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Abstract—Today, enterprise modelling is still a highly manual
task. There are exist some assistance techniques but they are
mostly limited to pattern libraries and pre-defined rules, which
limits their functionality and makes them non-flexible. Appli-
cation of machine learning techniques to support enterprise
modelers is a promising approach. However, one of the main
problems in this area today is the absence of model repositories
that could be used for training what causes the necessity to
train machine learning models on small data. In this paper
we study which textual information from the model and how
can be used to increase the efficiency of the edge prediction
task, which is one of the key tasks in graph-structured problems
like enterprise modelling. The comparative analysis shows that
application of FastText method provides a better result for
node names embedding, and consideration of node names and
descriptions significantly increases the edge prediction quality.
The built model has been successfully validated on a test case
scenario simulating the enterprise model building process.

I. INTRODUCTION

Enterprise modelling is currently of high demand due to

increasing progress pace and intensive penetration of infor-

mation technologies into various business processes [1]. These

processes cause continuous changes in companies going along

with such trends as digitalization (integration of digital tech-

nologies into everyday life [2]), introduction of smart product-

service systems (intelligent products and services integrated

into through information and communication technologies

[3]), quantified products (products capable of collecting and

analyzing various usage data during operation, not only on

the level of a single product instance but for a complete fleet,

which allows for new data services and service ecosystems

[4]), etc. All these trends require companies to adapt and

change their architectures and business processes. As a result,

various enterprise models have to be designed quite often.

However, enterprise modelling is still a highly manual process

that requires the modeler to analyze multiple existing models

to evaluate the efficiency of solutions [5].

There have been developed different techniques to support the

modeler, such as pattern libraries, automated model syntax

checking, autocompletion, domain dictionaries, and others.

However, currently all of them provide very limited level

of automation and are based on pre-defined libraries or rule

bases. In the previous publication [6] the authors of this

paper proposed application of machine learning techniques to

support enterprise modelers at various stages of model build-

ing. The research was aimed at studying enterprise modelling

assistance possibilities that could be provided by graph neural

networks. Conducted experiments have demonstrated that such

possibilities are promising. However, one of the main problems

today is the absence of repositories of multiple enterprise

models of decent quality so it was necessary to collect own

training dataset consisting of about 100 models and experiment

with small data.

One of the tasks to be solved with the use of graph neural

networks outlined in the paper was edge prediction (the task

of predicting whether two nodes in a graph are likely to have

a link or not). From the enterprise modelling point of view,

this task could be applied to such modelling automation tasks

as:

- suggestion of possibly existing connections (the modeler

adds a new node to the model, and the modelling environment

should suggest its connections to other existing nodes of the

model);

- identification of likely wrong edges (the modeler adds a

wrong connection by mistake, and the modelling environment

should identify the problem).

Due to the limited volume of training data, it is important

to consider as much information as possible. Textual node

information (name, type and description) can be considered

as such additional information. Thus, in this paper we report

the research on how to use the textual node information in a

deep neural network model to solve the edge prediction task

in a more efficient way. As a result, the following research

questions were formulated:

1. What would be a more efficient embedding method to

capture the semantic information from the nodes’ names in

order to achieve better edge prediction?

2. What textual node attributes should be used to achieve better

prediction results?

The rest of the paper is structured as follows. The related

work is presented in section 2, Section 3 introduces the

research approach including the used dataset and the method

used for edge prediction. Experimental evaluation and results
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discussion are presented in Section 4. Finally, the conclusions

are drawn in section 5.

II. RELATED WORK

A. Edge prediction

Existing methods for edge prediction can be classified into

three categories: path-based methods, embedding methods, and

graph neural networks.

The path-based methods predict the edges by computing the

similarity between two nodes based on the weighted count of

paths (personalized PageRank [7]) or the length of the shortest

path (graph distance [8]). More recent path-based methods

like Path-RCNN [9] and PathCon [10] encode each path using

recurrent neural networks and aggregate paths for predicting

the edge. These methods are limited to short paths that consist

of less than four edges.

