dicrotic notch
d Peak point of secondary wave

a
′

Onset of the next period

2) Spatial Feature: Spatial features can show the amplitude

and duration of key points in a single periodic signal [8].

Taking the average period as an example, the key points in

a waveform is shown in Fig. 8. There are five key points.

Table I describes the meaning of each key point.

After the single-period signal is divided, the key point

detection method is as follows:

• Step 1: Using average period signal data to extract

features, the starting (valley) point of the data is point a,

the time is ta, the peak point is point b, the corresponding

time is tb, the amplitude is hb, and the total length of the

data is T .

• Step 2: Search for the peak of the secondary wave (step
is the empirical value) between [tb+0.5×step, tb+1.5×
step], and record it as point d, the corresponding time is

td, the amplitude is hd. Then searching for the minimum

value between the points b and d, and record it as point

c. The corresponding time is tc and the amplitude is hc.

• Step 3: The formula for calculating the features of the

average period signal is as follows:

Tba

T
=

tb − ta
T

Tcb

T
=

tc − tb
T

Tdc

T
=

td − tc
T

Ta′b

Tba
=

T − tb
tb − ta

(3)

3) Principal Component Analysis Feature: To remove re-

dundant data from the pulse data as much as possible, we per-

formed principal component analysis (PCA) for each channel

separately. The purpose of PCA is to find out the data the

orthogonal direction of strong variability. Given the single-

channel pulse data xi of d dimension, where i = 0, 1, · · · , n,

the orthogonal projection calculation method is as follows:

yi = AT (xi − μ) (4)

Where yi is the converted data, and μ is the average value

of the pulse signal data. The covariance matrix M of pulse

data is defined as:

M =
1

n

n∑

i=1

(xi − μ) (xi − μ)
T

(5)
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Fig. 6. The overall framework of wrist pulse signal classification. CNN* and CNN have different convolution kernel sizes

After the covariance matrix M is obtained, the eigenvalue A
of the matrix M can be obtained by eigenvalue decomposition:

M = AV AT (6)

In order to achieve optimal linear dimensionality reduction,

the p principal component of the least square reconstruction

error is retained, and the reconstruction error is located as:

Ei = |x− μ− yAp|2 (7)

Ap represents the mapping from input data to ideal space

[24]. Finally, we reduce the data dimension from 624 to 20

dimensions, and use it as the PCA feature for subsequent

classification experiment.

B. Deep Learning Model

The overall structure diagram of our proposed Multi-kernel

Convolutional Neural Network (MkCNN) is shown in Fig. 9.

Our method has two variants of pulse data with a different

number of features. MkCNN with single-feature (MkCNN-sf)

and MkCNN with multi-feature fusion (MkCNN-mf).

1) MkCNN-sf: MkCNN with single-feature: The model

structure of MkCNN-sf takes the lower part of Fig. 9 as

an example. The first is the feature fusion of the input

level. Spatial feature Dspa and PCA feature Dpca will be

concatenated to obtain the fusion feature DFPS .

DFPS = Concat ([Dspa, Dpca]) (8)

We use the fusion feature as a single feature in the Input layer.

Using the multi-kernel convolutional neural network to learn

the high-order feature dFPS from DFPS .

In Fig. 9, the different colored dotted boxes represent the

convolutional kernel of different sizes, which is used to capture

pulse data information at different time steps. First, we set

three different sizes of convolution kernels (f1, f2, f3). It’s

1, 5, 10. Perform convolution and pooling operations on

DFPS . After each convolution, use the Rectified Linear Units
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Fig. 7. Period division.(a) denotes All-periods; (b) denotes Average Period;
(c) denotes Normalized Period

Fig. 8. Key points in single period waveform

(ReLU ) activation function to keep the gradient from decay.

The specific formula is as follows:

d1FPS = Maxpool (ReLU (Conv 1D (DFPS , f1)))
d2FPS = Maxpool (ReLU (Conv 1D (DFPS , f2)))
d3FPS = Maxpool (ReLU (Conv 1D (DFPS , f3)))

(9)

Then, the high-order features d1FPS , d2FPS and d3FPS con-

volved by three different convolution kernels are concatenated.

