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Abstract—An important drawback of deep neural networks 
limiting their application in critical tasks is the lack of 
explainability. Recently, several methods have been proposed to 
explain and interpret the results obtained by deep neural 
networks, however, the majority of these methods are targeted 
mostly at AI experts. Ontology-based explanation techniques seem 
promising, as they can be used to form explanations using domain 
terms (corresponding to ontology concepts) and logical statements, 
which is more understandable by domain experts. Recently, it has 
been shown, that inner representations (layer activations) of deep 
neural network can often be aligned with ontology concepts. 
However, not every concept can be matched with the output of 
every layer, and it can be computationally hard to identify the 
particular layer that can be easily aligned with the given concept, 
which is aggravated by the number of concepts in a typical 
ontology. The paper proposes an algorithm to address this 
problem. For each ontology concept it helps to identify neural 
network layer, which produces output that can be best aligned 
with the given concept. These connections can then be used to 
identify all the ontology concepts relevant to the sample and 
explain the network output in a user-friendly way. 

I. INTRODUCTION 

Deep artificial neural networks have become an integral part 
of the modern AI toolbox. In many recognition and prediction 
problems, they allow one to obtain very accurate results, 
sometimes even surpassing the human level. However, the 
application of neural network-based solutions in critical domains 
is severely limited by the lack of explainability. Failure to 
understand why a neural network came to a certain conclusion 
reduces trust to the results, obtained using neural network 
technology. 

The problem of neural networks explainability and 
interpretability is actively studied [1] and many explanation 
techniques have been proposed. However, most of these 
techniques are designed for and can be effectively used only by 
AI experts, and are not as understandable and easy to use by 
domain experts. Tying explanations to the domain vocabulary 
and explicit domain knowledge encoded in the form of domain 
ontology can increase the understandability of these 
explanations to domain experts. It is shown experimentally, that 
building explanations using ontology concepts familiar to 
human experts, actually increases their understandability [2]. 

This paper is based on the recent results of [9], showing that 
internal representations built by a deep neural network (neuron 
activations in inner layers of a deep neural network) can often be 
aligned with concepts of a domain ontology relevant to the target 

concept of the “main” network. The authors of [9] successfully 
train so-called mapping networks allowing to verify if a sample 
is relevant to the given ontology concept (other than the concept 
used to train the main net). Knowing the set of relevant concepts 
one can use an ontology-based inference to form a post-hoc 
explanation of “main” network (it would be expressed as a set of 
concepts relevant to the sample and ontology axioms, linking 
these concepts with each other and target concept). The authors 
of [9] also propose an algorithm to identify the set of neurons, 
which activations can be best of all aligned with the specified 
concept (this process is called “concept extraction”). However, 
this algorithm requires training of a large number of mapping 
networks, which may be time-consuming, especially if the 
ontology is large (mapping networks are trained for each 
concept). 

This paper aims at improving the concept extraction process. 
We have performed a series of experiments to understand which 
layers of a deep neural network are most promising for 
extracting certain concept, characterized by its relationship with 
the target concept of the main network (we call this concept 
extractability or concept localization). These experiments 
allowed us to identify certain patterns, e.g., roughly unimodal 
shape of concept extractability w.r.t. the layer of the main 
network. Based on these observations, we propose a heuristic 
algorithm that can significantly reduce the complexity of 
concept extraction. 

The rest of the paper is structured as following. Section II 
provides short review of ontology-based explanations of neural 
networks. Section III contains problem definition. Section IV 
briefly describes the experiments on ontology concept 
localization in deep convolutional neural networks and their 
outcomes. Section V describes the proposed algorithm. 

II. RELATED WORK 

With the upsurge in eXplainable AI (XAI) research, 
ontology-based explanation techniques for neural networks 
attract more and more attention of the research community. 
Experimental studies [4], [5] show that the use of knowledge of 
the problem domain, encoded in the form of ontology, improves 
the quality of explanations. 