The embedding methods learn the distributed representation of

the nodes and edges in the graph. Some of these methods are

applied to homogeneous graphs (e.g., Deepwalk [11] learns

the representation by modelling a stream of short random

walks). These representations are latent features that capture

the neighborhood similarity. Others are applied to knowledge

graphs like TransE [12] or RotatE [13]. Further research efforts

in this field try to improve the embedding by introducing new

score functions [14], [15] to capture the semantic patterns

of the relations. However, these methods are not capable of

encoding subgraphs between node pairs.

The graph neural networks (GNN) is a type of neural networks

designed for learning over graphs. The GNN usually consists

of graph convolutional layers and graph aggregation layers.

The convolutional layers aim to extract the local substructure

features for nodes, while the aggregation layers aggregate the

node-level features into graph-level feature vector. One of

the most popular methods for GNN is Graph convolutional

networks (GCN) [16], The GCN generalize the convolution

operation from euclidean data to graphs by using the Fourier

basis of the given graph. GraphSAGE [17] samples a fixed-

sized of neighborhood nodes and then aggregates neighbor

information using different strategies. DGCNN [18] proposes

a layer to sort the graph vertices in a consistent order (Sort-

Pooling) and then uses a traditional 1-D convolutional neural

network. For edge prediction, The authors of paper [19] apply

the DGCNN to learn link representation for link prediction

after labeling the nodes according to their distances to the

source and the the target nodes. the authors of paper [20] use

a similar trick as [19] by labeling the nodes based on the

shortest distances to target nodes.

B. Word embedding

Word embeddings are a real-valued representation vectors that

encode the meaning of the words, where words with similar

meaning are also close in the vector space. Representing

the textual data in a mathematical form makes it possible

for the computers to handle and deal with these data. The

word embedding method can be classified into two categories:

(1) static models such as GLOVE [21], Word2Vec [22], and

FastText [23] don’t capture the contextual meaning (in other

words, they map the words into vectors ignoring the fact that

the same string of letters may have different meanings); (2)

contextual embedding models such as BERT [24] embed the

the contextual information into the word representations as

well.

C. Sentence embedding

Sentence embedding techniques represent the entire sentences

as vectors capturing their semantic meaning. This helps the

computers to understand the intention and the context in the

entire text. Doc2Vec [25] is one of the common techniques

and it is considered as an extension to the Word2Vec [22].

It uses the Word2Vec model and adds on it by introducing

another vector (Paragraph ID). There are 2 ways to add the

paragraph vector to the model: (1) the distributed Memory

version of Paragraph vector and (2) the bag of words version.

SentenceBERT [26] uses a Siamese network-like architecture

[27] to provide 2 sentences as an input. These 2 sentences are

then passed to BERT models and a pooling layer to generate

their embeddings. Then the embeddings are used for the pair

of sentences as inputs to calculate the cosine similarity.

InferSent [28] like SentenceBERT takes a pair of sentences

and encodes them to generate the actual sentence embeddings.

Then, it extracts the relations between these embeddings using

concatenation, element-wise product and absolute element-

wise difference.

Universal Sentence Encoder [29] is one of the most well-

performing sentence embedding techniques that can be used

for Multi-task learning. This encoder is based on two encoder

models: Transformer and Deep Averaging Network (DAN).

Both models can generate a sentence embedding by lower-

casing the sentence, tokenizing it, and converting it into 512-

dimensional vector. The DAN computes the unigram and bi-

gram embeddings and averages them to get a single embedding

that is then passed to a deep neural network to get the final

embedding.

The authors of paper [30] proposed an effective knowledge

distillation method to compress large transformer-based mod-

els by training a student model via mimicking the teacher’s

self-attention modules. In addition, they proposed to use the

self-attention distributions and value relation of the teacher’s

last transformer layer to guide the training of the student.

The resulted student models (such as all-MiniLM-L6-v2) were

smaller but achieved high accuracy.

In this paper, we use the pretrained all-MiniLM-L6-v2 model,

trained using the XLM-RBase [31] as the teacher. The main

reason to choose this model is that it has a high encoding

speed and good mean accuracy of 68.06% over 14 different

datasets.
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III. RESEARCH APPROACH

A. Dataset

The used dataset consists of 112 models with total number

of edges equal to 3259 and total number of nodes equal to

3058 (see [6] for details). The models in the dataset belong

to 8 different classes: (1) Business Process Model, (2) Actors

and Resources Model, (3) 4EM General Model, (4) Concepts

Model, (5) Technical Components and Requirements Model,

(6) Product-Service-Model, (7) Goal Model, and (8) Business

Rule Model. Fig.1 shows the data distribution according to the

model classes.