The specific formula is as follows:

dFPS = Concat
([
d1FPS , d

2
FPS , d

3
FPS

])
(10)

Then we through a fully connected network to learn its final

predicted value PFPS , the specific formula is as follows,

where WFPS and bFPS are the weights and biases of the

single-feature DFPS fully connected layer, respectively.

PDRS = WFPS × dFPS + bFPS (11)

2) MkCNN-mf: MkCNN with multi-feature fusion: The

model structure of MkCNN-mf is shown as the whole in Fig.

9. We performed model level fusion for different features.

The size of three convolution kernels (g1, g2, g3) is set to 10,

100, 1000, respectively. Concatenating after convolution and

pooling operations. As follows:

d1DRS = Maxpool (ReLU (Conv 1D (DDRS , g1)))
d2DRS = Maxpool (ReLU (Conv 1D (DDRS , g2)))
d3DRS = Maxpool (ReLU (Conv 1D (DDRS , g3)))

dfps = Concat
([

d1fps, d
2
fps, d

3
fps

]) (12)

Then we perform the model layer fusion of the high-order

features dDRS and dFPS .

Finally, we use the fully connected layer for classification

prediction. Meanwhile, Wf and bf are the weights and offsets

of fully connected layers using multi-input features DDRS and

DFPS , respectively.

P = Wf × Concat ([dDRS , dFPS ]) + bf (13)

3) Model Training: We use the L1-Loss as the objective

function. Besides, we create a criterion that measures the Mean

Absolute Error (MAE) between each element in the input x
and target y. x and y are tensors of arbitrary shapes with a

total of n elements each. The unreduced loss can be described

as:
l(x, y) =L = mean

(
{l1, . . . , lN}1

)

ln = |xn − yn|
(14)

Where N is the batch size. The sum operation still operates

over all the elements, and divides by n.

TABLE II DATASET STATISTICS

Dataset
CAHD-D TCMC-D

CAHD Healty yin yang

Train 77 86 53 47
Test 27 27 19 21
All 104 113 72 68

TABLE III INPUT
FEATURES DETAIL

Input Feature Abbreviation Data length

Original Pulse Signal OPS 40,000
Denoised Pulse Signal DPS 40,000
Drift Removed Signal DRS 40,000
Average Period Signal APS 624

Normalized Period Signal NSS 624
PCA Feature PF 20

Spatial Feature SF 6
Fusion Feature FF 26

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 81 ----------------------------------------------------------------------------



Fig. 9. Multi-kernel Convolutional Neural Network. Using L and R to represent the left and right hands, for example, L− cun represents the cun position
pulse data of the left wrist, and R− guan represents the guan position pulse data of the right wrist

V. EXPERIMENTS

In this section, we introduce the experiment setting, and

we show sufficient experimental results and analyze the

experimental results in detail. The results demonstrate the

effectiveness of our work.

A. Experiment Setting

In this section, we present the dataset, the important hy-

perparameter settings during the deep learning model training

process, evaluation metrics, and the traditional machine learn-

ing models we compared.
1) Datasets: Using the volunteer’s pulse signal data col-

lected from different regions of China, we construct two

datasets. One is the Coronary Atherosclerotic Heart Disease

Pulse Dataset (CAHD-D), which collect a single-channel sig-

nal at the guan position of the left hand. The other is the TCM

Constitution yin deficiency and yang deficiency Pulse Dataset

(TCMC-D) which collect on the six positions of cun, guan, chi

on the left and right hand respectively. TCM experts label the

constitution dataset in combination with TCM standards. The

statistical information of the two datasets is shown in Table

II:
2) Training Details and Parameters Setting: We employ

the PyTorch framework to implement the proposed MkCNN-

sf and MkCNN-mf. We set three different sizes of convolution

kernels for different feature inputs. After model level fusion,

our set dropout rate to 0.5. The initial learning rate is set to

0.01. When the accuracy on the test set has not improved for

fifty consecutive epochs, the training is terminated. All of our

results are the average of 5 round experiments.