Variety of ontology-based neural explanation methods have 
been proposed to-date. The first criterion for their classification 
is related to whether the entire model is explained (for example, 
approximating the logic of the model using well-interpreted 
decision trees [4]) or the result of a prediction for one particular 

ISSN 2305-7254________________________________________PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 221 ----------------------------------------------------------------------------



sample represented by the model (for example, indicating what 
exactly constituent parts (features) of the sample influenced the 
decision in one way or another). Another criterion that is 
important in a practical sense is the division into so-called post-
hoc methods and methods for constructing self-explainable 
models. Post-hoc methods aim at explaining existing models 
trained without making specific requirements for explainability, 
while methods for building self-explanatory models present 
certain requirements for the structure of machine learning 
models (in particular, deep learning) in order to ensure their 
explainability. 

A number of works are aimed at the formation of self-
explainable neural models [8], [10], [11]. Traditionally, they are 
considered to be less accurate, but there are other views on this 
matter [12]. The idea is to design the structure of the NN so that 
it to some extent correspond to the ontology (e.g., one neuron 
corresponds to each concept). 

Post-hoc explanation techniques are very important in 
practice, because they can be applied to third-party networks, 
without costly process of re-training and architecture 
adjustments that may hamper the network predictions quality. 
Local post-hoc explanation technique is proposed, e.g., in [5]. 
Similarly to LIME (a popular explanation generic explanation 
technique, not using ontologies), it is supposed to train a local 
surrogate model capable of simulating the predictions of the 
explained model in the vicinity of a given example. However, 
explanations are generated in the form of rules constructed using 
the concepts of ontology. The paper [13] also proposes a way to 
extend existing explanations with ontologies (which is reported 
to increase the ease of interpretations).  

There are also adaptations for global explanation methods to 
take into account ontologies. In particular, [4] proposes the 
TREPAN RELOADED algorithm that builds a decision tree 
approximation and uses the knowledge of the problem area, 
expressed in the form of ontologies (when forming the next 
partition while constructing a decision tree). 

In general, “black box” approximation is a popular approach 
to build and explainable model. However, [9] proposes quite 
different approach. The idea is that to explain the predictions of 
a given NN one may train several “mapping” networks 
connecting activations of the network being explained to 
ontology concepts. Using these networks one can obtain 
concepts relevant to the current sample and use ontology 
reasoning to explain the predictions. 

This paper follows the ideas introduced in [9], where it is 
shown that internal representations of a neural network can often 
be aligned with ontology terms. The process of establishing a 
relationship between ontology concept and the set of activations 
of a NN is called concept extraction. However, not all concepts 
can be extracted from any layer, therefore, finding network 
layers (or even neurons) that can be matched with the given 
concept becomes a computationally expensive task. The authors 
of [9] propose an algorithm for it that requires training of C  L 
mapping models, where C is the number of concepts and L is the 
number of layers in the network being explained. We propose a 
more efficient algorithm, based on some observations about 
ontology concept localization in neural networks. 

III. PROBLEM DEFINITION

The problem addressed in this paper can be defined in the 
following way. There is a deep neural network (we consider 
convolutional neural networks for image processing) trained for 
sample classification, i.e. outputting the probability that the 
sample under consideration belongs to some class T. This 
network is later referred to as “main” network and the class T as 
the target class of the main network. The network may have an 
arbitrary architecture with a restriction that it should be 
composed of a sequence of layers (2D convolutions, activation, 
batch normalization, pooling, etc.), e.g., it may follow one of the 
popular architecture for object recognition – ResNet, MobileNet, 
EfficientNet, etc. The network may be trained by third party, it 
cannot be somehow altered, besides, there may be no sufficient 
data to train it. However, it is possible to track activations of the 
network, produced during the forward pass. 

There is also a domain ontology, defining a number of 
concepts that may be relevant to the samples. The target class T 
of the main network is described in this ontology, therefore, T is 
connected to other classes and using this ontology one can infer 
if an individual belongs to class T based on its features (and other 
concepts it belongs to). According to [9], ontology concepts used 
in the definition of the target concept T are called “relevant to 
T”, or simply “relevant”, as there is only one target concept in 
one problem. The set of relevant concepts can be denoted as 
RELEVANT(T). 

There is a dataset, connecting samples (of the same type as 
the inputs of the main net) with relevant concepts, i.e., for the 
samples of this dataset it is known not only whether they belong 
or not to the class T, but whether they belong to each of the 
classes in RELEVANT(T). Although it may be difficult to 
annotate samples with all the relevant classes, the number of 
samples in such dataset can be rather small (significantly smaller 
than the number of images required to train main net) [9]. 