Fig. 1. The distribution of the data according to the model classes

Each node has three textual attributes: name, class name,

and description. The description is a sentence that explains

the functionality of the node, while the class name is the

category of the node and can be one of the following 23

classes: (1) Relation, (2) Attribute, (3) Cause, (4) Comment,

(5) Component, (6) Concept, (7) Constraint, (8) Development

Action, (9) External Process, (10) Goal, (11) Feature, (12)

Organizational Unit, (13) IS Requirement, (14) IS Technical

Component, (15) Individual, (16) Information Set, (17) Role,

(18) Resource, (19) Rule, (20) Process, (21) Problem, (22)

Unspecific/Product/Service, and (23) Opportunity. Fig.2 shows

the data distribution according to the nodes class name.

The edges connect the models’ nodes and have two attributes:

the class name, and the description. The class name describes

the category of the edge. In the used dataset all the edges

belong to class 4EM Relation. The edge description is a

Fig. 2. The distribution of the data based on the nodes class name

sentence that describes the relationship between connected

nodes. Only 223 out of 3259 edges in the dataset have a

description. So they were excluded from the consideration.

Fig.3 shows an example of a model from the dataset that

belongs to the class “Business process Model”.

B. Methodology

The edge prediction task is aimed to predict the connection

between two nodes in an enterprise model. We used graph

neural network to solve this task. Its architecture is presented

in Fig. 4. The model consists of three GCNConv (graph

convolution) layers. It takes the graph represented by the

nodes and edges as the input and returns the probability of

two nodes to be connected by an edge. As it was mentioned

in the Introduction, we investigate two questions: (1) finding

the best embedding method to use for capturing the semantic

information from the nodes’ names in order to achieve better

edge prediction (for that purpose, we looked into two methods:

the word2vec method and the FastText method); (2) finding

the best nodes attributes to use for achieving a better prediction

results.

The all-MiniLM-L6-v2 transformer [30] was used for embed-

ding the nodes description attrribute.

1) Word2Vec embedding method: Word2Vec [22] is one of

the most popular techniques to learn word embedding using

shallow neural network. It can be obtained using two methods:

Common Bag Of Words (CBOW) and Skip Gram. The CBOW

method takes the context of each word in the neighborhood

of the target word as the input and tries to predict the word

corresponding to the context. The neighborhood is a window

of predefined s ize s urrounding t he t arget w ord. O n t he other

hand, the Skip Gram predicts the context for the given word:

the target word is fed into the network and the Skip Gram
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Fig. 3. A sample model from the dataset

Fig. 4. The model architecture used for edge prediction

predict its location in the sentence. While the first method is

faster and has better representations for more frequent words,

the latter works better with small amount of data and is capable

of representing rare words.

2) FastText embedding method: FastText [23] is a method for

word embedding, which depends on breaking the words into

several sub-words (n-grams) instead of feeding them directly

to the neural network. In other words, the representations are

learnt for the n-gram characters, and the words represented

as the sum of the n-gram vectors. After training the neural

network, one gets word embeddings for each of the n-grams.

This helps in representing rare words as their n-grams are

more likely appear in n-grams for other words. It also helps

to understand the suffixes and prefixes.

IV. EXPERIMENTS AND EVALUATION

In the conducted experiments, the dataset was split into 98

graphs for training and 14 graphs for testing. No data augmen-

tation were performed. One suggestion for data augmentation

was to use the graph truncation approach to generate more

data. However, such an approach can lead to an over-fitting,

because the features fed to the model are textual. In other

words, the same textual information (nodes’ names and nodes’

descriptions) will appear in the training dataset several times

(in the original sample and in all truncated samples), and

this will led to over-fitting on these data. To answer the

first research question we conducted three experiments using

the model shown in Fig.4 with Adam optimizer, learning

rate 1e-4, batch size 16, and the binary cross entropy(BCE)

as a loss function. We chose the BCE because the edge

prediction problem is a classification problem (one needs to

classify whether the edge exists (True) or not (False)). In the

experiments, the input to the model was the graph topology

and the embedded nodes’ names. In the first experiment, the

nodes’ names were embedded using the Word2Vec skip-gram

method, while in the second experiment the used embedding

method was FastText skip-gram, and in the last experiment we

used the pre-trained all-MiniLM-L6-v2 sentence embedding

model to embed the nodes’ names. The word2vec and the

FastText were trained on all the words that appears in the

dataset including the words in the nodes’ descriptions, names,

class names, and the edges’ descriptions. The reason we chose

the skip-gram model for both FastText and Word2Vec is that

it works well with a small amount of the training data such

as our case, and it has well representation for rare words.