3) Evaluation Metrics: We use five cross-validation as the

final experimental evaluation result. We use the four evaluation

metrics: Accuracy, F1-score, Sensitivity, and Specificity to

evaluate the performance of our method. Accuracy shows the

ratio of the number of samples of the model prediction pair

to the total number of samples.

According to the Fig. 10. The four evaluation metrics are

defined as follows:

Accuracy = TP+TN
TP+TN+FP+FN

F1-score = 2TP
2TP+FP+FN

Sensitivity = TP
TP+FN

Specificity = TN
FP+TN

(15)

Fig. 10. Confusion Matrix
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4) Compared Method: Linear Discriminant Analysis
(LDA): [25] LDA is a linear classification method. Tak-

ing binary classification as example, given dataset D =
{(xi, yi)}mi=1 , yi ∈ {0, 1}, the mean vector and covariance

matrix of samples i ∈ 0, 1 type are represented by μi, ωi,
respectively. The distance between the two categories after

the projection can be expressed as the distance between

the center points of the category
∥∥ωTμ0 − ωTμ1

∥∥2
2
, the dis-

tance between the sample points within the two categories is

ωTΣ0ω+ωTΣ1ω. In order to maximize the distance between

categories and minimize the distance of sample points within

the category after projection, the optimal projection direction

can be obtained by solving this problem. The optimization

function of LDA is:

max
ω

∥∥ωTμ0 − ωTμ1

∥∥2
2

ωTΣ0ω + ωTΣ1ω
(16)

Linear Support Vector Machine (SVM-linear): [26]

SVM-linear is a linear classifier defined in the feature space.

The learning strategy is to maximize the interval of the

categories. The optimization of linear separable SVM can be

expressed as the following convex quadratic problem:

min
w,b

1

2
‖w‖2

s.t. yi (w · xi + b)− 1 � 0, i = 1, 2, · · · , N
(17)

ω is the normal vector on the hyperplane where the sample

points (xi, yi) , i = 1, 2, · · · , N locate, and b is the intercept.

Given a linearly separable train set, the separation hyperplane

obtained by solving the above convex quadratic problem:

ω∗x+ b∗ = 0 (18)

The corresponding classification decision function as follows:

f(x) = sign (ω∗x+ b∗) (19)

Support Vector Machine with Radial Basis Function ker-
nel (SVM-rbf): The basic model SVM is a linear classifier,

but the introduction of kernel trick makes it a substantially

nonlinear classifier. Commonly used kernel functions are radial

basis function, polynomial kernel function, etc. The expression

of the radial basis function is as follows:

K(x, z) = exp

(
−‖x− z‖2

2σ2

)
(20)

After using this kernel function, the classification decision

function of SVM is as follows:

f(x) = sign

(
Ns∑

i=1

a∗i yi exp

(
−‖x− xi‖2

2σ2

)
+ b∗

)
(21)

σ is a free parameter and a∗, b∗ are the parameters learned

after model training.

Extreme Gradient Boosting (XGBoost) XGBoost is an

improved algorithm of Gradient Boosting Decision Tree

(GBDT), and is the integration of several Classification And

Regression Tree (CART). XGBoost’s objective function is as

follows:

L(φ) =
∑

i

l (ŷi, yi) +
∑

k

Ω (fk) (22)

Compared with GBDT, the objective function of XGBoost has

more regular items, making the learning model more difficult

to overfit. The regular term function is as follows:

γ and λ are coefficient terms.

Ω(f) = γT +
1

2
λ‖ω‖2 (23)

T is the number of leaf nodes used to control the complexity

of the tree. The weights ω is the leaf nodes of each tree, and

the other part is the quadratic sum of ω. γ and λ are coefficient

terms.