It is shown in [9], that in many cases using the dataset 
mentioned above it is possible to train a mapping networks 
reliably predicting the probability that a sample belongs to the 
classes in RELEVANT(T) based on activations of the main net. 
This process is called “concept extraction”. However, the total 
set of activations of the main net is typically very large, and it is 
inefficient to consider all the activations (besides, it increases the 
size of the training dataset). 

The problem, therefore, is to identify subset of neurons of the 
main network, from which the relevant concepts can be extracted 
with maximal reliability. In this paper, we consider only subsets 
formed by activations of entire layers of the main network. 
Therefore, the problem reduces to selecting for each relevant 
concept the layer of the main net, from which the respective 
concept can be extracted best (the respective mapping network 
has the best prediction quality, measured by some classification 
metric, e.g., ROC AUC). 

IV. CRITICAL OBSERVATIONS

We have done a series of experiments on ontology concept 
localization in (convolutional) neural networks. This section 
summarizes the outcomes of these experiments and describes 
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some of the observed patterns important for the proposed 
algorithm. 

The goal of the experiments was to analyze the localization 
of ontology concepts in neural networks of various architectures 
to find some patterns (e.g., some dependency of the concept 
localization from the relationship between this concept and the 
target concept of the network being explained). By concept 
localization here we mean describing layers of a neural network 
by the reliability of extracting this concept from the output of the 
respective layer by a specified mapping network architecture. 
Or, in a more narrow sense, from which layer the concept can be 
extracted with maximum precision. 

In our experiments we use the Explainable Abstract Trains 
Dataset (XTRAINS), introduced in [14] – a synthetic image 
dataset, designed to facilitate research on explanation and 
justification. The dataset contains 500000 images of 152  152, 
depicting schematic representations (drawings) of trains with 
some random background (one train in each image – see Fig. 1). 

The trains can be assigned certain categories based on visual 
characteristics: types of wagons (e.g., length, wall shape, roof 
shape, number of wheels), their load (depicted as a set of 
geometrical shapes drawn inside a wagon), wheel size, wagons' 
spacing, train's position and angle. 

Fig 1. Sample images from the trains dataset 

TypeA ≡ WarTrain ⊔ EmptyTrain 

WarTrain ⊒ ∃has. ReinforcedCar ⊓ ∃has. PassengerCar 

EmptyTrain ≡ ∀has. ሺEmptyWagon ⊔ Locomotiveሻ ⊓ ∃has. EmptyWagon 

Fig 2. Relevant fragment of the ontology 

All possible categories are defined in the ontology, 
accompanying the dataset. A subset of this ontology is shown in 
Fig. 2. Some of the ontology concepts correspond directly to 

visual appearance of a wagon, e.g. EmptyWagon is a wagon that 
do not carry any load (no geometric symbols inside wagon 
representation). Other concepts have logical definitions in terms 
of the ontology. Train types are typically defined using role 
“has” that establishes a connection between a train and a wagon. 
E.g., EmptyTrain is defined as a train that can have only empty 
wagons and locomotive and must have at least one empty 
wagon. 

Artificial concept TypeA is introduced to serve as a 
classification target of the network being explained. It is 
connected to other ontology concepts (defined using them), and 
the dataset can be used to check if explanation technique can 
detect this connection and leverage it for explanations. This is to 
model a situation when a network is trained on some complex 
target that, however, can be logically expressed via other domain 
concepts. There are two other similar artificial concepts for the 
same purpose in the dataset: TypeB and TypeC. Though in this 
paper we show the results with TypeA only, the results of 
experiments with other types are very similar and follow the 
same patterns. 

Each image of the dataset is annotated with binary attributes, 
corresponding to ontology concepts. Therefore, for each image 
not only target label is known (e.g., whether it belongs to TypeA 
or not), but also relation to all ontology concepts, which allows 
one to train and verify concept extraction models. 