Table I shows the testing performance represented by the 
area under the receiver operating characteristic curve (ROC 
AUC) for Entriprise modelling edge prediction task based on 
the graph topology and the nodes’ names embedded using 
the Word2Vec, FastText and the all-MiniLM-L6-v2 methods. 
The all-MiniLM-L6-v2 embedding produced better results 
compared to the other classical word embedding methods (just 
slightly better than FastText). However, this pre-trained model
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embeds each word into a vector of 384 dimensions, while

the other two were trained to embed the word to a vector

of 9 dimensions, which is more efficient, t hus i n t he further

experiments, we will go with the FastText embedding method.

The vector length affects the model size. The higher the vector

length, the higher computational power required. we chose the

length to be 9 because it was the minimum length that achieves

good results. In addition, for fastText, the regular unigram

word handling was used, thus the word wasn’t broken into

parts, but used as it is.

TABLE I COMPARISION BETWEEN WORD2VEC, FASTTEXT, AND

ALL-MINILM-L6-V2 EMBEDDING METHODS

The used embedding method ROC AUC
Word2Vec 0.8592
FastText 0.9196

all-MiniLM-L6-v2 0.9218

To answer the second research question we conducted eight

experiments using the neural network model shown in Fig.4

with Adam optimizer, learning rate 1e-4, batch size 16, and

BCE as a loss function.

For each experiment, different features were used. While

in the first experiment, we only used the graph topology,

by that we mean the graph represented by its nodes and

the connections between these nodes (the edges), without

taking into consideration any other attributes. In the rest of

experiments, we used in addition to the graph topolgy, different

nodes’ attributes. For node name, the FastText method were

used for embedding as it showed better results compared to the

Word2Vec. While the all-MiniLM-L6-v2 sentence embedding

[32] was used for embedding the nodes’ description into a

vector of 384 dimensions. For the nodes’ class name, a simple

label encoding was used.

Table. II shows the features used in each experiments in

addition to the testing ROC AUC. It can be seen that node

name and node description turn out to be the most valuable

textual information for edge prediction, whereas node class

name doesn’t help and even introduces some disturbance.

Besides the model evaluation above an additional experiment

involving a domain expert has been carried out in order to

analyse if the built model can be potentially useful for an

enterprise modeler. For evaluation of the built GNN model, a

test case model shown in Fig.5 was chosen. It is introduced

by [33], is not related to the training set, and has never

been ”seen” by the GNN model. The evaluation was aimed

at simulation of the modeler activity (step by step enterprise

model building). For this purpose we generated several ”par-

tial” models that illustrate the test case model at different

building stages with a missing edge. The pre-trained GNN

model shown in Fig.4 with features (graph topology, nodes’

names, and nodes’ descriptions) was used to predict to which

of the test case model nodes the newly added (not connected)

Fig. 5. The test case model

node should be connected. For this purpose, all the possible

edges between the existing nodes and the newly added node

are generated, the GNN predicts the probability for each edge,

and the edge with the highest probability is suggested to the

user.

Fig. 6 - Fig. 10 show the partial models fed to the GNN with

missing edges illustrated by dashed lines. Table III - Table VII

show the probabilities of the edges between the model nodes

and the newly added node.

One can see, that the edge predictions for partial models 1,

2, and 4 the predictions were correct. For partial model 3 the

prediction was wrong, however, the correct edge also has a

high probability (0.859). In the implementation this situation

can be processed as top n suggestions, or several suggestions

with the probability above a certain threshold. For partial

model 5 the result is also wrong, and the correct edge again has

the second highest probability. The domain expert confirmed

that provided recommendations can indeed facilitate the model

development process.