B. Experimental Results

In this section, we conduct classification experiments from

three perspectives (input features, classification models, and

pulse signal collect positions.) on two datasets.

To explore the performance of different input features, we

utilize eight kinds of features, among which the fusion feature

means concatenated the PCA feature and Spatial feature. The

details are shown in Table III.
1) Compare Different Input Features: On the CAHD

dataset, we use MkCNN model to compare the performance

on 8 different single-features and a multi-feature which use

Drift Removed Signal and Fusion Feature as input features

simultaneously. The experimental results is shown in Table 4.

Because of deep learning can automatically extract features

from the original data, we explored the performance of single

features in the preprocessing stage. The Drift Removed Signal

after preprocessing achieved the best performance. This shows

that preprocessing is very necessary.

At the stage of feature extraction, the Fusion Feature per-

formance is better than PCA Feature or Spatial Feature. This

shows that it is meaningful to combine the different types of

features. Table V shows the parameters and the average time

of 5 epochs during training MkCNN.

So, we choose the Drift Removed Signal and Fusion Fea-

ture as the input features of MkCNN-mf. As we expected,

our proposed MkCNN-mf achieved the best results on the

three evaluation metrics. Compared to the Fusion Feature, the

multi-feature accuracy rate has been improved by 5.1%, F1

and sensitivity have achieved huge improvements of 15.58%

and 19.62% respectively. The classification results using the

multi-feature have achieved a more balanced effect from the

confusion matrix (as shown in Fig. 11).
2) Compare Different Classification Models: Based on the

above experiments, we obtain the pulse signal data with the

best performance in different preprocessing stages. Therefore,

we use Drift Removal Signal, Fusion Feature as input features,

and compare the effectiveness of the five models (XGBoost,

SVM-linear, SVM-bf, LDA and MkCNN) on CAHD dataset.

The experimental results are shown in Table VI:

Our MkCNN model achieves the best performance in all

evaluation metrics, and it improves 8.07% in accuracy and
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TABLE IV THE COMPARISON EXPERIMENT RESULTS OF DIFFERENT INPUT
FEATURES

Input Feature Model CAHD-D
ACC F1 Sensitivity Specificity

OPS MkCNN-sf 0.8705 0.8154 0.7751 0.9601
DPS MkCNN-sf 0.8751 0.8529 0.8124 0.9410
DRS MkCNN-sf 0.8776 0.7660 0.7393 0.9767
APS MkCNN-sf 0.8395 0.7521 0.6780 0.9733
NPS MkCNN-sf 0.8656 0.8184 0.7592 0.9397
PF MkCNN-sf 0.8656 0.8201 0.7486 0.9509
SF MkCNN-sf 0.5951 0.4174 0.5310 0.5455
FF MkCNN-sf 0.8684 0.7606 0.6920 1

DRS + FF MkCNN-mf 0.9194 0.9164 0.8882 0.9398

TABLE V PARAMETERS AND AVERAGE TIME OF EACH EPOCH BY USING

FUSION FEATURE AND NORMALIZED PERIOD SIGNAL

Input feature Parameter Average time(ms)

Fusion Feature 24051 6.14
Normalized Period Signal 43751 6.90

TABLE VI THE COMPARISON EXPERIMENT RESULTS OF DIFFERENT

CLASSIFICATION MODELS

Model Input Feature CAHD-D
Accuracy F1-score Sensitivity Specificity

SVM-rbf DRS 0.7317 0.5934 0.5568 0.8839
SVM-rbf FF 0.6327 0.5131 0.5117 0.7000
SVM-rbf DRS + FF 0.7363 0.5967 0.5568 0.8916

LDA DRS 0.4427 0.3453 0.3174 0.5515
LDA FF 0.7632 0.7325 0.7137 0.7955
LDA DRS + FF 0.5094 0.4795 0.4826 0.5363

SVM-linear DRS 0.4898 0.4434 0.4421 0.5582
SVM-linear FF 0.8387 0.7907 0.7261 0.9285
SVM-linear DRS + FF 0.6212 0.5882 0.5850 0.6562