In our experiments, we trained convolutional networks of 
various architectures for binary classification of target concepts 
(TypeA, TypeB or TypeC). Following [9], we call them “main” 
networks. In particular, we trained a convolutional neural 
network of a “custom” architecture (consisting of several 
convolutional layers with ReLU activation and batch 
normalization followed by a couple of fully-connected layers), 
as well as ResNet-18 and MobileNet-V2. In total, we had 9 
networks (three architectures for each of the three target 
concepts). All of these networks had prediction quality for the 
target concept about 0.99 (ROC AUC) on a test set (100000 
images). Then, for each of these networks we trained concept 
mapping networks of two various architectures. Concept 
mapping networks are trained for each concept, using output of 
some layer of a main network. We evaluate concept extraction 
quality by ROC AUC. 

Fig 3. ROC AUC for concept extraction by shallow mapping network from some of the layers of ResNet-18 main network for TypeA trains classification
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Two mapping network architectures were considered: the 
first architecture (referred to as shallow mapping network) 
consists of an input layer and one output neuron, and the second 
network (referred to as 10-5 mapping network) consists of an 
input layer, followed by three fully connected layers containing 
10, 5 and 1 neuron, respectively (hidden layers have ReLU 
activation). Next, we trained concept mapping networks for each 
ontology concept relevant to the type of the corresponding train. 
Relevant concepts are those concepts that participate in the 
definition of the target concept (type of train) – see the ontology 
fragment in Fig. 2. 

The quality data (ROC AUC) of the obtained mapping 
networks for ResNet-18 main network architecture classifying 
TypeA trains is shown in Fig. 3. 

Based on the experiments, following observations has been 
made. Most of the concepts relevant to the target concept of the 
main nets can be reliably extracted from activations of some 
layer of the main NN even by shallow mapping networks. It 
basically confirms the findings of [9]. Some concepts are harder 
to extract (e.g., EmptyWagon), however, they also can be 
extracted in some configurations. 

Main networks with more layers have some advantage: the 
ontology concepts can be extracted from MobileNet-V2 or 
ResNet-18 with the same or better reliability than from custom 
architecture network having only 7 layers. One can hypothesize 
that complex multi-layered networks produce richer set of inner 
abstractions that can more easily be aligned with the specified 
set of abstractions (ontology). 

As expected, more expressive mapping networks can extract 
concepts more reliably – the concept extraction quality of 10-5 
mapping network is superior w.r.t. the concept extraction quality 
of the shallow one. However, very complex mapping networks 
would require more training effort (training data for mapping 
networks have to be annotated with all relevant concepts). 

Fig 4. Higher (EmptyTrain) and lower (EmptyWagon) level concept 
localization 

The concept extraction quality has roughly unimodal form 
(w.r.t. the layer of the main network). For most of the “high-
level” concepts close to the target concept of the main net 
extraction quality maximum is located somewhere near the head 
of the main network (the last several fully-connected layers), 
however, some lower-level concepts (e.g., EmptyWagon) seem 
to be recognized by the main net on earlier layers, and then are 
“forgotten” – replaced by more complex concepts, used in the 
definition of the target concept. We can see this process, for 
example, in Fig. 3 and Fig. 4. Inner representation can be aligned 
with EmptyWagon concept (strictly speaking, 
“has.EmptyWagon”) with increasing quality until layer 14. This 

concept is important to define EmptyTrain, which, in its turn, is 
used to define target concept (TypeA). After layer 14 the 
network's inner representation is well-aligned with EmptyTrain 
and it doesn't “need” “has.EmptyWagon” any more, and the 
latter starts to disappear from the inner representation. 

V. ALGORITHM 

This section introduces the proposed algorithm, as well as its 
analysis. The algorithm primarily exploits two observations (see 
Sec. IV): 

 concepts that are “closer” to the target concept of the
main network are better extracted from top layers;

 the concept extraction reliability with the specified
extractor architecture is roughly unimodal.