Fig. 6. Partial model 1 with a missing edge from Information Set-1 to
Process-2
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TABLE II CONDUCTED EXPERIMENTS TO CHOOSE THE BEST FEATURES FOR EDGE
PREDICTION TASK

Experiment Used features number of features ROC AUC
1 graph topology 0 0.5463
2 graph topology + node class name 1 0.6238
3 graph topology + node name 9 0.9196
4 graph topology + node name+ node class name 10 0.6299
5 graph topology + node description 384 0.9619
6 graph topology+ node class name+ node description 385 0.7643
7 graph topology + node name+ node description 393 0.9851
8 graph topology+ node name+ node class name+ node description 394 0.9747

TABLE III THE RESULTS OF THE GNN FOR PREDICTING THE MISSING

EDGE OF PARTIAL MODEL 1 (FIG.6)

source node target node Probability Suggestion
Information Set - 1 Process - 2 0.4828 **
Process - 1 Process - 2 0.4776

Fig. 7. Partial model 2 with a missing edge from Process-2 to Information
set-2

TABLE IV THE RESULTS OF THE GNN FOR PREDICTING THE MISSING EDGE

OF PARTIAL MODEL 2 (FIG.7)

source node target node Probability Suggestion
Information Set - 1 Information Set - 2 0.4545
Process - 1 Information Set - 2 0.4766
Process - 2 Information Set - 2 0.4828 **

TABLE V THE RESULTS OF THE GNN FOR PREDICTING THE MISSING

EDGE OF PARTIAL MODEL 3 (FIG.8)

source node target node Probability Suggestion
Information Set - 1 Information Set - 3 0.4682
Information Set - 2 Information Set - 3 0.6827
Process - 1 Information Set - 3 0.4550
Process - 2 Information Set - 3 0.4727
Process - 3 Information Set - 3 0.9244 **
Split (OR)-15645 Information Set - 3 0.8590

V. CONCLUSION

The paper analyzes how solving the edge prediction task

for enterprise models using GNN can be improved in the

conditions of training on small data. We answer the following

two research questions: (1) what would be a more efficient

embedding method to capture the semantic information from

Fig. 8. Partial model 3 with a missing edge from the Split node to Information
set-3

Fig. 9. Partial model 4 with a missing edge from the Split node to Information
set-4

the nodes’ names in order to achieve better edge predic-

tion, and (2) what textual node attributes should be used

to achieve better prediction results. The experiments showed

that application of FastText method provides better results for
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TABLE VI THE RESULTS OF THE GNN FOR PREDICTING THE MISSING

EDGE OF PARTIAL MODEL 4 (FIG.9)

source node target node Probability Suggestion
Information Set - 1 Information Set - 4 0.4822
Information Set - 2 Information Set - 4 0.5373
Information Set - 3 Information Set - 4 0.4793
Process - 1 Information Set - 4 0.6076
Process - 2 Information Set - 4 0.6138
Process - 3 Information Set - 4 0.4940
Split (OR)-15645 Information Set - 4 0.6407 **

Fig. 10. Partial model 5 with a missing edge from Information Set-3 to
Process-4

TABLE VII THE RESULTS OF THE GNN FOR PREDICTING THE MISSING EDGE

OF PARTIAL MODEL 5 (FIG.10)

source node target node Probability Suggestion
Information Set - 1 Process - 4 0.5590 **
Information Set - 2 Process - 4 0.5142
Information Set - 3 Process - 4 0.5568
Information Set - 4 Process - 4 0.5520
Process - 1 Process - 4 0.5310
Process - 2 Process - 4 0.3950
Process - 3 Process - 4 0.4286
Split (OR)-15645 Process - 4 0.3871

node names embedding than application of Word2Vec. For

the second research question it was found that node name

and node description turned out to be the most valuable

textual information for edge prediction, whereas node class

name doesn’t help and even introduces some disturbance. To

evaluate the assistance potential of the built GNN model, an

experiment simulating the modeler activity has been carried

out. Out of five cases, three edges were predicted correctly,

and for the other two cases the correct edges had the second

highest probability, what can be interpreted as a successful

result.

Future work will be aimed to experimenting with other graph

tasks, as well as developing a modeler assistance tool incor-

porating developed machine learning models.
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