XGBoost DRS 0.5248 0.4616 0.4302 0.6051
XGBoost FF 0.7649 0.7901 0.8530 0.6883
XGBoost DRS + FF 0.7454 0.7720 0.8530 0.6519

MkCNN-sf DRS 0.8612 0.7710 0.7222 0.9813
MkCNN-sf FF 0.8684 0.7606 0.692 1
MkCNN-mf DRS + FF 0.9194 0.9164 0.8882 0.9398

12.57% in F1-score compared with the best results of the four

traditional machine learning methods. From Fig. 12, we can

see that MkCNN has achieved the best results in accuracy and

specificity on the three types of inputs.

3) Compare Different Pulse Channels: Based on the ex-

periments in the previous sections, we directly select the Drift

Removed Signal and Fusion Feature multi-features as input

features. Then we conduct different pulse position experiments

on the TCMC dataset. We regard pulse data collected at

different positions as different channels. Among them, L-cun,

L-guan, L-chi, R-cun, R-guan, R-chi correspond to channel

0#, 1#, 2#, 3#, 4#, 5#. We not only use the single channel, but

also using the combined channels. The experimental results

are shown in Table VII.

In the experiment of 63 different channel combinations, we

ranked the experimental results according to the performance

of the accuracy. The combination with the highest accuracy

TABLE VII THE COMPARISON EXPERIMENT RESULTS OF THE TCMC
CLASSIFICATION TASK CHANNEL COMBINATION

Channel TCMC-D
Accuracy F1-score Sensitivity Specificity

3# 0.5333 0.5781 0.7460 0.2982
1#, 3# 0.5500 0.6143 0.7302 0.3509

1#, 2#, 3# 0.5583 0.7014 0.9841 0.0877
1#, 3#, 5# 0.5667 0.4514 0.3492 0.8070
1#, 3#, 4# 0.5667 0.6548 0.8095 0.2982

0# 0.5667 0.6744 0.8571 0.2456
0#, 3# 0.5667 0.6402 0.7619 0.3509

1#, 2#, 3#, 5# 0.5750 0.5649 0.5397 0.6140
5# 0.5750 0.4941 0.4444 0.7193

0#, 4# 0.5750 0.5324 0.5397 0.6140
2#, 4# 0.5750 0.6688 0.8254 0.2982

4# 0.5833 0.6477 0.7937 0.3509
1#, 2#, 4#, 5# 0.5833 0.6247 0.6984 0.4561

3#, 4# 0.5833 0.5452 0.4921 0.6842
1#, 2#, 5# 0.5833 0.4523 0.3333 0.8596

1#, 2# 0.5833 0.6192 0.6667 0.4912
1#, 2#, 4# 0.5833 0.4975 0.4762 0.7018

1#, 4# 0.5833 0.5509 0.5079 0.6667
0#, 1#, 3# 0.5917 0.5229 0.4603 0.7368

0#, 1#, 2#, 4# 0.5917 0.6874 0.8730 0.2807
2#, 3# 0.5917 0.6251 0.6508 0.5263
2#, 5# 0.5917 0.6635 0.7937 0.3684

0#, 1#, 3#, 4# 0.5917 0.6236 0.6825 0.4912
0#, 1#, 2#, 3# 0.6000 0.5347 0.5397 0.6667
1#, 2#, 3#, 4# 0.6000 0.6261 0.6667 0.5263

3#, 5# 0.6083 0.5505 0.5079 0.7193
2# 0.6083 0.5017 0.3810 0.8596

2#, 3#, 5# 0.6083 0.6422 0.6825 0.5263
3#, 4#, 5# 0.6083 0.5337 0.4286 0.8070

2#, 3#, 4#, 5# 0.6167 0.4885 0.3810 0.8772
0#, 2#, 3# 0.6167 0.5841 0.5397 0.7018

0#, 1#, 2#, 3#, 5# 0.6167 0.5665 0.5079 0.7368
1#, 2#, 3#, 4#, 5# 0.6167 0.5635 0.5079 0.7368