Input of the algorithm consists of a trained neural network 
𝐺ఛ , the ontology O, the list L of 𝐺ఛ  layers, which activations 
should be used for concept extraction, the training dataset for 
mapping networks ൫𝑋, 𝑦ோா௅ா௏஺ே்ሺఛሻ൯ , testing dataset for 

mapping networks ൫𝑋்௘௦௧, 𝑦ோா௅ா௏஺ே்ሺఛሻ
்௘௦௧ ൯ , and a class of 

mapping networks M. It is assumed, that the neural network 𝐺ఛ 
is trained for binary classification of input samples 𝑥 ∈ 𝑋 to one 
of the ontology classes 𝜏, which is typically done by a sigmoid 
activation of the last network layer, i.e. 𝐺ఛሺ𝑥ሻ ∈ ሾ0; 1ሿ. We also 
assume that it is possible to extract activations of a given layer, 
obtained during forward pass via the given network, we will 
denote these values as 𝐺௟೔

ఛሺ𝑥ሻ, where 𝑙௜  is a layer number, 𝑖 ∈
ሼ1,… , |𝐿|ሽ, 𝑙௜ ∈ 𝐿. 

The ontology O consists of the set of concepts C and the set 
of definitions D. Each definition have the form of a triple (c, rel, 
expr), where c is the concept being defined, rel is some relation 
(equivalent, subclass of) and expr is some expression over the 
concepts. We also assume that it is possible to obtain the set of 
concepts, used in the expression expr, we denote the procedure 
to do that as CONCEPTS(expr). 

Algorithm 1 Concept extraction  
cs, parent := CONCEPTS_ORDER_BFS(, O) 
best[] := |L| 
for c  cs: 
    best[c] := |L| 
for c  cs: 
    lTOP := best[parent[c]] 
    best[c] := SEARCH(c, lTOP) 

return {(c, L[best[c]]) | c  cs} 

According to the observation, that concepts close to the 
target concept are located in the layers closer to the head, the 
algorithm starts with ordering the ontology concepts by its 
definition distance from , the target concept of the network 𝐺ఛ. 
This ordering is done by CONCEPTS_ORDER_BFS procedure, 
which implements a breadth-first search in the ontology, 
interpreting concepts as nodes and definitions as sets of edges, 
connecting the concept being defined to all concepts, used in the 
definition. The  desired side-effect of this  procedure is that  the 
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Algorithm 2 CONCEPTS_ORDER_BFS(c0, O)  
Input: concept c0, ontology O. 
D := DEFINITIONS(O) 
q := queue() 
output := [] 
parent :=  
PUSH(q, c0) 
while not EMPTY(q): 
    c := POP(q) 
    for c’, rel, expr  D: 

 if c = c’: 
  for c’’  CONCEPTS(expr): 

   if c’’ not in parent: 
 parent[c’’] := c 
 output := output + c’’ 
 PUSH(q, c’’) 

return output, parent 

Algorithm 3 SEARCH_LINEAR(c, lTOP)  
Input:  
- concept c, best layer for which is searched for; 
- lTOP, top layer of the network to consider. 
best_layer := None 
best_value := None 
l := lTOP 
while l  1: 
    m := FIT(M, 𝐺௅ሾ௟ሿ

ఛ ሺ𝑋ሻ, 𝑦௖) 
    v := EVALUATE(m, 𝐺௅ሾ௟ሿ

ఛ ሺ𝑋்௘௦௧ሻ, 𝑦௖்௘௦௧) 
    if best_value is None or v > best_value: 

 best_value := v 
 best_layer := l 

    if best_layer – l > : 
 break 

    l := l - 1 
return best_layer 

resulting list cs contains only concepts, relevant to  that can be 
potentially aligned with the activations of 𝐺ఛ . The concept 
extraction process starts with concepts close to  and proceeds to 
more distant ones. CONCEPTS_ORDER_BFS also returns parent 

mapping, and parent[c] is the concept with the smallest distance 
from , that there is definition (parent[c], rel, e), c  
CONCEPTS(e). For each examined concept c a search for the best 
layer from which c can be extracted is initiated. The levels are 
evaluated using mapping networks from the class M, which are 
fitted to the training data and then evaluated on test data using 
some quality metric (typically, ROC AUC). We call the quality 
metric value “concept expression”. The range of this search is 
constrained by the distance from , in particular, the concept is 
searched for only in layers that are farther from the network 𝐺ఛ 
head than the best matching layer for the parent[c]. There are 
several search strategies possible, i.e. several implementations 
of the SEARCH procedure. We experimented with two 
implementations – linear search and golden-section search. Both 
methods utilize the unimodality of the matching reliability of the 
given concept with the number of layers. Linear search starts 
with the layer most close to the 𝐺ఛ  head, and sequentially 
evaluate mappings until it finds a layer after which there is no 
improvement during  layers (we call   “patience”). This 
parameter is introduced, because concept expression does not 
follow strictly unimodal shape, therefore, larger values of  
reduce the chances of missing the global maximum. Golden-
section search is an algorithm for finding maximum of a 
unimodal function based on divide-and-conquer technique. On 
each iteration, it splits all the layers into three parts and excludes 
one of these parts. An advantage of this algorithm is that it 
requires only one function evaluation per iteration (except the 
first iteration, which requires two) and even in worst case, the 
number of function evaluations is proportional to the logarithm 
of the number of layers. The number of function evaluations is 
an important criterion here, because each such evaluation 
requires fitting a model to the activations of the layer and 
calculating the quality metric (e.g., ROC AUC), which typically 
takes dozens of minutes. In spite the golden-section search has 
better asymptotical properties, in practice, for this problem linear 
search is as efficient, first, because maximum is typically located 
within 2-3 layers from the start of the range, second, because the 
concept expression follows not strictly unimodal shape, and 
golden-section is more likely to miss the global maximum. 

Let’s illustrate the proposed algorithm using concept 
extraction scenario discussed in Sec. IV. Main network is a 

Fig 5. Results of concept localization Fig 5. Results of concept localization Fig 5. Results of concept localization by the algorithm 
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neural network of ResNet-18 architecture, trained for binary 
classification of concept TypeA, which, in this case, is the target 
concept (). Following the data, presented in Sec. IV we will 
search for ontology concepts in only subset of ResNet-18 layers, 
in particular, L = [2, 4, 7, 9, 12, 14, 17, 19, 20, 21] (these are 
outputs of skip-connection structures and all fully-connected 
layers). Relevant ontology fragment is specified in Fig. 2. Class 
of mapping networks M can be set as shallow networks with 
sigmoid activation. 

Concept ordering using CONCEPTS_ORDER_BFS results in 
the following order (parent concept is shown in square brackets): 

 WarTrain [TypeA]
 EmptyTrain [TypeA]
 has.ReinforcedCar [WarTrain]
 has.PassengerCar [WarTrain]
 has.(EmptyWagon ⊔ Locomotive) [EmptyTrain]
 has.EmptyWagon [EmptyTrain]

In this order, the concepts are examined to find the best 
concept expression. If for this purpose we use linear search 
(SEARCH_LINEAR, Algorithm 3) with patience value 1, then the 
set of analyzed layers for each concept would be as shown in 
Fig. 5. Bolded cells are the layers where the concept is expressed 
best of all, cell in ellipse show the layer identified by the search 
procedure, while rectangles highlight examined layer ranges for 
each concept. Note, that ranges for has.ReinforcedCar, 
has.PassengerCar and has.EmptyWagon start from the 9-th 
position in the list L (corresponding to 20-th layer of the main 
net), because “parent” concepts for these concepts are best 
expressed in this layer. 

In this example, the algorithm was able to find the layers 
where the concepts are best of all expressed by examining about 
a half (23 out of 50) of possible concept-layer pairs. With larger 
main nets architectures containing more layers (e.g., ResNet-52, 
MobileNet-V2, EfficientNet, etc.) the advantage is even more 
impressive. Although the algorithm is based on a heuristic, in 
our experiments, we did not find situations, where it fails to find 
best concepts expressions (with reasonable patience setting). 
However, this situation is possible, and it requires further 
research. 

VI. CONCLUSION

We have proposed a heuristic algorithm for efficient 
ontology concept extraction from deep neural networks. The 
layers identified with the algorithm and the respective mapping 
networks can be used to generate ontology-based post-hoc 
explanations for some classification neural networks, which can 
improve human-AI interaction. 

Although the algorithm successfully solves the problem, it 
has several limitations that should be addressed in further work. 
For example, currently we consider only concepts of the same 
class. In the provided example, target concept (TypeA) and 
extracted concepts (e.g., EmptyTrain or has.ReinforcedCar) are 

all subclasses of Train concept (it is the most general concept 
related to each image). Other ontology concepts can also be 
considered. It would also be interesting to consider sets of 
neurons spread across several layers. Another important but 
challenging direction for future research is theoretical 
investigation of performance guarantees of the algorithm. 
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