1# 0.6167 0.6675 0.7778 0.4386
0#, 2# 0.6250 0.5423 0.4286 0.8421

2#, 4#, 5# 0.6250 0.4816 0.3333 0.9474
0#, 1#, 2# 0.6250 0.5186 0.3968 0.8772

1#, 3#, 4#, 5# 0.6250 0.6022 0.5397 0.7193
0#, 1#, 2#, 3#, 4# 0.6250 0.6763 0.7460 0.4912

2#, 3#, 4# 0.6333 0.6230 0.6190 0.6491
0#, 2#, 3#, 4# 0.6333 0.6659 0.6984 0.5614

0#, 3#, 4# 0.6333 0.6585 0.6984 0.5614
0#, 2#, 4# 0.6417 0.6421 0.6508 0.6316

0#, 1# 0.6417 0.5826 0.4762 0.8246
0#, 5# 0.6417 0.6740 0.7143 0.5614

0#, 1#, 4# 0.6417 0.6227 0.5873 0.7018
0#, 3#, 5# 0.6417 0.6879 0.7619 0.5088

1#, 5# 0.6500 0.6663 0.6667 0.6316
0#, 1#, 5# 0.6583 0.6426 0.5873 0.7368
1#, 4#, 5# 0.6667 0.6587 0.6190 0.7193

0#, 2#, 3#, 5# 0.6667 0.6760 0.6667 0.6667
4#, 5# 0.6750 0.6051 0.4762 0.8947

0#, 1#, 3#, 5# 0.6833 0.6895 0.6984 0.6667
0#, 1#, 2#, 5# 0.6917 0.6716 0.6190 0.7719

0#, 2#, 5# 0.7000 0.7028 0.6825 0.7193
0#, 3#, 4#, 5# 0.7000 0.7444 0.8413 0.5439

0#, 2#, 3#, 4#, 5# 0.7083 0.7482 0.8254 0.5789
0#, 1#, 3#, 4#, 5# 0.7417 0.7607 0.7937 0.6842

0#, 1#, 4#, 5# 0.7417 0.7624 0.7937 0.6842
0#, 1#, 2#, 4#, 5# 0.7500 0.7695 0.7937 0.7018

0#, 4#, 5# 0.7583 0.7973 0.9048 0.5965
0#, 1#, 2#, 3#, 4#, 5# 0.7667 0.7878 0.8254 0.7018

0#, 2#, 4#, 5# 0.7833 0.8056 0.8571 0.7018
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TABLE VIII THE TOP 20 ACCURACY ON THE TCM CONSTITUTION

CLASSIFICATION TASK

Input Feature Model Channel ACC F1 sensitivity specificity

DRS + FF MkCNN-mf 0#, 2#, 4#, 5# 0.7833 0.8056 0.8571 0.7018
FF XGBoost 5# 0.775 0.7805 0.7619 0.7895
FF MkCNN-sf 0#, 2#, 4#, 5# 0.7667 0.7737 0.7619 0.7719

DRS + FF MkCNN-mf 0#, 1#, 2#, 3#, 4#, 5# 0.7667 0.7878 0.8254 0.7018
DRS + FF MkCNN-mf 0#, 4#, 5# 0.7583 0.7973 0.9048 0.5965
DRS + FF MkCNN-mf 0#, 1#, 2#, 4#, 5# 0.75 0.7695 0.7937 0.7018

FF MkCNN-sf 0#, 4#, 5# 0.7417 0.7514 0.746 0.7368
FF MkCNN-sf 0#, 1#, 4#, 5# 0.7417 0.7576 0.7778 0.7018

DRS + FF MkCNN-mf 0#, 1#, 3#, 4#, 5# 0.7417 0.7607 0.7937 0.6842
DRS + FF MkCNN-mf 0#, 1#, 4#, 5# 0.7417 0.7624 0.7937 0.6842

FF MkCNN-sf 0#, 1#, 2#, 4#, 5# 0.7333 0.7541 0.7778 0.6842
FF MkCNN-sf 0#, 1#, 3#, 4#, 5# 0.7333 0.7703 0.8571 0.5965

OPS LDA 2# 0.725 0.7179 0.6667 0.7895
DRS + FF SVM-linear 3# 0.725 0.7179 0.6667 0.7895

DRS SVM-linear 3# 0.725 0.7317 0.7143 0.7368
PF MkCNN-mf 0#, 3#, 4#, 5# 0.7167 0.7137 0.6825 0.7544
PF MkCNN-mf 0#, 1#, 3#, 4#, 5# 0.7167 0.7201 0.6984 0.7368

DRS MkCNN-mf 0#, 1#, 2#, 3#, 5# 0.7167 0.7256 0.7302 0.7018
FF MkCNN-mf 0#, 3#, 4#, 5# 0.7167 0.7306 0.7302 0.7018

DRS MkCNN-sf 2#, 3# 0.7167 0.7539 0.8254 0.5965

(a) (b)

Fig. 11. CAH Disease classification confusion matrix. (a) means using FF
single-feature; (b) means using DRS and FF multi-feature

and F1 is 0#, 2#, 4#, 5# channels whose accuracy is 16.7%

higher than the best single-channel (1#). This proves that

channel combination can greatly improve the performance of

pulse signal classification.

In addition, based on the Drift Removed Signal and Fusion

Feature multi-feature as input, we test six single-channel and

best-performing two-channel 4#, 5# (b 2), three-channel 0#,

4#, 5#, (b 3), four-channels 0#, 2#, 4#, 5# (b 4), five-channels

0#, 1#, 2#, 3#, 4#, 5# (b 5) and six-channels (all) results on

five different classification models. As shown in Fig. 13, the

four methods such as LDA, SVM-linear, SVM-rbf, and XG-

Boost have darker color blocks on a single-channel than multi-

(a) (b)

Fig. 12. Comparing the performance of different classification models. (a) is
Accuracy performance; (b) is Specificity performance.

channel combinations. On the contrary, MkCNN achieves

better results on all multi-channel combinations. By comparing

the distribution of dark blocks in different models, it also

proved that the traditional machine learning classifier is more

suitable for processing simpler data. However, MkCNN can

effectively learn complementary information between multi-

channel data, and achieve better classification performance.

Comparing the best performance of different input
features, different classification models, and different pulse
channel combinations: Inspired by the above experiments,

we conduct 2853 sets of experiments which consist of 8 input

features, 5 classification models, and 63 channel combination

methods. Table VIII shows the experimental results and dif-

ferent settings of the TOP 20 accuracy performance.

We achieve the best accuracy, F1-score and Sensitivity using
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Fig. 13. Performance visualization of the single-channel and multi-channel
pulse signals under different classification models. The darker the color, the
higher the accuracy.

Drift Removed Signal and Fusion Feature on MkCNN-mf

when channel combination is 0#, 2#, 4#, 5#. What’s more,

our model also achieves better performance than traditional

computational pulse signal analysis method on the TCMC

dataset, which proves the effectiveness of research ideas in this

paper. There are 16 experiments using the combined channel

in Table VIII. This shows that the use of pulse signals from

multiple positions on the wrist is helpful for TCM constitution

analysis.

VI. CONCLUSION

In this paper, we innovatively integrate deep learning meth-

ods into pulse signals analysis. We propose the Multi-kernel

Convolutional Neural Network for wrist pulse analysis, and

use it to explore the combined experiments of different features

and channels. Compared with the traditional computational

pulse signal analysis methods, our method achieves the best

performance on Coronary Atherosclerotic Heart Disease Clas-

sification task and TCM Constitution Classification task. The

results indicate our work is meaningful in wrist pulse analysis.

In the future, we will introduce image data from tongue

diagnosis and face diagnosis to our model, and explore how

to effectively integrate pulse signals with medical images to

better analyze diseases and TCM constitution.
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